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Abstract

In this paper, we propose Hierarchical Action Segmen-
tation Refiner (HASR), which can refine temporal action
segmentation results from various models by understand-
ing the overall context of a given video in a hierarchical
way. When a backbone model for action segmentation es-
timates how the given video can be segmented, our model
extracts segment-level representations based on frame-level
features, and extracts a video-level representation based on
the segment-level representations. Based on these hierar-
chical representations, our model can refer to the overall
context of the entire video, and predict how the segment la-
bels that are out of context should be corrected. Our HASR
can be plugged into various action segmentation models
(MS-TCN, SSTDA, ASRF), and improve the performance of
state-of-the-art models based on three challenging datasets
(GTEA, 50Salads, and Breakfast). For example, in 50Sal-
ads dataset, the segmental edit score improves from 67.9%
to 77.4% (MS-TCN), from 75.8% to 77.3% (SSTDA), from
79.3% to 81.0% (ASRF). In addition, our model can refine
the segmentation result from the unseen backbone model,
which was not referred to when training HASR. This gen-
eralization performance would make HASR be an effective
tool for boosting up the existing approaches for temporal
action segmentation. Our code is available at https:
//github.com/cotton-ahn/HASR_iccv2021.

1. Introduction

Enabling an intelligent agent to understand a human ac-
tion from videos is crucial for various applications such as
interactive robots, surveillance, and activity analysis. Re-
garding this, one main line of research would be a video
action recognition [14, 1, 7], which predicts the action class
label for properly trimmed videos. On the other hand, there
exist researches for understanding untrimmed videos with
fine-grained class labels [19, 27, 21], so that agents can lo-
calize or segment human actions from long-term videos. In
this paper, we focus on a task of temporal action segmenta-
tion, which is to divide video frames into segments as well
as to predict action class labels for the segments.

Figure 1. An illustration of how the proposed Hierarchical Action
Segmentation Refiner (HASR) works. HASR refines the action
segmentation result from the backbone model, after understanding
the overall context of the entire video in a hierarchical way. This
example is obtained when HASR is applied to improve the perfor-
mance of MS-TCN [5], given a video of making a hot-dog as an
input. It shows that the label of ‘stir’, which is not relevant to a
hot-dog, changes to the ‘background’ (no action) label.

Researches in temporal action segmentation have been
improved to successfully segment thousands of video
frames recorded with 15 fps [5, 3, 10]. However, we find
out that existing state-of-the-art models sometimes gener-
ate segmentation results including action labels that are out
of overall context. For example, as shown in Figure 1, the
label of ‘stir’ appears when the input video is about making
a hot-dog. We claim that this phenomenon happens since
existing approaches focus on frame-level feature informa-
tion, but not on the overall context of the video.

In this paper, we propose a Hierarchical Action Segmen-
tation Refiner (HASR), which can extract the hierarchical
video representations to understand the overall context, and
exploit them to refine the results from action segmentation
backbone models. Here, the action segmentation backbone
models refer to any existing approaches for a temporal ac-
tion segmentation task, such as MS-TCN [5], SSTDA [3]
and ASRF [10]. Figure 1 shows an illustration of how
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HASR works. Based on the action segmentation results
from a backbone model, HASR extracts segment-level rep-
resentations based on given frame-level features, and ex-
tracts a video-level representation based on the segment-
level representations. With these hierarchical video repre-
sentations, our model predicts how the segment labels that
are out of context should be corrected.

HASR is trained in a supervised way, by referring to the
segmentation results from the pretrained backbone models
as well as the ground truth segment information. The in-
teresting point is, after HASR is trained to learn how to re-
fine the segmentation results from backbone models A,B
and C, it is also effective for refining the results from an-
other unseen backbone model D. We validate this gener-
alization performance from experiments, and show that our
model can be extensively used to improve the segmentation
results from unseen backbone models. Our contribution can
be summarized as follows:

• We propose Hierarchical Action Segmentation Refiner
(HASR), which can refine the action segmentation re-
sults from the backbone model by understanding the
overall context of the entire video in a hierarchical
way. HASR can be plugged into various backbone
models, and it is also possible to use HASR to refine
segmentation results from unseen backbone models.

