
SLAMP: Stochastic Latent Appearance and Motion Prediction

Adil Kaan Akan1 Erkut Erdem2 Aykut Erdem1 Fatma Güney1
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Abstract

Motion is an important cue for video prediction and of-
ten utilized by separating video content into static and dy-
namic components. Most of the previous work utilizing mo-
tion is deterministic but there are stochastic methods that
can model the inherent uncertainty of the future. Existing
stochastic models either do not reason about motion explic-
itly or make limiting assumptions about the static part. In
this paper, we reason about appearance and motion in the
video stochastically by predicting the future based on the
motion history. Explicit reasoning about motion without his-
tory already reaches the performance of current stochastic
models. The motion history further improves the results by
allowing to predict consistent dynamics several frames into
the future. Our model performs comparably to the state-
of-the-art models on the generic video prediction datasets,
however, significantly outperforms them on two challeng-
ing real-world autonomous driving datasets with complex
motion and dynamic background.

1. Introduction
Videos contain visual information enriched by motion.

Motion is a useful cue for reasoning about human activities
or interactions between objects in a video. Given a few
initial frames of a video, our goal is to predict several frames
into the future, as realistically as possible. By looking at
a few frames, humans can predict what will happen next.
Surprisingly, they can even attribute semantic meanings to
random dots and recognize motion patterns [15]. This shows
the importance of motion to infer the dynamics of the video
and to predict the future frames.

Motion cues have been heavily utilized for future frame
prediction in computer vision. A common approach is to
factorize the video into static and dynamic components
[30, 20, 22, 6, 9, 21, 14, 28]. First, most of the previous
methods are deterministic and fail to model the uncertainty
of the future. Second, motion is typically interpreted as local

Figure 1: Comparison of the first prediction frames (11th)
SLAMP (left) vs. state-of-the-art method, SRVP [8] (right)
on KITTI [10] (top) and Cityscapes [3] (bottom) datasets.
Our method can predict both foreground and background
objects better than SRVP. Full sequence predictions can be
seen in Supplementary.

changes from one frame to the next. However, changes in
motion follow certain patterns when observed over some
time interval. Consider scenarios where objects move with
near-constant velocity, or humans repeating atomic actions
in videos. Regularities in motion can be very informative
for future frame prediction. In this work, we propose to
explicitly model the change in motion, or the motion history,
for predicting future frames.

Stochastic methods have been proposed to model the in-
herent uncertainty of the future in videos. Earlier methods
encode the dynamics of the video in stochastic latent vari-
ables which are decoded to future frames in a deterministic
way [4]. We first assume that both appearance and motion
are encoded in the stochastic latent variables and decode
them separately into appearance and motion predictions in
a deterministic way. Inspired by the previous deterministic
methods [7, 20, 9], we also estimate a mask relating the
two. Both appearance and motion decoders are expected to
predict the full frame but they might fail due to occlusions
around motion boundaries. Intuitively, we predict a proba-
bilistic mask from the results of the appearance and motion
decoders to combine them into a more accurate final predic-
tion. Our model learns to use motion cues in the dynamic
parts and relies on appearance in the occluded regions.
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Figure 2: Generative Model of SLAMP. The graphical
model shows the generation process of SLAMP with motion
history. There are two separate latent variables for appear-
ance zpt and motion zft generating frames xp

t and xf
t (black).

Information is propagated between time-steps through the
recurrence between frame predictions (blue), corresponding
latent variables (green), and from frame predictions to latent
variables (red). The final prediction x̂t is a weighted combi-
nation of the xp

t and xf
t according to the mask m(xp

t ,x
f
t ).

Note that predictions at a time-step depend on all of the
previous time-steps recurrently, but only the connections
between consecutive ones are shown for clarity.

The proposed stochastic model with deterministic de-
coders cannot fully utilize the motion history, even when
motion is explicitly decoded. In this work, we propose a
model to recognize regularities in motion and remember
them in the motion history to improve future frame predic-
tions. We factorize stochastic latent variables as static and
dynamic components to model the motion history in addition
to the appearance history. We learn two separate distribu-
tions representing appearance and motion and then decode
static and dynamic parts from the respective ones.

