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Abstract

Despite much recent progress in video-based person
re-identification (re-ID), the current state-of-the-art still
suffers from common real-world challenges such as ap-
pearance similarity among various people, occlusions,
and frame misalignment. To alleviate these problems,
we propose Spatio-Temporal Representation Factorization
(STRF), a flexible new computational unit that can be
used in conjunction with most existing 3D convolutional
neural network architectures for re-ID. The key innova-
tions of STRF over prior work include explicit pathways
for learning discriminative temporal and spatial features,
with each component further factorized to capture com-
plementary person-specific appearance and motion infor-
mation. Specifically, temporal factorization comprises two
branches, one each for static features (e.g., the color of
clothes) that do not change much over time, and dynamic
features (e.g., walking patterns) that change over time. Fur-
ther, spatial factorization also comprises two branches to
learn both global (coarse segments) as well as local (finer
segments) appearance features, with the local features par-
ticularly useful in cases of occlusion or spatial misalign-
ment. These two factorization operations taken together re-
sult in a modular architecture for our parameter-wise light
STRF unit that can be plugged in between any two 3D
convolutional layers, resulting in an end-to-end learning
framework. We empirically show that STRF improves per-
formance of various existing baseline architectures while
demonstrating new state-of-the-art results using standard
person re-ID evaluation protocols on three benchmarks.

1. Introduction
We consider the problem of video-based person re-

IDentification (re-ID). Given a video tracklet of a person of
interest, the task is to retrieve the closest match (which ide-
ally should be the true match) among a gallery set of video
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Figure 1: Illustration of proposed concept and its efficacy. We
present the intuition behind our proposed Spatio-Temporal Rep-
resentation Factorization (STRF) module designed to overcome
common real-world re-ID system issues, e.g., similar-appearance
identities, occlusions and misaligned frame. By capturing tempo-
rally static/dynamic and spatially coarse/fine information at dif-
ferent layers of a 3D-CNN, STRF produces robust discrimina-
tive representation to tackle these challenges as demonstrated here
through attention maps of penultimate layer of feature extractor.

tracklets. With numerous applications in security, surveil-
lance, and forensics [2], this problem has seen a dramatic
increase in interest and various methodologies in the vision
community [7, 13, 28, 29, 32, 36, 50, 54].

While there has been admirable progress in image-based
re-ID as evidenced by recent quantitative results [7], there
are many challenges that still preclude the ubiquitous use
of re-ID algorithms in real-world systems. One such issue
is appearance similarity, where multiple people wear simi-
lar looking clothes (e.g., large conferences or public events
with a strict dress code). Other challenging issues include
occlusions and frame misalignment that are a direct conse-
quence of large crowd flow densities (e.g., in airports just
after flight arrival) and inter-camera viewpoint disparities.
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Having access to additional data, e.g., an extra temporal di-
mension like videos instead of 2D images, can help alleviate
some of these issues by leveraging spatio-temporal data.

Video-based re-ID has seen much recent work [4, 5, 14,
19, 27, 45, 46, 49] in part due to the availability of rele-
vant large-scale video datasets [41, 52]. However, learn-
ing a spatio-temporal representation that can alleviate the
issues noted above still remains a challenge. While ad-
vances in general 3D convolutional networks (3D-CNNs)
provide reasonable baseline spatio-temporal features, ex-
isting re-ID techniques typically rely on specialized archi-
tectures [20, 45, 46, 49] that are inflexible to be used with
these baseline models. Other lines of work are focused en-
tirely on learning either temporal or spatial representations
separately [4, 5, 19], overlooking the complementarity that
both streams of information provide in challenging scenar-
ios, e.g., distinguishing people wearing similar clothes.

To address the aforementioned issues, we present a flex-
ible new computational unit called Spatio-Temporal Rep-
resentation Factorization (STRF) module. Given a feature
volume from a certain 3D convolutional layer in a baseline
3D-CNN model, STRF extracts complementary informa-
tion along both spatial (h × w) and temporal (time, t) di-
mensions. By design, the proposed STRF module can be in-
serted in an existing 3D-CNN model after any convolutional
layer, introducing only ∼0.15 million learnable parameters
per unit (for instance, this results in only a ∼1.73% over-
all parameter increase with I3D [3]), resulting in a flexible
and parameter-wise economic framework that is end-to-end
trainable. STRF comprises two modules, called temporal
feature factorization module (FFM) and spatial feature fac-
torization module, to process feature tensors. The design
principles of these modules are motivated by certain obser-
vations in video tracklets, which we discuss next.