• Our approach can boost up the performance of exist-
ing state-of-the-art action segmentation models. For
example, based on the 50Salads dataset [22], our
model improves the segmental edit score from 67.9%
to 77.4% for MS-TCN [5], from 75.8% to 77.3% for
SSTDA [3], from 79.3% to 81.0% for ASRF [10].

2. Related Works
In the study of temporal action segmentation, the main

objective is to segment given video frames, and to label each
segment with corresponding action classes. Due to its vari-
ous applications, many researchers contributed to develop-
ing methodologies for action segmentation. For example,
there are approaches that use a sliding window with non-
maximum suppression to detect action segments [20, 11],
approaches based on the hidden Markov model [13, 23],
and approaches based on the temporal convolutional net-
works (TCN) [15, 16, 17, 5].

Among these works, we would like to highlight a
multi-stage temporal convolutional network (MS-TCN) [5],
which is a stack of several TCN. Here, TCN consists of
several dilated 1D convolutions with residual connections,
and these multiple dilated convolutions enable MS-TCN to
make its modeling capacity and temporal receptive field
larger. Based on this, MS-TCN could conduct action seg-
mentation with higher frame-per-second compared to other
works [15, 17], and achieved state-of-the-art results.

In addition, there exist several approaches to improve the
performance of action segmentation models such as MS-
TCN [3, 26, 9, 10]. Chen et al. [3] proposed to apply self-
supervised domain adaptation techniques when training a
model such as MS-TCN, and it exploits unlabeled videos
to boost the performance of action segmentation. Wang et
al. [26] suggested a framework named boundary-aware cas-
cade network (BCN), and Yifei et al. [9] suggested a graph-
based temporal reasoning module (GTRM). These [26, 9]
can be easily attached to various action segmentation mod-
els to improve performance. Ishikawa et al. proposed an
action segment refinement framework (ASRF) [10], which
decouples the problems of frame-level action segmenta-
tion and action boundary regression. The framework con-
sists of two branches, one for generating frame-level ac-
tion segmentation information, another for estimating the
time boundary information of action segments. It firstly
estimates frame-level segment class labels, and refines the
result based on the estimated time boundary of segments.
Based on this, [10] has recently earned state-of-the-art per-
formance, with three challenging datasets [6, 22, 12], which
will be also used in our experiments.

However, as we mentioned earlier, we observed that ex-
isting state-of-the-art models such as [5, 3, 10] sometimes
generate segment class labels that are out-of-context. For
example, a ‘stir’ label appears in a hot-dog making video
as shown in Figure 1, or a ‘cut cheese’ label appears in a
salad-making video even if the human finished mixing up
the cheese to the salad. Our goal is to refine these out-of-
context segmentation results by understanding the overall
context of a given video input in a hierarchical way.

3. Hierarchical Action Segmentation Refiner

3.1. Overall Structure

Overview Figure 2 shows the overview of our Hierarchi-
cal Action Segmentation Refiner (HASR). It aims to refine
the frame-level action segmentation result from a backbone
by incorporating hierarchical video representations. Based
on the segmentation result from the backbone model and
frame-level features, our model first extracts hierarchical
video representations, which are segment-level and video-
level representations. Segment-level representation encodes
the frame-level features of each segment, and video-level
representation encodes the obtained segment-level repre-
sentations to represent the video consisting of multiple seg-
ments. Then, our model refines the segment-level labels
based on the hierarchical video representations and the em-
bedding vectors of segment labels. Refined segment-level
labels are rolled out into frame-level labels, based on the
time boundary information of refined segments.

Note that the time boundary information of the refined
segments is maintained as same as the unrefined segments,
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Figure 2. The overview of the proposed Hierarchical Action Segmentation Refiner (HASR). The objective of our model is to refine the seg-
mentation result from the backbone model pretrained for action segmentation. First, our model extracts hierarchical video representations,
which are segment-level and video-level representations. Second, it refines the backbone’s segmentation result based on the hierarchical
video representations. Note that our model is designed to be attached to various action segmentation backbone models such as [5, 3, 10].

which makes our model focus on correcting false segment
labels from the backbone model. This design is based on
our observation that many failure cases are due to over-
segmentation or mis-segmentation. Therefore, we chose
to propose a refiner model which trusts the time boundary
information of segments that are estimated from backbone
models, and mainly focuses on fixing false segment labels.