Our model outperforms all the previous work and per-
forms comparably to the state-of-the-art method, SRVP, [8]
without any limiting assumptions on the changes in the static
component on the generic video prediction datasets, MNIST,
KTH and BAIR. However, our model outperforms all the pre-
vious work, including SRVP, on two challenging real-world
autonomous driving datasets with dynamic background and
complex object motion.

2. Related Work
Appearance-Motion Decomposition: The previous work
explored motion cues for video generation either explicitly
with optical flow [30, 29, 19, 20, 22, 6, 9] or implicitly
with temporal differences [21] or pixel-level transformations
[14, 28]. There are some common factors among these
methods such as using recurrent models [25, 21, 6], specific
processing of dynamic parts [14, 19, 6, 9], utilizing a mask
[7, 20, 9], and adversarial training [28, 22]. We also use
recurrent models, predict a mask, and separately process
motion, but in a stochastic way.

The previous work which explored motion for video gen-

eration are mostly deterministic, therefore failing to capture
uncertainty of the future. There are a couple of attempts to
learn multiple future trajectories from a single image with a
conditional variational autoencoder [29] or to capture motion
uncertainty with a probabilistic motion encoder [19]. The
latter work uses separate decoders for flow and frame similar
to our approach, however, predicts them only from the latent
vector. We incorporate information from previous frames
with additional modelling of the motion history.

Stochastic Video Generation: SV2P [1] and SVG [4] are
the first to model the stochasticity in video sequences using
latent variables. The input from past frames are encoded
in a posterior distribution to generate the future frames. In
a stochastic framework, learning is performed by maximiz-
ing the likelihood of the observed data and minimizing the
distance of the posterior distribution to a prior distribution,
either fixed [1] or learned from previous frames [4]. Since
time-variance in the model is proven crucial by the previous
work, we sample a latent variable at every time step [4]. Sam-
pled random variables are fed to a frame predictor, modelled
recurrently using an LSTM. We model appearance and mo-
tion distributions separately and train two frame predictors
for static and dynamic parts.

Typically, each distribution, including the prior and the
posterior, is modeled with a recurrent model such as an
LSTM. Villegas et al. [27] replace the linear LSTMs with
convolutional ones at the cost of increasing the number of
parameters. Castrejon et al. [2] introduce a hierarchical
representation to model latent variables at different scales,
by introducing additional complexity. Lee et al. [17] in-
corporate an adversarial loss into the stochastic framework
to generate sharper images, at the cost of less diverse re-
sults. Our model with linear LSTMs can generate diverse
and sharp-looking results without any adversarial losses,
by incorporating motion information successfully into the
stochastic framework. Recent methods model dynamics of
the keypoints to avoid errors in pixel space and achieve stable
learning [23]. This offers an interesting solution for videos
with static background and moving foreground objects that
can be represented with keypoints. Our model can gener-
alize to videos with changing background without needing
keypoints to represent objects.

Optical flow has been used before in future predic-
tion [18, 22]. Li et al. [18] generate future frames from
a still image by using optical flow generated by an off-the-
shelf model, whereas we compute flow as part of prediction.
Lu et al. [22] use optical flow for video extrapolation and
interpolation without modeling stochasticity. Long-term
video extrapolation results show the limitation of this work
in terms of predicting future due to relatively small motion
magnitudes considered in extrapolation. Differently from
flow, Xue et al. [31] model the motion as image differences
using cross convolutions.
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State-Space Models: Stochastic models are typically auto-
regressive, i.e. the next frame is predicted based on the
frames generated by the model. As opposed to interleav-
ing process of auto-regressive models, state-space models
separate the frame generation from the modelling of dy-
namics [12]. State-of-the-art method SRVP [8] proposes a
state-space model for video generation with deterministic
state transitions representing residual change between the
frames. This way, dynamics are modelled with latent state
variables which are independent of previously generated
frames. Although independent latent states are computa-
tionally appealing, they cannot model the motion history of
the video. In addition, content variable designed to model
static background cannot handle changes in the background.
We can generate long sequences with complex motion pat-
terns by explicitly modelling the motion history without any
limiting assumptions about the dynamics of the background.