The intuition behind STRF is demonstrated in Figure 1.
We begin with the factorization module in the temporal di-
mension. First, the overall or “global” appearance of the
person (e.g., color of clothes, skin, hair, etc) in a tracklet
does not change (static) substantially over time. While one
can argue these can change with illumination variations, we
assume these variations are limited in a given camera view
over a short period of time. Next, the walking patterns of
a person may change over time, e.g., walking on a level
surface vs. climbing stairs (dynamic). Consequently, there
are two possible information factorization strategies when
processing feature maps: low-frequency (static) sampling
and high-frequency (dynamic) sampling. Low-frequency
sampling of feature maps results in capturing the “slowly-
moving” or approximately constant features, i.e., the ap-
pearance information. On the other hand, high-frequency
sampling of feature maps results in capturing information
that is more dynamically varying, i.e., walking patterns
[31]. The temporal factorization module results in capturing
static and dynamic features across time, which is especially
helpful in identifying different individuals with similar ap-
pearance (see last row video tracklet in Figure 1).

The spatial factorization module, on the other hand, does
the same low-frequency (which we call “coarse”) and high-
frequency (which we call “fine”) sampling and processing
as above, but along the spatial h × w dimensions. This is
motivated by commonly occurring real-world issues such as
occlusions and frame misalignment. Under these scenarios,
the spatial FFM’s high-frequency sampling and processing
unit is able to capture more “details” of the person of in-
terest as opposed to the other entities that are the causes of
occlusion, or other background information in the case of
misalignment. To understand this better, observe the atten-
tion maps for top row video tracklet in Figure 1. The base-
line model, without our proposed module, highlights mostly
the bicycle regions in the feature maps, whereas by adding
our module, the model is able to capture the person regions
in the frames more comprehensively. Similarly, to cover
cases where there are no occlusions or misalignment, the
spatial FFM’s low-frequency sampling and processing unit
become responsible for capturing more slowly-varying or
spatially global appearance information. This results in the
spatial factorization module to capture two separate streams
of spatial information for robust representations.

To summarize, when multiple people in the gallery “look
alike” (e.g., same clothes), features from our temporal fac-
torization branch help disambiguate (i.e., people may look
alike but walk differently). On the other hand, with occlu-
sion/clutter, our idea is to rely on “local” features, which
can be learned using our spatial branch. Our main contri-
butions are as follows.

• We present a novel framework in video-based re-
ID to learn discriminative 3D features by factorizing
both temporal and spatial dimension of features into
low-frequency (static/coarse) and high-frequency (dy-
namic/fine) components to tackle misalignment, occlu-
sion, and similar appearance problems.

• To realize these factorization, we propose a flexible train-
able unit with negligible computational overhead, called
Spatio-Temporal Representation Factorization (STRF)
module, that can be used in conjunction with any base-
line 3D-CNN based re-ID architecture (see Figure 2).

• We conduct extensive experiments on multiple datasets
to demonstrate how the proposed STRF module im-
proves the performance of baseline architectures and also
achieves state-of-the-art performance obtained by stan-
dard re-ID evaluation protocols (see Table 2 and 3).

2. Related Work
In this section, we review some recent methods pertain-

ing to video-based person re-ID, and later discuss 3D-CNNs
as feature extractors for video re-ID tasks.

Video-based re-ID. Following the success in image-based
re-ID [7, 23, 28, 29, 32, 36, 50, 54], there has been much
recent progress in video-based re-ID as well [5, 10, 14, 19,
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27, 30, 44, 55]. For instance, [45] proposed multi-granular
hypergraph learning framework which leveraged hierarchi-
cally divided feature maps at last layer of feature encoder
with different levels of granularities to capture spatial and
temporal cues, treating both the spatial and temporal di-
mensions the same. Additionally, there have also been a
class of methods [19, 24] that perform feature modulation
by expanding the feature extractor with additional learning
modules instead of processing just the last layer’s output as
in [45]. Different from all the above works, we focus on
learning factorized (dynamic/static and coarse/fine) infor-
mation in both spatial and temporal dimensions (see Figure
2). This leads to a flexible feature processing module that
can be used anywhere in any 3D-CNN based re-ID architec-
ture, leading to improved performance of various baseline
3D-CNN models (see Table 2). We provide a characteristic
comparison of recent works in Table 1.

