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Abstract

Recently, the power of unconditional image synthesis has
significantly advanced through the use of Generative Ad-
versarial Networks (GANs). The task of inverting an image
into its corresponding latent code of the trained GAN is of
utmost importance as it allows for the manipulation of real
images, leveraging the rich semantics learned by the net-
work. Recognizing the limitations of current inversion ap-
proaches, in this work we present a novel inversion scheme
that extends current encoder-based inversion methods by in-
troducing an iterative refinement mechanism. Instead of di-
rectly predicting the latent code of a given real image us-
ing a single pass, the encoder is tasked with predicting a
residual with respect to the current estimate of the inverted
latent code in a self-correcting manner. Our residual-
based encoder, named ReStyle, attains improved accuracy
compared to current state-of-the-art encoder-based meth-
ods with a negligible increase in inference time. We ana-
lyze the behavior of ReStyle to gain valuable insights into
its iterative nature. We then evaluate the performance
of our residual encoder and analyze its robustness com-
pared to optimization-based inversion and state-of-the-art
encoders. Code is available via our project page: https:
//yuval-alaluf.github.io/restyle-encoder/

1. Introduction

Recently, Generative Adversarial Networks (GANs)
have grown in popularity thanks to their ability to syn-
thesize images of high visual quality and diversity. Be-
yond their phenomenal realism and fidelity on numerous
domains, recent works have shown that GANs, e.g., Style-
GAN [24, 25, 23], effectively encode semantic information
in their latent spaces [16, 36, 21]. Notably, it has been
shown that StyleGAN’s learnt latent spaceW has disentan-
glement properties [9, 36, 46] which allow one to perform
extensive image manipulations by leveraging a well-trained
StyleGAN generator. Such manipulations, however, have
often been applied to synthetic images generated by the
GAN itself. To apply such edits on real images, one must

Input Iterative Outputs −→
Figure 1. Different from conventional encoder-based inversion
techniques, our residual-based ReStyle scheme incorporates an it-
erative refinement mechanism to progressively converge to an ac-
curate inversion of real images. For each domain, we show the
input image on the left followed by intermediate inversion outputs.

first invert the given image into StyleGAN’s latent space.
That is, retrieve the latent code w such that passing w to
the pre-trained StyleGAN generator returns the original im-
age. To do so, it has become common practice to invert real
images into an extension ofW , denotedW+ [1].

Previous works have explored learning-based inversion
approaches and train encoders to map a given real image
into its corresponding latent code [10, 32, 50, 15, 35, 40].
Compared to per-image latent vector optimization [28, 10,
1, 2, 25], encoders are significantly faster, as they invert
using a single forward pass, and converge to areas of the
latent space which are more suitable for editing [50, 40].
However, in terms of reconstruction accuracy, there remains
a significant gap between learning-based and optimization-
based inversion methods. Hence, while significant progress
has been made in learning-based inversions, designing a
proper encoder and training scheme remains a challenge
with many works still resorting to using a per-image op-
timization.
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Recognizing that obtaining an accurate inversion in a
single shot is difficult, we introduce a novel encoder-based
inversion scheme tasked with encoding real images into
the extended W+ StyleGAN latent space. Unlike typical
encoder-based inversion methods that infer the input’s in-
verted latent code using a single forward pass, our scheme
introduces an iterative feedback mechanism. Specifically,
the inversion is performed using several forward passes by
feeding the encoder with the output of the previous iteration
along with the original input image. This allows the encoder
to leverage knowledge learned in previous iterations to fo-
cus on the relevant regions needed for achieving an accurate
reconstruction of the input image. Viewing this formulation
in terms of the latent space, our residual encoder is trained
to predict the residual, or an offset, between the current la-
tent code and the new latent code at each step. Doing so al-
lows the encoder to progressively converge its inversion to-
ward the target code and reconstruction, see Figure 1. Note
also that the inversion is predicted solely using the encoder
with no per-image optimization performed thereafter.

In a sense, our inversion scheme, named ReStyle, can be
viewed as learning to perform a small number of steps (e.g.,
10) in a residual-based manner within the latent space of a
pre-trained unconditional generator. ReStyle is generic in
the sense that it can be applied to various encoder architec-
tures and loss objectives for the StyleGAN inversion task.