3. Methodology

3.1. Stochastic Video Prediction

Given the previous frames x1:t−1 until time t, our goal is
to predict the target frame xt. For that purpose, we assume
that we have access to the target frame xt during training and
use it to capture the dynamics of the video in stochastic latent
variables zt. By learning to approximate the distribution
over zt, we can decode the future frame xt from zt and the
previous frames x1:t−1 at test time.

Using all the frames including the target frame, we com-
pute a posterior distribution qϕ(zt|x1:t) and sample a latent
variable zt from this distribution at each time step. The
stochastic process of the video is captured by the latent vari-
able zt. In other words, it should contain information accu-
mulated over the previous frames rather than only condens-
ing the information on the current frame. This is achieved by
encouraging qϕ(zt|x1:t) to be close to a prior distribution
p(z) in terms of KL-divergence. The prior can be sampled
from a fixed Gaussian

at each time step or can be learned from previous frames
up to the target frame pψ(zt|x1:t−1). We prefer the latter
one as it is shown to work better by learning a prior that
varies across time [4].

The target frame xt is predicted based on the previous
frames x1:t−1 and the latent vectors z1:t.

In practice, we only use the latest frame xt−1 and the
latent vector zt as input and dependencies from further pre-
vious frames are propagated with a recurrent model. The
output of the frame predictor gt

contains the information required to decode xt.
Typically, gt is decoded to a fixed-variance Gaussian

distribution whose mean is the predicted target frame x̂t [4].

3.2. SLAMP

We call the predicted target frame, appearance prediction
xp
t in the pixel space. In addition to xp

t , we also estimate
optical flow ft−1:t from the previous frame t − 1 to the
target frame t. The flow ft−1:t represents the motion of
the pixels from the previous frame to the target frame. We
reconstruct the target frame xf

t from the estimated optical
flow via differentiable warping [13]. Finally, we estimate a
mask m(xp

t ,x
f
t ) from the two frame estimations to combine

them into the final estimation x̂t:

x̂t = m(xp
t ,x

f
t )⊙ xp

t + (1−m(xp
t ,x

f
t ))⊙ xf

t (1)

where ⊙ denotes element-wise Hadamard product and xf
t

is the result of warping the source frame to the target frame
according to the estimated flow field ft−1:t. Especially in
the dynamic parts with moving objects, the target frame can
be reconstructed accurately using motion information. In
the occluded regions where motion is unreliable, the model
learns to rely on the appearance prediction. The mask pre-
diction learns a weighting between the appearance and the
motion predictions for combining them.

We call this model SLAMP-Baseline because it is limited
in the sense that it only considers the motion with respect to
the previous frame while decoding the output. In SLAMP,
we extend the stochasticity in the appearance space to the
motion space as well. This way, we can model appearance
changes and motion patterns in the video explicitly and make
better predictions of future. Fig. 3 shows an illustration of
SLAMP (see Supplementary for SLAMP-Baseline).

In order to represent appearance and motion, we com-
pute two separate posterior distributions qϕp

(zpt |x1:t) and
qϕf

(zft |x1:t), respectively. We sample two latent variables
zpt and zft from these distributions in the pixel space and the
flow space. This allows a decomposition of the video into
static and dynamic components. Intuitively, we expect the
dynamic component to focus on changes and the static to
what remains constant from the previous frames to the target
frame. If the background is moving according to a camera
motion, the static component can model the change in the
background assuming that it remains constant throughout
the video, e.g. ego-motion of a car.

The Motion History: The latent variable zft should contain
motion information accumulated over the previous frames
rather than local temporal changes between the last frame
and the target frame. We achieve this by encouraging
qϕf

(zft |x1:t) to be close to a prior distribution in terms
of KL-divergence. Similar to [4], we learn the motion
prior conditioned on previous frames up to the target frame:
pψf

(zft |x1:t−1). We repeat the same for the static part rep-
resented by zpt with posterior qϕp

(zpt |x1:t) and the learned
prior pψp

(zpt |x1:t−1).
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Figure 3: SLAMP. This figure shows the components of our SLAMP model including the prediction model, inference and
learned prior models for pixel and then flow from left to right. Observations xt are mapped to the latent space by using a pixel
encoder for appearance on each frame and and a motion encoder for motion between consecutive frames. The blue boxes show
encoders, yellow and green ones decoders, gray ones recurrent posterior, prior, and predictor models, and lastly red ones show
loss functions during training. Note that L2 loss is applied three times for appearance prediction xp

t , motion prediction xf
t , and

the combination of the two x̂t according to the mask prediction m(xp
t ,x

f
t ). We only show L2 loss between the actual frame

xt and the final predicted frame x̂t in the figure. For inference, only the prediction model and learned prior models are used.