3D-CNN based Feature Extractor. 3D-CNNs [21] nat-
urally process input videos to output spatio-temporal fea-
tures, whereas 2D-CNNs need additional modules such as
recurrent networks to extract temporal information. Given
this advantage, 3D-CNNs are more suitable for video-
related applications [6, 9, 21, 42, 43], including video-based
re-ID tasks [14, 25, 30]. For example, Gheissari et al. [11]
introduced a two-stream model with the first branch com-
prised of 3D-CNNs and the other comprised of 2D-CNNs
to extract temporal and spatial cues. In [14], appearance-
preserving 3D convolution (AP3D) was proposed to lever-
age the idea of image registration [56] to perform feature-
level image alignment. While these methods demonstrated
good results, they either required both 3D and 2D CNNs
[25], or additional operations, e.g., non-local convolutions,
to achieve best performances [14], leading to parameter-
wise bulky models. Furthermore, these methods do no ex-
plicitly exploit spatial cues of video tracklets. On the other
hand, our proposed STRF method modifies the backbone
feature encoder by means of a modular computational unit,
does not require specialized modules such as recurrent net-
works or non-local operations, leading to only a minimal
increase in learnable parameters while also demonstrating
state-of-the-art performance on benchmark datasets.

Table 1: Characteristic comparison with state-of-the-art
works. We compare our STRF with few current state-of-the-art
works. Unlike these methods, STRF uses factorized information
from both spatial (S) and temporal (T) dimensions, does not re-
quire non-local operations, and is adaptable to multiple baselines.

METHODS
FACTORIZATION WITHOUT

NON-LOCAL?
GENERIC?

T? S?

AP3D [14] ✗ ✓ ✗ ✓
MGH [45] ✓ ✓ ✗ ✗
AFA [5] ✓ ✗ ✓ ✓

STRF (Ours) ✓ ✓ ✓ ✓

3. Spatio-Temporal Factorization
As noted in Section 1, existing re-ID methods for learn-

ing video representations do not focus on the complemen-
tarity that is provided by the spatial and temporal dimen-
sions. Specifically, we conjecture that the temporal dimen-
sion contains both static (e.g., appearance across time) as
well as dynamic (e.g., walking patterns) content, whereas
the spatial dimension comprises both fine (e.g., focus on
details such as a person’s legs that may be missed under
occlusions) as well as coarse (e.g., overall global appear-
ance) details. Consequently, we argue that all these features
should be learned jointly in order to deal with unavoidable
challenges such as appearance similarity, occlusions, and
frame misalignment.

To address these issues, we introduce Spatio-Temporal
Representation Factorization (STRF), a generic parameter-
wise lightweight computational unit that can be inserted
between convolutional layers in any 3D-CNN architecture
for re-ID (note that by the term factorization, we refer to
the joint sampling and processing operations for discussion
below). This modularity makes STRF particularly appeal-
ing for practical applications that may require customized
architectures based on data distribution. Along with the
performance improvements in baseline architectures (see
Table 2), STRF also demonstrates superior utility of the
proposed module over existing specialized architectures for
learning spatio-temporal re-ID representations (see Table 3)
[14, 20, 25, 45, 46].

Notations. Let V =
[
v1,v2, · · · ,vt

]
∈ Rt×h×w denote

an input video tracklet comprising t frames each of height
h and width w. Let Fθ(·) denote the feature encoder
of any baseline 3D-CNN (e.g., I3D ResNet-50 [3]). Let
fℓ ∈ Rcℓ×tℓ×hℓ×wℓ be the feature tensor at the ℓth layer
of Fθ(·), where cℓ, tℓ, hℓ, and wℓ indicate number of chan-
nels, number of frames, height, and width, respectively. Let
the input and output feature volumes of our STRF module
at the ℓth layer be f

(i)
ℓ and f

(o)
ℓ , respectively. Finally, let

the static/coarse and dynamic/fine components be denoted
with ς and τ , respectively and subscript t and s denote
the temporal and spatial dimension, respectively. We use
d ∈ {t, s} and k ∈ {τ, ς} for compact notations.

3.1. Feature Factorization Module (FFM)

Given f
(i)
ℓ , we propose to factorize this feature volume

into four parts: static and dynamic content from temporal tℓ
dimension, and coarse and fine detail from spatial hℓ × wℓ

dimension. The intuition here is that the static content in
the temporal dimension will capture “what does not change
over time”, e.g., appearance such as color of clothes, and
the dynamic content will capture “what may change over
time”, e.g., walking patterns [31]. Similarly, coarse details
in the spatial dimension will capture overall global informa-
tion in the current feature map (e.g., “where is the person?”)
whereas fine detail helps address situations where the per-
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Figure 2: Overview of STRF module. Our proposed module contains four factorization units being applied on input feature volume at ℓth
layer to extract static/coarse and dynamic/fine information and generate richer feature representation. Each unit is composed of a Feature
Factorization Module aided by the proposed Factorized Attention Mask block.

son of interest may be occluded by other entities, by captur-
ing local context at different locations of the feature map.