We perform extensive experiments to show that ReStyle
achieves a significant improvement in reconstruction qual-
ity compared to standard feed-forward encoders. This is
achieved with a negligible increase in inference time, which
is still an order of magnitude faster than the time-costly
optimization-based inversion. We also analyze the iterative
nature of our approach. Specifically, we first demonstrate
which image regions are refined at each iterative feedback
step demonstrating that our scheme operates in a coarse-to-
fine manner. Second, we show that the absolute magnitude
of change at each step decreases, with the predicted residu-
als converging after only a small number of steps.

To demonstrate the generalization of ReStyle beyond the
StyleGAN inversion task and its appealing properties com-
pared to current inversion techniques, we continue our anal-
ysis by exploring the robustness of our scheme on down-
stream tasks and special use-cases. To this end, we perform
latent space manipulations [16, 36, 37] on the inverted latent
codes to see if the embeddings are semantically meaningful.
We then explore an encoder bootstrapping technique allow-
ing one to leverage two well-trained encoders to obtain a
more faithful translation of a given real image.

2. Background and Related Works
The idea of employing an iterative refinement scheme is

not new. Carreira et al. [6] introduced an iterative feedback
mechanism for human pose estimation. Other works have

proposed using iterative refinement for optical flow [20],
object pose estimation [43, 18], object detection [34], and
semantic segmentation [48] among other tasks. To the best
of our knowledge, we are the first to adopt an iterative re-
finement approach for a learned inversion of real images.

2.1. GAN Inversion

The task of GAN Inversion was first introduced by Zhu et
al. [51] for projecting real images into their latent represen-
tations. In their pioneering work, the authors demonstrate
how performing such an inversion enables one to leverage
the semantics of the GAN’s latent space for performing var-
ious image manipulation tasks. Some works [51, 28, 10, 1,
2, 25, 39] approach this task by directly optimizing the la-
tent vector to minimize the reconstruction error for a given
image. These works typically achieve high reconstruction
quality but require several minutes per image. Other ap-
proaches design an encoder [51, 32, 50, 15, 35, 40] to learn
a direct mapping from a given image to its corresponding la-
tent vector. While these methods are substantially more effi-
cient than pure optimization, they typically achieve inferior
reconstruction quality. Attempting to balance this trade-off,
some works have additionally proposed a hybrid approach
and combine the two by using an encoder for initializing the
optimization [51, 5, 15, 50]. We refer the reader to Xia et
al. [44] for a comprehensive survey on GAN inversion.

2.2. Latent Space Embedding via Learned Encoders

To perform image manipulations on real images, meth-
ods typically follow an “invert first, edit later” approach.
There, an image is first embedded into its correspond-
ing latent code, which is then edited in a semantically
meaningful manner. Diverging from the above, recent
works [30, 35, 4, 7] have proposed end-to-end methods for
leveraging the high-quality images generated by GANs for
various image-to-image translation and image editing tasks.
In these works, a real input image is directly encoded into
the transformed latent code which is then fed into the gen-
erator to obtain the desired transformed image. By training
an encoder with some additional constraint, these works are
able to directly solve various tasks without the need for in-
verting the images beforehand. Other works [45] have ex-
plored utilizing features produced by a learned StyleGAN
encoder for solving various down-stream tasks such as face
verification and layout prediction. These works further em-
phasize the advantage of training a powerful encoder into
the latent space of a pre-trained unconditional generator.

2.3. Latent Space Manipulation

With the recent advancements in image synthesis
through GANs [14], many works have proposed diverse
methods for understanding and controlling their latent rep-
resentations for performing extensive image manipulations.
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Figure 2. Our ReStyle iterative inversion scheme. Given an input image x, the scheme is initialized with the average latent code w0

and its corresponding image ŷ0. Consider step t. ReStyle operates on an extended input obtained by concatenating x with the image ŷt

corresponding to the current inversion prediction wt ∈ W+ (shown in yellow). The encoder E is then tasked with predicting a residual
latent code, ∆t ∈ W+ (shown in blue). The predicted residual is then added to the previous latent code wt to obtain the updated latent code
prediction wt+1 (shown in green). Finally, passing the newly computed latent code to the generator G results in an updated reconstruction
ŷt+1, which is then passed as input in the following step. During training, the loss objectives are computed at each forward pass with
back-propagation performed accordingly. A similar multi-step process is performed during inference.