3.3. Variational Inference

For our basic formulation (SLAMP-Baseline), the deriva-
tion of the loss function is straightforward and provided in
Supplementary. For SLAMP, the conditional joint probabil-
ity corresponding to the graphical model in Fig. 2 is:

p(x1:T ) =

T∏
t=1

p(xt|x1:t−1, z
p
t , z

f
t ) (2)

p(zpt |x1:t−1, z
p
t−1) p(zft |x1:t−1, z

f
t−1)

The true distribution over the latent variables zpt and zft is
intractable. We train time-dependent inference networks
qϕp

(zpt |x1:T ) and qϕf
(zft |x1:T ) to approximate the true dis-

tribution with conditional Gaussian distributions. In order
to optimize the likelihood of p(x1:T ), we need to infer la-
tent variables zpt and zft , which correspond to uncertainty of
static and dynamic parts in future frames, respectively. We
use a variational inference model to infer the latent variables.

Since zpt and zft are independent across time, we can
decompose Kullback-Leibler terms into individual time steps.
We train the model by optimizing the variational lower bound
(see Supplementary for the derivation):

log pθ(x) ≥ Lθ,ϕp,ϕf ,ψp,ψf
(x1:T ) (3)

=
∑
t

Ezp
1:t∼qϕp

zf
1:t∼qϕf

log pθ(xt|x1:t−1, z
p
1:t, z

f
1:t)

− β
[
DKL(q(z

p
t |x1:t) || p(zpt |x1:t−1))

+DKL(q(z
f
t |x1:t) || p(zft |x1:t−1))

]
The likelihood pθ, can be interpreted as an L2 penalty

between the actual frame xt and the estimation x̂t as defined
in (1). We apply the L2 loss to the predictions of appearance
and motion components as well.

The posterior terms for uncertainty are estimated as an
expectation over qϕp

(zpt |x1:t), qϕf
(zft |x1:t). As in [4], we

also learn the prior distributions from the previous frames up
to the target frame as pψp

(zpt |x1:t−1), pψf
(zft |x1:t−1). We

train the model using the re-parameterization trick [16]. We
classically choose the posteriors to be factorized Gaussian
so that all the KL divergences can be computed analytically.
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3.4. Architecture

We encode the frames with a feed-forward convolutional
architecture to obtain appearance features at each time-step.
In SLAMP, we also encode consecutive frame pairs into a
feature vector representing the motion between them. We
then train linear LSTMs to infer posterior and prior distribu-
tions at each time-step from encoded appearance and motion
features.

Stochastic video prediction model with a learned prior
[4] is a special case of our baseline model with a single pixel
decoder, we also add motion and mask decoders. Next, we
describe the steps of the generation process for the dynamic
part.

At each time step, we encode xt−1 and xt into hf
t , rep-

resenting the motion from the previous frame to the target
frame. The posterior LSTM is updated based on the hf

t :

hf
t = MotionEnc(xt−1,xt) (4)

µϕf (t)
,σϕf (t)

= LSTMϕf
(hf

t )

For the prior, we use the motion representation hf
t−1 from

the previous time step, i.e. the motion from the frame t− 2
to the frame t− 1, to update the prior LSTM:

hf
t−1 = MotionEnc(xt−2,xt−1) (5)

µψf (t)
,σψf (t)

= LSTMψf
(hf

t−1)

At the first time-step where there is no previous motion,
we assume zero-motion by estimating the motion from the
previous frame to itself.