Formulations The objective of a temporal action seg-
mentation task is to estimate class labels of video frames.
Let I = {i(t)}t=1...T denote T image frames consisting
given video input. Frame-level features X = {x(t)}t=1...T

can be extracted from I , based on the existing approaches
for feature extraction from human action videos [2, 25]. Let
FB denote a backbone model pretrained for temporal ac-
tion segmentation. The output of FB is a set of class la-
bels from each frame, such that C = FB(X), where C =
{c(t)}t=1...T . If input frames can be divided into N seg-
ments based on C, the class label and time information of N
segments can be represented as S = {(cn, tn, ln)}n=1...N .
Here, cn denotes the class label of the n-th segment, tn de-
notes the start time index of the n-th segment, and ln de-
notes the number of frames consisting the n-th segment.

After the backbone model FB estimates class labels
C, our HASR refines C into C ′ based on two processing
phases. In the first phase, our model tries to understand
the input video based on the segmentation results from the
backbone model. First, our model extracts a set of segment-
level representations FS = {fS(n)}n=1...N . Here, fS(n)
denotes the representation of the n-th segment, which is
extracted by a segment-level representation encoder FSE .

After extracting FS from N segments, S and FS are given
to video-level representation encoder FV E . Then, a video-
level representation FV is extracted.

In the second phase, our model refines the segmentation
result from the backbone by predicting which segment la-
bel needs to be corrected when considering the hierarchical
video representations. Let FR denotes our action segmen-
tation refiner, which refines segment-level labels S into S′.
Then, segments can be refined as S′ = FR(S,FS ,FV ) =
{(c′n, tn, ln)}n=1...N . Note that the time boundary informa-
tion of S′ is maintained as the same as S. Based on S′, the
frame-level action segmentation labels C ′ = {c′(t)}t=1...T

can be simply calculated by rolling out the information in-
side S′.

3.2. Segment-level Representation Encoder

As mentioned in Section 3.1, the segment-level repre-
sentation of the n-th segment fS(n) is resulted from the
relevant encoder FSE , such that:

fS(n) = FSE

(
cn, Xtn:tn+ln

)
(1)

Here, the class label information of the n-th segment cn as
well as the frame-level features consisting the n-th segment
Xtn:tn+ln are used as inputs to FSE .

Figure 3 shows how the proposed segment-level repre-
sentation encoder works. First, the class label information
cn is converted into the embedding vector Lcn ∈ RdL ,
based on the embedding weight matrix L ∈ Rnc×dL , where
nc denotes the number of action classes and dL is a dimen-
sion of the segment label embedding vector. Naturally, the
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Figure 3. The visualization of the segment-level representation en-
coder. The segment label embedding vector is used as a query to
generate attention weights for the frame-level features. Based on
the attention weights, the frame-level features in the segment is
weighted summed to generate a segment-level representation.

cn-th row of L would be Lcn , and note that L is also a learn-
able parameter.

Based on the segment label embedding vector Lcn , FSE

applies a key-query-value based attention mechanism [24]
to extract fS(n) from the frame-level features Xtn:tn+ln .
To generate a query vector q, we multiply a weight matrix
Wq with Lcn , such that q = WqLcn . Key and value vectors
are obtained by multiplying Xtn:tn+ln with Wk and Wv .
Let k(t) = Wkx(t) and v(t) = Wvx(t) denote key and
value vectors obtained from x(t) ∈ Xtn:tn+ln . Then, an
attention weight w(t) can be obtained by passing the inner-
product result between q and k(t) to a temperature softmax
layer, such that w(t) = exp(qT k(t)/τ)∑tn+ln

i=tn
exp(qT k(i)/τ)

, where τ de-

notes a temperature parameter. Based on this, the segment-
level representation can be obtained by weighted summa-
tion between the attention weights and values, such that
fS(n) =

∑tn+ln
t=tn

w(t)v(t).