Various works [12, 13, 36] use fully-supervised ap-
proaches to find latent directions corresponding to vari-
ous attributes such as age, gender, and expression. On
the other end of the supervision spectrum, several methods
[16, 41, 42] find directions in a completely unsupervised
manner. Others have explored techniques that go beyond a
linear traversal of the latent space. Tewari et al. [38] employ
a pre-trained 3DMM to learn semantic face edits. Shen et
al. [37] learn versatile edit directions through the eigenvec-
tor decomposition of the generator weights. Abdal et al. [3]
learn non-linear paths via normalizing flows conditioned on
a target attribute. Finally, Patashnik et al. [31] utilize CLIP
to manipulate images using an input text-prompt. By de-
signing an efficient and accurate inversion method, one is
able to leverage these works for manipulating real images.

3. Preliminaries
3.1. Encoder-Based Inversion Methods

Recall that our goal is to train an encoder tasked with
inverting real images into the latent space of a pre-trained
StyleGAN generator. Let E and G denote our encoder and
StyleGAN generator, respectively. Given a source image x,
our goal is to generate an image ŷ = G(E(x)) such that
ŷ ≈ x. Observe that in conventional encoder-based inver-
sion methods, the reconstructed image ŷ is simply com-
puted using a single forward pass through E and G via
StyleGAN’s latent space representation.

For learning to perform the inversion, these methods in-
troduce a set of losses used to train the encoder network E
on the reconstruction task. For training the encoder, most

encoder-based methods employ a weighted combination of
a pixel-wise L2 loss and a perceptual loss (e.g., LPIPS [49])
to guide the training process. Recently, Richardson et
al. [35] extend these losses and introduce a dedicated iden-
tity loss to achieve improved reconstruction on the human
facial domain. To attain improved editability over the in-
verted latent codes, Tov et al. [40] additionally introduce
two regularization losses during training. Observe that dur-
ing training, the pre-trained generator network G typically
remains fixed.

4. Method

We now turn to describe our ReStyle scheme and build
on the conventional, single-pass encoding approach intro-
duced above. Given an input image x, ReStyle performs
N > 1 steps to predict the image inversion w = E(x)
and corresponding reconstruction ŷ. Here, we define a step
to be a single forward pass through E and G. As such,
observe that the conventional encoding process, being per-
formed with a single step, is a special case of ReStyle where
N = 1.

For training the encoder network E, we define a sin-
gle training iteration to be a set of N steps performed
on a batch of images. As with conventional encoding
schemes, ReStyle uses a curated set of loss objectives for
training E on the inversion task while the pre-trained gen-
erator G remains fixed. Observe that the loss objectives
are computed at each forward pass (i.e., step) with the en-
coder weights updated accordingly via back-propagation
(i.e., back-propagation occurs N times per batch).
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During inference, the same multi-step process (without
the loss computation) is performed to compute the image
inversion and reconstruction. Notably, for a given batch of
images, we find that a small number of steps are needed for
convergence (e.g., N < 10), resulting in fast inference time.

We now turn to more formally describe ReStyle’s inver-
sion process, illustrated in Figure 2. At each step t, ReStyle
operates on an expanded input by concatenating x with the
current prediction for the reconstructed image ŷt:

xt := x ‖ ŷt. (1)

Given the extended 6-channel input xt, the encoder E is
tasked with computing a residual code ∆t, with respect to
the latent code predicted in the previous step. That is,

∆t := E(xt). (2)

The new prediction for the latent code corresponding to the
inversion of the input image x is then updated as:

wt+1 ← ∆t + wt. (3)

This new latent wt+1 is passed through the generator G to
obtain the updated prediction for the reconstructed image:

ŷt+1 := G(wt+1). (4)

Finally, the updated prediction ŷt+1 is set as the additional
input channels in the next step, as defined by Equation 1.

This procedure is initialized with an initial guess w0 and
corresponding image ŷ0. In our experiments, these are set to
be the generator’s average style vector and its corresponding
synthesized image, respectively.

Observe that constraining the encoder to invert the given
image in a single step, as is typically done, imposes a hard
constraint on the training process. Conversely, our train-
ing scheme can, in a sense, be viewed as relaxing this con-
straint. In the above formulation, the encoder learns how to
best take several steps in the latent space with respect to an
initial guess w0 guided by the output obtained in the previ-
ous step. This relaxed constraint allows the encoder to iter-
atively narrow down its inversion to the desired target latent
code in a self-correcting manner. One may also view the
ReStyle steps in a similar manner to the steps of optimiza-
tion, with the key difference that here the steps are learned
by the encoder for efficiently performing the inversion.