The predictor LSTMs are updated according to encoded
features and sampled latent variables:

gf
t = LSTMθf

(hf
t−1, z

f
t ) (6)

µθf
= FlowDec(gf

t )

There is a difference between the train time and inference
time in terms of the distribution the latent variables are sam-
pled from. At train time, latent variables are sampled from
the posterior distribution. At test time, they are sampled
from the posterior for the conditioning frames and from the
prior for the following frames. The output of the predictor
LSTMs are decoded into appearance and motion predictions
separately and combined into the final prediction using the
mask prediction (Eq. (1)).

4. Experiments
We evaluate the performance of the proposed approach

and compare it to the previous methods on three stan-
dard video prediction datasets including Stochastic Moving
MNIST, KTH Actions [24] and BAIR Robot Hand [5]. We

5 10 15 20 25
t

15

20

25

30

PSNR

5 10 15 20 25
t

0.65
0.70

0.80

0.90

SSIM

SVG SRVP SLAMP-Baseline SLAMP

Figure 4: Quantitative Results on MNIST. This fig-
ure compares SLAMP to SLAMP-Baseline, SVG [4],
and SRVP [8] on MNIST in terms of PSNR (left) and
SSIM (right). SLAMP clearly outperforms our baseline
model and SVG, and performs comparably to SRVP. Vertical
bars mark the length of the training sequences.

specifically compare our baseline model (SLAMP-Baseline)
and our model (SLAMP) to SVG [4] which is a special
case of our baseline with a single pixel decoder, SAVP [17],
SV2P [1], and lastly to SRVP [8]. We also compare our
model to SVG [4] and SRVP [8] on two different challeng-
ing real world datasets, KITTI [11, 10] and Cityscapes [3],
with moving background and complex object motion. We
follow the evaluation setting introduced in [4] by generating
100 samples for each test sequence and report the results ac-
cording to the best one in terms of average performance over
the frames. Our experimental setup including training details
and parameter settings can be found in Supplementary. We
also share the code for reproducibility.

Table 1: FVD Scores on KTH and BAIR. This table com-
pares all the methods in terms of FVD scores with their
95%-confidence intervals over five different samples from
the models. Our model is the second best on KTH and
among top three methods on BAIR.

Dataset KTH BAIR

SV2P 636 ± 1 965 ± 17
SAVP 374 ± 3 152 ± 9
SVG 377 ± 6 255 ± 4
SRVP 222 ± 3 163± 4
SLAMP-Baseline 236 ± 2 245 ± 5
SLAMP 228 ± 5 —

Evaluation Metrics: We compare the performance using
three frame-wise metrics and a video-level one. Peak Signal-
to-Noise Ratio (PSNR), higher better, based on L2 distance
between the frames penalizes differences in dynamics but
also favors blur predictions. Structured Similarity (SSIM),
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Figure 5: SLAMP-Baseline (left) vs. SLAMP (right) on MNIST. The top row shows the ground truth, followed by the
frame predictions by the final, the appearance, the motion, and the last two rows show the mask and the optical flow predictions
with false coloring. In this challenging case with bouncing and collisions, the baseline confuses the digits and cannot predict
last frames correctly whereas SLAMP can generate predictions very close to the ground truth by learning smooth transitions in
the motion history, as can be seen from optical flow predictions.
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Figure 6: Quantitative Results on KTH and BAIR. We
compare our results to previous work in terms of PSNR,
SSIM, and LPIPS metrics with respect to the time steps
on KTH (top), and BAIR (bottom) datasets, with 95%-
confidence intervals. Vertical bars mark the length of training
sequences. SLAMP outperforms previous work including
SVG [4], SAVP [17], SV2P [1] and performs comparably to
the state of the art method SRVP [8] on both datasets.

higher better, compares local patches to measure similar-
ity in structure spatially. Learned Perceptual Image Patch
Similarity (LPIPS) [32], lower better, measures the distance
between learned features extracted by a CNN trained for im-
age classification. Frechet Video Distance (FVD) [26], lower
better, compares temporal dynamics of generated videos to
the ground truth in terms of representations computed for
action recognition.

Stochastic Moving MNIST: This dataset contains up to
two MNIST digits moving linearly and bouncing from walls
with a random velocity as introduced in [4]. Following the
same training and evaluation settings as in the previous work,

we condition on the first 5 frames during training and learn
to predict the next 10 frames. During testing, we again
condition on the first 5 frames but predict the next 20 frames.