3.3. Video-level Representation Encoder

Intuitively, the process of extracting fS(n) in Section 3.2
is to interpret the visual information of the n-th segment
based on the class label cn that the backbone model esti-
mated. However, if the backbone model fails to estimate
cn correctly, fS(n) might represent the n-th segment in a
wrong way. This might affect our video-level representa-
tion encoder FV E , which gets FS = {fS(n)}n=1...N as an
input to encode a representation of the whole video.

To address this issue, we propose FV E which under-
stands the video-level information in a sample-based way.
Figure 4 shows how the proposed video-level representation
encoder works. The input IV E is a sequence of segment in-
formation, which is made by concatenating segment-level
representations and segment-label embedding vectors, such
that IV E = {[fS(n);Lcn ]}n=1...N . Rather than observing

Figure 4. The structure of the video-level representation encoder.
Rather than observing the whole segment information once, it ob-
serves the sampled subsequence for multiple times.

the whole sequence IV E once, our strategy is to observe a
set of noisy sequences which are sampled from IV E . This
would enable our FV E to catch the overall context of the
entire video even if an incorrectly interpreted segment-level
representation fS(n) is included in the input IV E .

After sampling B sequences which length is L and the
dimension of each element is D, a set of sampled sequences
from IV E can be reshaped into a matrix size of B × L ×
D. To extract a meaningful video-level representation from
this, FV E passes this matrix into several residual blocks and
max-pooling layers as shown in Figure 4. The number of
residual blocks and max-pooling layers is ⌊log2 L⌋, so that
the matrix can shrink into the matrix which size of B ×D.
Here, the residual block is a modified version of the ones
from [8]. After that, FV E averages the resulted in B × D
matrix into a vector of dimension D, which would become
our video-level representation FV .

3.4. Action Segmentation Refiner

The input for action segmentation refiner FR is con-
structed as {[Lcn ; fS(n);FV ]}n=1...N . Based on this, FR

can refer to (1) a segment label information from the back-
bone model, (2) a segment-level representation which sum-
marizes the frame-level features consisting of each seg-
ment, (3) a video-level representation which encodes over-
all contextual information of the given video. Our ac-
tion segmentation refiner FR is recurrent neural networks
(RNNs) with gated recurrent unit (GRU) cells [4]. Based
on given inputs, it classifies segment-level label information
S′ = {c′n, tn, ln}n=1...N . Here, note that the time boundary
information of S′ is maintained same as unrefined segments
S. Based on S′, the frame-level action segmentation class
labels C ′ = {c′(t)}t=1...T can be calculated by rolling out
the information of S′.
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Figure 5. An example of data collection process for training our
model, when the video dataset can be split into four.

3.5. Training Procedure

To train our model in a supervised way, we need a dataset
consists of (X, Ŝ, S̄), where Ŝ = {(ĉn, tn, ln)}n=1...N

denotes a predicted segmentation information from the
backbone model, and S̄ = {(c̄n, tn, ln)}n=1...N denotes
a ground truth segmentation information that our model
aims for. S̄ can be obtained from Ŝ and C̄, where C̄ =
{c̄(1) . . . c̄(T )} denotes a ground truth class label infor-
mation in a frame-level. To annotate c̄n, we sample out
c = {c̄(tn), . . . c̄(tn + ln)} from C̄, and choose c̄n as the
one most present in c.

To increase the performance of our model, we observed
it is crucial to collect a training dataset from various exam-
ples of Ŝ. Figure 5 shows an illustration of how the training
dataset for our model can be collected when a whole data
can be divided into 4 splits. This figure shows the process
of collecting Ŝ when training our model based on data splits
1, 2, and 4. From each split, Ŝ is collected from pretrained
backbone models that supposed to be tested with this split.
For example, when collecting Ŝ from the data split 1, a set
of backbone models trained based on data splits 2, 3, and
4 are used to generate Ŝ from given X . In the experiment,
backbone models that were saved through 10-50 training
epochs are used for this data collection.