Our motivations above are particularly relevant given ex-
isting 3D-CNN architectures for re-ID do not have explicit
mechanisms to focus on features corresponding to the per-
son of interest in cases such as occlusions, image misalign-
ment, or people with similar clothing appearing together in
same tracklet. Furthermore, such a factorization enables a
3D-CNN to weight features that are important for down-
stream matching and re-ID, e.g., the dynamic content along
the temporal dimension is more important in cases where
people wear similar clothes and can be distinguished only
by their walking patterns.

To realize this proposed factorization and feature re-
weighting, STRF proposes to use four FFM modules, in
which each FFM learns a different type of attention mask
from Factorized Attention Mask (FAM) block (we dis-
cuss detailed architecture of FAM in next section) for ei-
ther static/dynamic or coarse/fine content along the tempo-
ral and spatial dimensions respectively, and output refined
feature volumes. Specifically, given f

(i)
ℓ , we first reshape it

into the feature volume f̂ (i)
ℓ with size cℓtℓ×hℓwℓ and then,

use the FAM block to generate a factorized attention mask
Mdk. This mask is then used to compute a new feature
volume as:

f̂
(dk)
ℓ = f̂

(i)
ℓ Mdk d ∈ {t, s}, k ∈ {τ, ς} (1)

STRF then integrates the four attention-weighted feature
volumes {f̂ (tτ)

ℓ , f̂
(tς)
ℓ , f̂

(sτ)
ℓ , f̂

(sς)
ℓ } to output a new fea-

ture volume which is then passed on to the subsequent con-
volutional layer. The output of this subsequent layer is
then processed by the next instantiation of the STRF. This
way, STRF provides a flexible computational unit that can
be easily integrated with existing 3D-CNN architectures.
Our proposed methodology is illustrated in Figure 2 where
one can note that the four individual factorization modules,
FFM

(
t, τ

)
, FFM

(
t, ς

)
, FFM

(
s, τ

)
, and FFM

(
s, ς

)
, com-

bine to produce an enhanced feature representation f
(o)
ℓ us-

ing their respective FAM blocks. We next discuss the fac-

torization attention masks and each of these proposed indi-
vidual FFM modules in more detail.

3.2. Factorized Attention Masks (FAM) Block
To realize the four-way factorization for the feature vol-

ume f
(i)
ℓ discussed above, we define four functions below:

T k
d

(
f
(i)
ℓ

)
= Gdk

(
Hdk

(
f
(i)
ℓ

))
, (2)

with, d ∈ {t, s}, k ∈ {τ, ς}

where Gdk(·) are the factorizing functions. Different for
each FFM block, Gdk(·) is designed using pooling functions
to extract specific information after the input feature volume
is passed through a channel reduction layer Hdk(·) : cℓ →
cℓ/n, where Hdk(·) is a convolutional layer with cℓ/n kernels
of size 1. Following [14, 22], we set n = 16. With the
output composite function T k

d

(
f
(i)
ℓ

)
of size cℓ/ntℓ × hℓwℓ

from (2), we summarize input features by computing their
variance matrix Cdk to obtain a representation of each point
of T k

d

(
f
(i)
ℓ

)
as:

Cdk = κT k
d

(
f
(i)
ℓ

)⊤T k
d

(
f
(i)
ℓ

)
(3)

where ⊤ represents transpose operation. We set the temper-
ature hyper-parameter κ as 4 following [14, 19]. Then, the
factorizing mask is computed using the unnormalized sam-
ple covariance matrix as Mdk(q) = σ(Cdk), where σ(·) is
the softmax function. This factorized mask is employed in
(1) to obtain the specific factorized representation of f (i)

ℓ .
Next, each factorization module is discussed in more detail.

Temporal Factorization Module, FFM
(
t, τ, ς

)
. While

methods for learning static and dynamic information have
been presented in prior work [1, 9, 16, 38], we take a modu-
lar approach to this problem, proposing computational units
that can be applied at multiple layers of the base feature en-
coder. Instead of skipping frames as in [9], we define the
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Figure 3: Illustration of our 3D-CNN model training and examples of proposed blocks. In our framework, we employ a 3D-CNN
based model to learn discriminative features for input video tracklets (see Figure (A)). This model is built with inflated 2D-residual blocks
with Stage 2 and Stage 3 replaced by our proposed STRF aided residual blocks (see Figure (B)).

following temporal factorizing functions:

Gtτ = pool
(
rtτ , 1, 1

)
, Gtς = pool

(
rtς , 1, 1

)
(4)

where rtς > rtτ . These degenerate pool functions can
be implemented using the max pooling (denoted as m) and
average pooling (denoted as a) operations with their corre-
sponding static temporal resolutions rtς and dynamic tem-
poral resolutions rtτ . We also use suitable padding on
Htς(f

(i)
ℓ ) and Htτ (f

(i)
ℓ ) to maintain the same size between

the input and output feature volumes. The intuition behind
setting rtς > rtτ is to factorize features in time dimension
to capture the information that does not vary much, whereas
rtτ helps in summarizing information that shows more vari-
ations. Capturing such static information with Gtς will aid
in learning the global appearance features of the person that
does not change much along the time dimension. On the
other hand, Gtτ captures dynamic information in the input
feature volume, e.g., walking patterns of the person. Finally,
the output of FFM

(
t, τ, ς

)
is defined as:

f
(to)
ℓ = f̂

(tτ)
ℓ + f̂

(tς)
ℓ (5)

where f̂
(tτ)
ℓ and f̂

(tς)
ℓ are computed using (1).

Spatial Factorization Modules, FFM
(
s, τ, ς

)
. Similar to

the temporal dimension above, we factorize the feature vol-
ume along the spatial dimension as well, extracting coarse-
level and fine-level information. The intuition here is that
coarse-level information in the spatial dimension comprise
global features of the person in the input frames that do not
have much occlusion. For frames where the person is oc-
cluded or there is spatial misalignment, fine-level features
capture the “person-part” of the frame. To realize this, we
define the following spatial factorizing functions:

Gsτ = pool
(
1, rsτ , rsτ

)
, Gsς = pool

(
1, rsς , rsς

)
(6)

where rsς > rsτ are the spatially coarse and fine resolu-
tion, respectively. As in FFM

(
t, τ, ς

)
, we use appropriate

padding on Hsς(f
(i)
ℓ ) and Hsτ (f

(i)
ℓ ) to maintain the same

size between the input and output feature volumes. Finally,
the output of FFM

(
s, τ, ς

)
is defined as:

f
(so)
ℓ = f̂

(sτ)
ℓ + f̂

(sς)
ℓ (7)

where f̂
(sτ)
ℓ and f̂

(sς)
ℓ are computed using (1). Note that

when the resolutions are set as 1 in (6) and (4), the factor-
izing functions behave as identity mapping. In our experi-
ments, we set rsτ = rtτ and rsς = rtς for simplicity.

Integration and overall STRF output. After comput-
ing f

(to)
ℓ and f

(so)
ℓ as discussed above, we provide two

schemes to integrate them and generate the final feature vol-
ume output of our proposed STRF computational unit:

f
(o)
ℓ = ϕ

(
f
(to)
ℓ ,f

(so)
ℓ

)
where, ϕ

(
·
)
∈ {→,∥} (8)

Here, → denotes using the temporal and spatial factoriza-
tion modules in cascade, and ∥ denotes using them in paral-
lel. When in cascade, the input f (i)

ℓ is fed to both modules
in sequence, i.e. FFM

(
s, τ, ς

)
followed by FFM

(
t, τ, ς

)
, or

vice-versa. When in parallel, the outputs of FFM
(
s, τ, ς

)
and FFM

(
t, τ, ς

)
are simply added. In our experiments,

we noticed only minor performance differences across these
operations (see Figure 4(c)).

Learning Objective. Any STRF-aided network can be
trained in an end-to-end manner with following objective:

L = Lce + Ltriplet (9)

where Lce is the standard cross-entropy classification,
Ltriplet is the cosine distance based triplet loss with batch-
hard mining [18], and L is the overall loss function. Note
that our method demonstrates state-of-the-art results (see
Table 3) without any re-ID tricks [33], e.g. label smooth-
ing [37], in our learning objective.

How do we employ STRF? The problem of person re-ID
benefited tremendously with introduction of residual blocks
[12, 17]. With the backbone feature extractor as inflated
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Figure 4: Analysis of different components of STRF. (a) Each (rς , rς) refers to spatially coarse resolutions : (1, rς , rς), spatially fine
resolutions : (1, rτ , rτ ), temporally static resolutions : (rς , 1, 1), temporally dynamic resolutions : (rτ , 1, 1). Best results are obtained
with (rς , rς) = (1, 3). (b) Performance of different combinations of factorizing functions Gdk(·): Best results are obtained when all Gdk(·)
are set as maxpooling function. (c) Performance of different integration operations ϕ(·): Best results are obtained when the spatial module
is followed by the temporal module.