Fig. 4 shows quantitative results on MNIST in compari-
son to SVG [4] and SRVP [8] in terms of PSNR and SSIM,
omitting LPIPS as in SRVP. Our baseline model with a mo-
tion decoder (SLAMP-Baseline) already outperforms SVG
on both metrics. SLAMP further improves the results by
utilizing the motion history and reaches a comparable per-
formance to the state of the art model SRVP. This shows
the benefit of separating the video into static and dynamic
parts in both state-space models (SRVP) and auto-regressive
models (ours, SLAMP). This way, models can better handle
challenging cases such as crossing digits as shown next.

We qualitatively compare SLAMP to SLAMP-Baseline
on MNIST in Fig. 5. The figure shows predictions of static
and dynamic parts as appearance and motion predictions,
as well the final prediction as the combination of the two.
According to the mask prediction, the final prediction mostly
relies on the dynamic part shown as black on the mask and
uses the static component only near the motion boundaries.
Moreover, optical flow prediction does not fit the shape of
the digits but expands as a region until touching the motion
region of the other digit. This is due to the uniform black
background. Moving a black pixel in the background ran-
domly is very likely to result in another black pixel in the
background, which means zero-loss for the warping result.
Both models can predict optical flow correctly for the most
part and resort to the appearance result in the occluded re-
gions. However, continuity in motion is better captured by
SLAMP with the colliding digits whereas the baseline model
cannot recover from it, leading to blur results, far from the
ground truth. Note that we pick the best sample for both
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Figure 7: Qualitative Results on KTH We visualize the
results of SLAMP on KTH dataset. The top row shows the
ground truth, followed by the frame predictions by the final,
the appearance, the motion, and the last two rows show the
mask and the optical flow predictions. The mask prediction
combines the appearance prediction (white) and the motion
prediction (black) into the final prediction.

models among 100 samples according to LPIPS.

KTH Action Dataset: KTH dataset contains real videos
where people perform a single action such as walking, run-
ning, boxing, etc. in front of a static camera [24]. We expect
our model with motion history to perform very well by ex-
ploiting regularity in human actions on KTH. Following the
same training and evaluation settings used in the previous
work, we condition on the first 10 frames and learn to predict
the next 10 frames. During testing, we again condition on
the first 10 frames but predict the next 30 frames.

Fig. 6 and Table 1 show quantitative results on KTH
in comparison to previous approaches. Both our baseline
and SLAMP models outperform previous approaches and
perform comparably to SRVP, in all metrics including FVD.
A detailed visualization of all three frame predictions as well
as flow and mask are shown in Fig. 7. Flow predictions
are much more fine-grained than MNIST by capturing fast
motion of small objects such as hands or thin objects such
as legs (see Supplementary). The mask decoder learns to
identify regions around the motion boundaries which cannot
be matched with flow due to occlusions and assigns more
weight to the appearance prediction in these regions.

On KTH, the subject might appear after the conditioning
frames. These challenging cases can be problematic for
some previous work as shown in SRVP [8]. Our model can
generate samples close to the ground truth despite very little
information on the conditioning frames as shown in Fig. 8.
The figure shows the best sample in terms of LPIPS, please
see Supplementary for a diverse set of samples with subjects
of various poses appearing at different time steps.

BAIR Robot Hand: This dataset contains videos of a

Table 2: Results with a Moving Background. We evaluate
our model SLAMP in comparison to SVG and SRVP on
KITTI [10] and Cityscapes [3] datasets by conditioning on
10 frames and predicting 20 frames into the future.

Models PSNR (↑) SSIM (↑) LPIPS (↓)

SVG [4] 12.70 ± 0.70 0.329 ± 0.030 0.594 ± 0.034
SRVP [8] 13.41 ± 0.42 0.336 ± 0.034 0.635 ± 0.021
SLAMP 13.46 ± 0.74 0.337 ± 0.034 0.537 ± 0.042

KITTI [11, 10]

Models PSNR (↑) SSIM (↑) LPIPS (↓)

SVG [4] 20.42 ± 0.63 0.606 ± 0.023 0.340 ± 0.022
SRVP [8] 20.97 ± 0.43 0.603 ± 0.016 0.447 ± 0.014
SLAMP 21.73 ± 0.76 0.649 ± 0.025 0.2941 ± 0.022

Cityscapes [3]

robot hand moving and pushing objects on a table [5]. Due
to uncertainty in the movements of the robot arm, BAIR is a
standard dataset for evaluating stochastic video prediction
models. Following the training and evaluation settings used
in the previous work, we condition on the first 2 frames and
learn to predict the next 10 frames. During testing, we again
condition on the first 2 frames but predict the next 28 frames.