In addition, our model can be trained based on the dataset
collected from various types of backbone models. For ex-
ample, after being trained based on the dataset collected
from backbone models such as SSTDA [3] and ASRF [10],
our model can be applied to refine the segmentation result
from another backbone model such as MS-TCN [5]. Rele-
vant experiment results will be shown in Section 4.3.2.

To train our model, we use a cross-entropy loss func-
tion between ground truth segment-level labels and refined
segment-level labels. Note that our loss function is not cal-
culated from rolled-out frame-level labels. Based on the
loss function, we use Adam optimizer with a learning rate
of 0.0001, and with a weight decay rate of 0.0001.

4. Experiments
4.1. Datasets and Evaluation Metrics

Dataset In our experiments, three challenging datasets
are used: Georgia Tech Egocentric Activities (GTEA) [6],
50Salads, [22] and Breakfast dataset [12]. The GTEA
dataset consists of 28 egocentric videos of 7 different ac-
tivities from 4 human subjects, such that the dataset can
be divided into four splits. The 50Salads dataset consists
of 50 videos of preparing salads from 25 human subjects,
such that the dataset can be divided into five splits. The
dataset also contains depth and accelerometer data, but here
we only use the RGB frames dataset. The Breakfast dataset
consists of 1712 videos of 18 different activities in kitchens
from 52 human subjects. The dataset can be divided into
four splits, and it is the largest one among the three datasets.
For consistency, all videos from these datasets are set to 15
fps. For input to our model, we use I3D [2] features which
are extracted from all video frames and provided by [5].

Evaluation Metrics When evaluating action segmenta-
tion results, we use rolled-out frame-level segment labels
from our HASR. For evaluation, a frame-level accuracy
(Acc), a segmental edit distance (Edit), and segmental F1
scores with different overlapping threshold k% (F1@k)
(k = {10, 25, 50}) are used. Acc is the most common met-
ric, but note that it cannot reflect the over-segmentation is-
sues. Therefore, the segmental edit distance based on Lev-
enshtein distance [18], whose higher value means that pre-
dicted segments need to change less to become like ground
truth segments, as well as the segmental F1 scores to mea-
sure the prediction quality are additionally used.

Backbone Models Our HASR can be plugged into var-
ious existing models for action segmentation, and it can
also refine the segmentation result from an unseen backbone
model. In order to validate these points, we chose 3 differ-
ent state-of-the-art backbone models for our experiments,
which are MS-TCN [5], SSTDA [3], ASRF [10]. In addi-
tion, we also add a single-layer GRU-based model for ac-
tion segmentation, which receives frame-level features and
results in frame-level action class labels.

4.2. Qualitative Results

Figure 6 shows several example refinement results from
HASR. Figure 6(a) shows how HASR refines the segmen-
tation results from ASRF [10]. The given video is from
the Breakfast dataset, and it is about a human making or-
ange juice. The result shows that the backbone model mis-
understands ‘orange’ as ‘bun’, the action of ‘squeezing’ as
‘cutting’, which could be due to the low brightness of the
input video. Fortunately, the backbone model could cor-
rectly estimate ‘take glass’ and ‘pour juice’ in the end, but
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(a) (b)

(c) (d)

Figure 6. Qualitative results from HASR with various backbone models and datasets. Best view in color. (a) Refinement from ASRF with
Breakfast dataset. (b) Refinement from SSTDA from 50Salads dataset. (c) Refinement from MS-TCN from GTEA dataset, when manually
changed false segment label ‘fold’ exists in the backbone prediction. (d) Failure case from MS-TCN with Breakfast dataset.

the overall segmentation results are inconsistent. The re-
finement result shows that our model successfully corrects
the segment action labels which do not match the overall
context. It predicts that it is appropriate to cut and squeeze
the orange first, given the video which ends with pouring
the juice.