C2D (time dimension of kernel set to 1) residual network,
we propose to enhance its feature representation learning
paradigm by simply replacing residual blocks at differ-
ent stages with different STRF-aided I3D or STRF-aided
Pseudo-3D (P3D) [34] residual blocks (see Figure 2(B)). To
convert P3D residual blocks to their STRF-P3D forms, we
add the STRF module with the convolutional layer of ker-
nel size 3 × 1 × 1 demonstrating the generic ability of the
proposed unit. We have empirically analyzed and discussed
this choice of location in the supplementary material. More-
over, a single STRF module introduces only minimal extra-
parameters which makes it parameter-wise lightweight but
performance-wise beneficial (see Table 2).

3.3. Discussion
FAM vs Channel Attention (CA). We note that there are
substantial differences between FAM and the popular CA
strategy [8, 15, 48]. Unlike CA that has one global feature
pooling layer, i.e., no separate spatial and temporal opera-
tions, FAM has four pooling functions Gdk(·), defined in
(4) and (6). This captures both spatial and temporal feature
dependencies without any new learning parameters. In fact,
with rς and rτ set to same size of the input feature maps,
CA can be considered to be a special case of FAM.

FFM vs Non-Local (NL). Unlike the popular NL module
[40] where there is no factorization, FFM factorizes f (i)

into its constituent spatio/temporal factors. The appropriate
weighting of f (i) with these factors to obtain f (o) is
automatically learned with FAM, making the proposed
design different from NL and more suitable for re-ID.
For additional empirical substantiation, using the P3DC
architecture on the MARS dataset [52], the NL module
gives 84.8% mAP and 89.9% R@1, whereas STRF gives
86.1% mAP and 90.3% R@1. Further, STRF only adds
an additional ∼0.5 million parameters (w.r.t. the baseline)
as opposed to NL’s ∼5 million additional parameters,
demonstrating better compute efficiency.

Please see supplementary material for additional insights
and discussions on our proposed STRF module.

4. Experimentation
Datasets, implementation details, and evaluation met-
rics. We conduct extensive experiments on standard pub-
licly available video-based person re-ID datasets, includ-
ing MARS [52], DukeMTMC-VideoReID [41], and iLIDS-
VID [39]. For evaluation, we use the value of the cumu-
lative matching characteristic curve at rank-1 (R@1), and
mean average precision (mAP) [53]. See supplementary
material for full implementation details.

4.1. Improvement over Baselines
Quantitative analysis. We build a model with inflated 2D
convolutions in ResNet50 (temporal kernel size set to 1) ar-
chitecture. We then replace stage 2 and stage 3 (See Table
5) with four residual blocks I3D (temporal kernel size set
to 3) and three pseudo-3D residual blocks P3D-A, P3D-B
and P3D-C to create four baselines. For comparative eval-
uation, we replace these I3D and P3D residual blocks with
STRF-I3D, STRF-P3DA, STRF-P3DB and STRF-P3DC
residual blocks respectively and summarize the results in
Table 2. One can clearly note that the STRF-aided models
give improved performance (at least 2.5% mAP increment
for P3D baselines and about 0.5% mAP increment for I3D
baseline on MARS), with the best performance achieved
with STRF-P3DC. Similar trends can be observed on the
DukeMTMC-VideoReID as well. Furthermore, when com-
pared to the number of baseline model parameters (denoted
in Table 2 as P(M) on MARS in the millions of param-
eters), the number of new parameters introduced by our
proposed module is only 0.05 million more compared with
I3D or P3D models, suggesting it does not add any sub-
stantial computational overhead. This also demonstrates
that STRF can improve performance of diverse architec-
tures. For all subsequent experiments, we report results with
STRF-P3DC following its best performance from Table 2.

Qualitative Analysis. To qualitatively demonstrate
STRF’s impact, we visualize feature maps of challenging
videos (e.g., occlusions, misalignment) using off-the-shelf
techniques [14, 47] in Figure 5. Note that STRF helps
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Table 2: Baseline improvement. STRF consistently improves the
performance of baseline models. P(M) is model size in millions.

MODEL P(M)
DATASETS

MARS [52] DukeMTMC [41]
mAP

(
%
)

R@1
(

%
)

mAP
(

%
)

R@1
(

%
)

I3D 28.92 82.70 88.50 95.20 95.40
+ STRF 28.97 83.10 88.70 95.20 95.90
P3DA 25.48 83.20 88.90 95.00 95.00

+ STRF 25.53 85.40 89.80 95.60 96.00
P3DB 25.48 83.00 88.80 95.40 95.30

+ STRF 25.53 85.60 90.30 96.40 97.40
P3DC 25.48 83.10 88.50 95.30 95.30

+ STRF 25.53 86.10 90.30 96.20 97.20

focus more clearly on the person of interest (e.g., under
“occlusion”, unlike the baseline, STRF is able to more
clearly distinguish between person’s foreground and occlu-
sion regions). Please see supplementary material for more
qualitative and attention map results.