We show quantitative results on BAIR in Fig. 6 and Ta-
ble 1. Our baseline model achieves comparable results to
SRVP, outperforming other methods in all metrics except
SV2P [1] in PSNR and SAVP [17] in FVD. With 2 condition-
ing frames only, SLAMP cannot utilize the motion history
and performs similarly to the baseline model on BAIR (see
Supplementary). This is simply due to the fact that there
is only one flow field to condition on, in other words, no
motion history. Therefore, we only show the results of the
baseline model on this dataset.

Real-World Driving Datasets: We perform experiments
on two challenging autonomous driving datasets: KITTI [11,
10] and Cityscapes [3] with various challenges. Both datasets
contain everyday real-world scenes with complex dynamics
due to both background and foreground motion. KITTI
is recorded in one town in Germany while Cityscapes is
recorded in 50 European cities, leading to higher diversity.

Cityscapes primarily focuses on semantic understanding
of urban street scenes, therefore contains a larger number of
dynamic foreground objects compared to KITTI. However,
motion lengths are larger on KITTI due to lower frame-rate.
On both datasets, we condition on 10 frames and predict 10
frames into the future to train our models. Then at test time,
we predict 20 frames conditioned on 10 frames.

As shown in Table 2, SLAMP outperforms both meth-
ods on all of the metrics on both datasets, which shows its
ability to generalize to the sequences with moving back-
ground. Even SVG [4] performs better than the state of
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Figure 8: Subject Appearing after the Conditioning Frames. This figure shows a case where the subject appears after
conditioning frames on KTH with ground truth (top) and a generated sample by our model (bottom). This shows our model’s
ability to capture dynamics of the dataset by generating samples close to the ground truth, even conditioned on empty frames.

t = 1 t = 10 t = 11 t = 13 t = 16 t = 19 t = 21 t = 26 t = 29

SVG [5] 
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Figure 9: Qualitative Comparison. We compare SLAMP to SVG [4] and SRVP [8] on KITTI (top) and Cityscapes (bottom).
Our model can better capture the changes due to ego-motion thanks to explicit modeling of motion history.

the art SRVP [8] in LPIPS metric for KITTI and on both
SSIM and LPIPS for Cityscapes, which shows the limita-
tions of SRVP on scenes with dynamic backgrounds. We
also perform a qualitative comparison to these methods in
Fig. 1 and Fig. 9. SLAMP can better preserve the scene
structure thanks to explicit modeling of ego-motion history
in the background.

Visualization of Latent Space: We visualize stochastic la-
tent variables of the dynamic component on KTH compared
to the static and SVG. (see Supplementary.)

5. Conclusion
We presented a stochastic video prediction framework to

decompose video content into appearance and dynamic com-
ponents. Our baseline model with deterministic motion and
mask decoders outperforms SVG, which is a special case of
our baseline model. Our model with motion history, SLAMP,
further improves the results and reaches the performance of
the state of the art method SRVP on the previously used
datasets. Moreover, it outperforms both SVG and SRVP on
two real-world autonomous driving datasets with dynamic
background and complex motion. We show that motion his-

tory enriches model’s capacity to predict future, leading to
better predictions in challenging cases.

Our model with motion history cannot realize its full
potential in standard settings of stochastic video prediction
datasets. A fair comparison is not possible on BAIR due to
the little number of conditioning frames. BAIR holds a great
promise with changing background but infrequent, small
changes are not reflected in current evaluation metrics.

An interesting direction is stochastic motion decomposi-
tion, maybe with hierarchical latent variables, for modelling
camera motion and motion of each object in the scene sepa-
rately.
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