Figure 6(b) shows another result when HASR refines the
result from the SSTDA [3]. The given video is from the
50Salads dataset, and it shows an egocentric video from a
human when making a salad. In this video, the human cuts
tomato/cheese/lettuce and moves them to a bowl. However,
the backbone model estimates that the human cuts lettuce
for a while, but suddenly changes to cut tomato, and move
the tomato to a bowl, without moving lettuce to the bowl.
The refinement result shows that our model successfully
corrects these false segmentation results, which make no
sense when considering the process of making a salad.

In addition, we manually change the segmentation result
from the backbone in an incorrect way, and check how the
proposed HASR corrects it. Figure 6(c) shows when the re-
sult from MS-TCN [5] were adjusted in a wrong way and
given to the HASR. Here, the input video is about mak-
ing a coffee with honey, from the GTEA dataset. After
the backbone model segments the given video, we manually
changed the label of ‘stir’ to ‘fold’, which is not likely to be

observed in the video of making a coffee with honey. The
refinement result shows that our model successfully corrects
that the label should be ‘stir’ instead of ‘fold’, based on the
understood context of the input video.

However, the performance of HASR is influenced by
how accurately the backbone model predicts the time
boundary of segments. Figure 6(d) shows a failure case,
when the estimated time boundary from the backbone dif-
fers too much from the ground truth. If the backbone model
segments the video with too incorrect time boundary infor-
mation, it will affect HASR when extracting the video-level
representation. Therefore, our future work is to fix this phe-
nomenon with an additional module that can also correct
the segment time boundary information which is estimated
from the backbone model.

4.3. Quantitative Results

4.3.1 Refinement from State-of-the-Art Models

To validate that our HASR can be used to boost up the per-
formance of existing models for action segmentation, we
plugged in our HASR to various backbones such as MS-
TCN [5], SSTDA [3], ASRF [10], and GRU-based model.
For a single backbone model, a training dataset for HASR
is collected as mentioned in Section 3.5, and it is trained
to learn how to refine the segmentation result from the pre-
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GTEA
Method F1@{10, 25, 50} Edit Acc
GRU 84.1 80.2 67.3 79.1 76.5
GRU + HASR 88.7 85.6 71.8 85.2 76.2
Gain 4.6 5.4 4.5 6.1 -0.3
MS-TCN [5] 85.8 83.4 69.8 79.0 76.3
MS-TCN (our impl.) 88.6 86.4 72.5 83.9 78.3
MS-TCN + HASR 89.2 87.3 73.2 85.4 77.4
Gain 0.6 0.9 0.7 1.5 -0.9
SSTDA [3] 90.0 89.1 78.0 86.2 79.8
SSTDA (our impl.) 91.1 88.8 75.6 87.9 79.4
SSTDA + HASR 90.9 88.6 76.4 87.5 78.7
Gain -0.2 -0.2 0.8 -0.4 -0.8
ASRF [10] 89.4 87.8 79.8 83.7 77.3
ASRF (our impl.) 87.9 86.1 75.2 81.9 77.1
ASRF + HASR 89.2 87.2 74.8 84.5 76.9
Gain 1.3 1.1 -0.4 2.6 -0.2

Table 1. Refinement results based on GTEA dataset.

trained backbone model. However, since official reposito-
ries for the backbones do not distribute pretrained models,
we trained the backbone models by ourselves based on the
officially distributed codes.

Table 1, 2 and 3 show the refinement results when apply-
ing HASR to various backbones. In these tables, we show
the best performance of backbone models when they are
trained by ourselves based on official codes. But for refer-
ence, we also show the official performance records from
their papers [5, 3, 10]. Among datasets, note that the com-
plexity of GTEA consisting of 28 videos is the lowest, and
the complexity of Breakfast consisting of 1712 videos is the
highest.

Results show that the performance gain from our HASR
is higher when the backbone model has a lower perfor-
mance. For example, it is shown that the performance gain
when applying HASR to the GRU-based model or MS-TCN
tends to be higher than in other cases. On the other hand,
the performance gain from HASR becomes lower when the
backbone model already performs well enough. Especially,
on the GTEA dataset, the effect of our HASR becomes re-
duced when it is applied to SSTDA, which already shows
the high performance.