4.2. Ablation Study
Utility of FAM block. Our temporal and spatial factoriza-
tion modules are realized with the proposed factorized at-
tention masks Mdk. These self-attention masks are uti-
lized to re-weight the input feature volume f

(i)
ℓ in order to

produce a richer representation of the video tracklet. Spe-
cific information captured via Mdk (due to different Gdk

for both low-frequency (static/coarse) and high-frequency
(dynamic/fine) information) enhance input feature volume
to represent robust features by re-weighting them as in (1).
Consequently, FAM is an important component of our pro-
posed STRF module. To validate this, we present an anal-
ysis of STRF with and without the FAM in Figure 6(a)
on MARS [52]. It can be observed that without FAM,
the proposed module weakens the feature representations
(non-weighted multiplication (⊗) of f (i) with itself) re-
sulting in a comparatively lower performance. More con-
cretely, without FAM, we do not have “coarse/fine” and
“static/dynamic” factors, and hence FFM does not receive
appropriate factors to re-weight f (i). Note that using FAM
alone (without FFM) is not possible by design.

Analysis of different components. The proposed static
and dynamic factorizing functions differ essentially in their
temporal and spatial resolutions, and in Figure 4(a), we an-
alyze various combinations of these resolution parameters
while keeping the static resolution (or coarser) rς larger
than the dynamic (or finer) resolution rτ . Note that we keep
the low- and high-frequency (static and coarse) resolutions
of both these modules the same for simplicity and reduced
parameter search space. The maximum resolution is depen-
dent on output size of the last conv layer STRF is applied to.
In our case, this last layer output is f (i) ∈ R2048×8×14×7,
giving only possible choices of 1, 3, 5, and 7. A (1, 7,
7) filter will give f (o) ∈ R2048×8×7×1, i.e., 7 × 1 spatial
dimension, unsuitable for computing Mdk. As coarse reso-
lution should be larger than fine resolution, only 4 plausible

Figure 5: Attention map visualizations. STRF helps baseline
models extract more discriminative features.

pairs (including (rτ , rς) = (1, 1) for reference) results are
presented. One can note from the graph that STRF per-
forms the best with the resolution pair (rτ , rς) = (1, 3).
The graph also shows that STRF is not very sensitive to the
different resolution pairs, with a difference of 0.4% mAP
when (rτ , rς) = (3, 5), and difference of 0.2% mAP when
(rτ , rς) = (1, 5). Next, we analyze various combinations
of factorizing functions defined as part of STRF modules in
Figure 4(b). Our framework performs the best with both
temporal and spatial Gdk set to the max pool (m) oper-
ation. This is likely because factorization based on max
pooling helps focus on information that represents the dis-
criminative portion of the feature volume. Finally, we an-
alyze the different integration functions described in (8),
where we note that the best performance is obtained when
we first factorize f

(i)
ℓ by the temporal factorization module

FFM(t, τ, ς) and then feed this output to spatial factoriza-
tion module FFM(s, τ, ς), i.e., when ϕ(·) = →. Further,
when ϕ(·) = ∥, a comparable performance is observed with
a difference of about 0.4% in mAP.

Which stage to add? Table 5 presents results of adding
STRF at various stages of a baseline model. Using STRF
module in Stage 2 and Stage 3 gives the best performance,
but reduces (in mAP) when added to Stage 1. This is likely
because with Stage 1, low-level features do not contain
enough descriptive semantic information for detailed fac-
torization. Additionally, Stage 4 (last two rows in Table 5)
exhibits differing behavior, likely due to the feature pooling
operation performed at this layer (for subsequent classifi-
cation), which provides spatio-temporally-entangled gradi-
ents which may not be useful for our STRF module. Please
see supplementary material for more results.

Influence of each factorization module. To study the ef-
ficacy of each module, we perform an ablation analysis (see
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Table 3: Comparison with the state-of-the-art. STRF gives state-of-the-art performance on all datasets (best results in red, second best
in blue, and third best results in green.)