4.3.2 Refinement from Unseen Backbones

To show the generalization performance of our HASR, we
trained HASR to learn how to refine the segmentation re-
sults from the backbone models A, B and C, and used the
trained HASR to refine the segmentation results from the
unseen backbone model D. For this experiment, we used
the GRU-based model or MS-TCN as unseen backbone
models for test, and used others for training our HASR (i.e.,
use segmentation results from MS-TCN, SSTDA, ASRF to
train HASR when GRU-based model is the unseen model).

50Salads
Method F1@{10, 25, 50} Edit Acc
GRU 62.4 60.0 52.2 55.6 80.5
GRU + HASR 78.1 76.0 67.7 72.2 80.9
Gain 15.7 16.0 15.5 16.5 0.4
MS-TCN [5] 76.3 74.0 64.5 67.9 80.7
MS-TCN (our impl.) 77.2 74.7 64.8 70.4 80.3
MS-TCN + HASR 83.4 81.8 71.9 77.4 81.7
Gain 6.2 7.1 7.1 7.0 1.4
SSTDA [3] 83.0 81.5 73.8 75.8 83.2
SSTDA (our impl.) 80.6 78.7 70.8 74.9 82.5
SSTDA + HASR 83.5 82.1 74.1 77.3 82.7
Gain 2.9 3.4 3.3 2.4 0.2
ASRF [10] 84.9 83.5 77.3 79.3 84.5
ASRF (our impl.) 85.1 83.3 77.7 79.9 83.7
ASRF + HASR 86.6 85.7 78.5 81.0 83.9
Gain 1.5 2.4 0.9 1.2 0.2

Table 2. Refinement results based on 50Salads dataset.

Breakfast
Method F1@{10, 25, 50} Edit Acc
GRU 24.1 21.4 16.2 32.3 64.9
GRU + HASR 60.2 54.6 42.4 61.2 64.9
Gain 36.1 33.2 26.2 28.9 0.0
MS-TCN 52.6 48.1 37.9 61.7 66.3
MS-TCN (our impl.) 63.5 58.3 45.9 66.2 67.7
MS-TCN + HASR 73.2 67.9 54.4 70.8 69.8
Gain 9.7 9.6 8.6 4.6 2.0
SSTDA 75.0 69.1 55.2 73.7 70.2
SSTDA (our impl.) 70.9 64.7 50.3 70.2 67.8
SSTDA + HASR 73.1 67.1 52.6 70.0 67.6
Gain 2.2 2.4 2.3 -0.1 -0.3
ASRF 74.3 68.9 56.1 72.4 67.6
ASRF (our impl.) 73.8 68.6 56.4 72.2 68.5
ASRF + HASR 74.7 69.5 57.0 71.9 69.4
Gain 0.9 1.0 0.7 -0.3 0.9

Table 3. Refinement results based on Breakfast dataset.

Table 4 shows the refinement results for unseen backbone
models. It is shown that the performance gains are com-
parable to the ones from Table 1, 2 and 3. This result
shows that the proposed HASR successfully learned a gen-
eral methodology about how to correct the out-of-context
segment labels when considering the overall context of the
given video. Based on this, we would like to highlight that
our HASR has a potential to be extensively used as an ef-
fective tool for boosting up the performance of any action
segmentation models.

4.3.3 Effect of Hierarchical Representations

As mentioned in Section 3, our HASR refines the segmen-
tation results from the backbone model based on the ex-
tracted hierarchical representations of the video, which are
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GTEA
Method F1@{10, 25, 50} Edit Acc
GRU 84.1 80.2 67.3 79.1 76.5
GRU+HASR 87.4 83.9 69.2 83.4 76.8
MS-TCN (our impl.) 88.6 86.4 72.5 83.9 78.3
MS-TCN+HASR 90.0 88.1 74.8 85.6 77.5

50Salads
Method F1@{10, 25, 50} Edit Acc
GRU 62.4 60.0 52.2 55.6 80.5
GRU+HASR 74.1 71.8 63.3 66.6 80.7
MS-TCN (our impl.) 77.2 74.7 64.8 70.4 80.3
MS-TCN+HASR 83.5 82.0 72.1 77.2 82.1