METHODS VENUE
DATASETS

MARS [52] DukeMTMC [41] iLiDS-VID [39]
mAP

(
%
)

R@1
(
%
)

mAP
(
%
)

R@1
(
%
)

R@1
(
%
)

ADFD [51] CVPR 2019 78.20 87.00 – – 86.30
VRSTC [20] CVPR 2019 82.30 88.50 93.50 95.00 86.30
COSAM [35] ICCV 2019 79.90 84.90 94.10 95.40 79.60

GLTR [24] ICCV 2019 78.50 87.00 93.74 96.29 86.00
MGH [45] CVPR 2020 85.80 90.00 – – 85.60

STGCN [46] CVPR 2020 83.70 89.95 95.70 97.29 –
MG-RAFA [49] CVPR 2020 85.90 88.80 – – 88.60

TACAN [26] WACV 2020 84.00 89.10 95.40 96.20 88.90
M3D [25] TPAMI 2020 79.46 88.63 93.67 95.49 86.67
AFA [5] ECCV 2020 82.90 90.20 95.40 97.20 88.50

AP3D [14] ECCV 2020 85.60 90.70 96.10 97.20 88.70
TCLNet [19] ECCV 2020 85.10 89.80 96.20 96.90 86.60

STRF Ours 86.10 90.30 96.40 97.40 89.30

Table 4). Each individual module FFM(t, τ ), FFM(t, ς),
FFM(s, τ ), and FFM(s, ς) improves the baseline with at
least 2% in mAP and 1.2% in R@1. Further, temporal and
spatial factorization modules perform better when used to-
gether. The temporal/spatial similarity (in margins) in Ta-
ble 4 suggests each module is equally effective in identify-
ing unique features w.r.t. baseline. Finally, the best per-
formance is obtained when all modules are put together,
demonstrating their focus on complementary information.

4.3. Comparison with state-of-the-art approaches
Despite being parameter-wise lightweight and agnostic

to baseline architectures, STRF gives competitive results

Table 4: Contribution of each factorization module. All four
STRF modules FFM(t, τ), FFM(t, ς) FFM(s, τ), and FFM(s, ς)
show improvement individually and collectively with the P3DC
baseline on MARS [52].

MODEL MODULES MARS [52]
(s, τ) (s, ς) (t, τ) (t, ς) mAP

(
%
)

R@1
(

%
)

Baseline 83.10 88.50

B
as

el
in

e
+

ST
R

F

✓ 85.20 89.70

✓ 85.10 89.90

✓ 85.20 89.90

✓ 85.10 90.00

✓ ✓ 85.50 90.10

✓ ✓ 85.30 89.70

✓ ✓ 85.40 90.00

✓ ✓ 85.70 90.10

✓ ✓ ✓ ✓ 86.10 90.30

Table 5: Per-stage influence of STRF. All four STRF modules
are effective at various stages, with best results at Stage 2 and 3 of
STRF-P3DC on MARS [52].

MODEL STAGE mAP
(

%
)

R@1
(

%
)

Baseline 83.10 88.50

B
as

el
in

e
+

ST
R

F

1 83.40 88.80
1, 2 83.60 89.00
2, 3 86.10 90.30
1, 2, 3 84.70 89.30
2, 3, 4 85.50 90.00
1, 2, 3, 4 83.70 88.70

when compared to sophisticated 3D-CNN methods. As can
be observed in Figure 6(b), STRF outperforms both AP3D
and M3D with ∼6 million (w.r.t. AP3D [14]) and ∼75 mil-
lion (w.r.t. M3D [25]) fewer parameters. Finally, STRF
establishes a new state-of-the-art (w.r.t. mAP) on MARS,
DukeMTMC, and iLIDS-VID as shown in Table 3.

mAP
(

%
)

R@1
(

%
)80
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(a) FAM ablation analysis

80

82

84

86

m
A

P
( %
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25 50 75 100

Parameters of Architectures (Millions)→

STRF (25.3M)

I3D (28.9M)

AP3D (31.6M)

M3D (99.9M)

(b) Parameters vs mAP analysis
Figure 6: Advantages of STRF. (a) Without FAM block, FFM
cannot factorize features leading to poor performance, signifying
FAM’s importance in STRF. (b) STRF is comparatively parameter-
wise most light-weight and best performing 3D-CNN architecture.

5. Conclusion
We proposed a novel Spatio-Temporal Representation

Factorization (STRF) computational unit that learns com-
plementary spatio-temporal feature representations to deal
with real-world re-ID challenges such as occlusions, im-
perfect detection, and appearance similarity. Our STRF
module factorizes temporal dynamic/static, and spatial
coarse/fine components from input 3D-CNN feature maps,
helping baseline models discover more complementary and
discriminative spatio-temporal representations for robust
video re-ID. Extensive evaluations of our STRF module
with various baseline architectures on benchmark video-
based re-ID datasets show its efficacy and generality. As
part of future work, we would like to extend it to general
video understanding problems like semantic segmentation.
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