Breakfast
Method F1@{10, 25, 50} Edit Acc
GRU 24.1 21.4 16.2 32.3 64.9
GRU+HASR 49.1 44.3 34.2 53.0 62.7
MS-TCN (our impl.) 63.5 58.3 45.9 66.2 67.7
MS-TCN+HASR 73.2 68.1 54.0 71.0 69.0

Table 4. Refinement results for unseen backbones, which are MS-
TCN and GRU-based action segmentation model.

segmentation-level and video-level representations. To un-
derstand the effect of each representation, we conducted
an ablation study that neglects segment-level or video-level
representation from the inputs for action segmentation re-
finer FR. Table 5 shows the result of the ablation study
based on the 50Salads dataset. Here, MS-TCN is used as
a backbone model. It shows that the highest performance
can be obtained when using both representations as we pro-
posed in Section 3. Both representations contribute to en-
hance the performance of our HASR, and we find that the
effect of the segment-level representation tends to be higher
than the video-level representation.

4.3.4 Video-level Representation Encoder: Sample-
based Residual Blocks vs. RNNs

In Section 3.3, we discussed that sample-based residual
blocks are used for our video-level representation encoder
FV E , to catch the overall context of the given video robustly
even with the noisy input information. To check the ef-
fectiveness of our method, we compared our sample-based
residual blocks with simple GRU-based RNNs. Note that
RNNs can be also used for FV E since the input of FV E is
a sequence of information of segments. Table 6 shows the
comparison result, which shows that the proposed sample-
based residual blocks perform better than RNNs. Here, the
backbone model is MS-TCN. Even the performance gap be-
tween the two could be shown as not that significant, we
would like to highlight that our proposed FV E is better than
using vanilla RNNs for video-level representation encoder.

50Salads
F1@{10, 25, 50} Edit Acc

w/o Segment-level
Repesentation 79.7 77.5 66.0 72.3 78.7

w/o Video-level
Representation 81.6 80.2 70.0 74.9 80.7

Proposed HASR 83.4 81.8 71.9 77.4 81.7
Table 5. Refinement results with 50Salads dataset when segment-
level or video-level representations are neglected from HASR.
Here, MS-TCN is used as a backbone model.

GTEA
Method F1@{10, 25, 50} Edit Acc
RNN-based FV E 89.0 86.9 73.0 84.9 77.0
Proposed FV E 89.2 87.3 73.2 85.4 77.4

50Salads
Method F1@{10, 25, 50} Edit Acc
RNN-based FV E 83.3 81.8 71.3 76.7 81.1
Proposed FV E 83.4 81.8 71.9 77.4 81.7

Breakfast
Method F1@{10, 25, 50} Edit Acc
RNN-based FV E 72.8 67.6 54.0 70.7 69.2
Proposed FV E 73.2 67.9 54.4 70.8 69.8

Table 6. Refinement results when using a proposed sample-based
residual blocks or vanilla RNNs as a video-level representation
encoder. Here, MS-TCN is used as a backbone model.

5. Conclusion
In this paper, we proposed Hierarchical Action Segmen-

tation Refiner (HASR), which can be used to boost up the
performance of existing models for temporal action seg-
mentation. The overall framework consists of an action
segmentation backbone model, and our proposed refiner
HASR. After the action segmentation backbone model pre-
dicts how the given video frames can be segmented, HASR
first extracts a segment-level representation for each seg-
ment, based on the frame-level features consisting of the
segment. Then, HASR extracts a video-level representation
based on the extracted segment-level representations. Based
on these hierarchical video representations, HASR is able to
refine the action segmentation result from the backbone by
understanding the overall context of the given video. From
qualitative experiments, we showed that segment labels that
are out of context can be refined based on HASR. Quan-
titative results showed that HASR can improve the perfor-
mance of existing state-of-the-art backbone models. In ad-
dition, the result showed that HASR can improve the perfor-
mance of unseen backbone models, which implies that our
HASR could be an extensive tool for improving the perfor-
mance of various models for temporal action segmentation.
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