4.1. Encoder Architecture

To show that the presented training scheme can be ap-
plied to different encoder architectures and loss objectives,
we apply the ReStyle scheme on the state-of-the-art en-
coders from Richardson et al. [35] (pSp) and Tov et al. [40]
(e4e). These two encoders employ a Feature Pyramid Net-
work [27] over a ResNet [17] backbone and extract the style
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Figure 3. Our simplified encoder architecture. All k input style
vectors of the generator are extracted from the encoder’s final 16×
16 feature map which is passed through k map2style blocks [35].

features from three intermediate levels. Such a hierarchical
encoder is well-motivated for well-structured domains such
as the facial domain in which the style inputs can be roughly
divided into three levels of detail. With that, we find such a
design to have a negligible impact on less-structured, multi-
modal domains while introducing an increased overhead.
Moreover, we find that the multi-step nature of ReStyle al-
leviates the need for such a complex encoder architecture.

We therefore choose to design simpler variants of the
pSp and e4e encoders. Rather than extracting the style fea-
tures from three intermediate levels along the encoder, all
style vectors are extracted from the final 16 × 16 feature
map. Given a StyleGAN generator with k style inputs, k
different map2style blocks introduced in pSp are then used
to down-sample the feature map to obtain the corresponding
512-dimensional style input. A high-level overview of the
architecture is provided in Figure 3 with additional details
and ablations provided in the supplementary materials.

5. Experiments
5.1. Settings

Datasets. We conduct extensive evaluations on a diverse set
of domains to illustrate the generalization of our approach.
For the human facial domain we use the FFHQ [24] dataset
for training and the CelebA-HQ [29, 22] test set for evalu-
ation. For the cars domains, we use the Stanford Cars [26]
dataset for training and evaluation. Additional evaluations
are performed on the LSUN [47] Horse and Church datasets
as well as the AFHQ Wild [8] dataset.
Baselines. Throughout this section, we explore and ana-
lyze encoder-based, optimization-based, and hybrid inver-
sion techniques. For encoder-based methods, we compare
our ReStyle approach with the IDInvert encoder from Zhu
et al. [50], pSp from Richardson et al. [35], and e4e from
Tov et al. [40]. For optimization-based methods, we com-
pare our results with the inversion technique from Karras
et al. [25]. For each of the above encoder-based inversion
methods we also perform optimization on the resulting la-
tents for a comparison with hybrid approaches. Additional
details can be found in the supplementary materials.
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Input Optimization Hybrid pSp ReStylepSp Input Optimization Hybrid pSp ReStylepSp

Input Optimization Hybrid e4e ReStylee4e Input Optimization Hybrid e4e ReStylee4e

Figure 4. Qualitative Comparison. We compare various encoder-based and optimization-based inversion methods with our ReStyle scheme
applied over pSp [35] and e4e [40] (denoted by ReStylepSp and ReStylee4e). Hybrid results are obtained by performing optimization on
the latent codes obtained by the adjacent encoder. Additional comparisons in the supplementary materials. Best viewed zoomed-in.

Architecture and Training Details. For the facial domain,
we employ the ResNet-IRSE50 architecture from Deng et
al. [11] pre-trained for facial recognition. For all other
domains, we use a ResNet34 network pre-trained on Ima-
geNet. These networks have a modified input layer to ac-
commodate the 6-channel input used by ReStyle. All results
were obtained using StyleGAN2 [25] generators.

Throughout this section, we apply ReStyle on pSp [35]
and e4e [40] using the loss objectives and training details
(e.g., batch size, loss weights) as originally defined in their
respective works. Note that when applying ReStyle, we uti-
lize the simplified encoder architecture presented in Sec-
tion 4.1 for extracting the image inversion. All ReStyle en-
coders are trained using N = 5 steps per batch.

5.2. Comparison with Inversion Methods

We first compare ReStyle with current state-of-the-art
StyleGAN inversion techniques. While per-image op-
timization techniques have achieved superior image re-
construction compared to learning-based approaches, they
come with a significantly higher computational cost. There-
fore, when analyzing the inversion approaches, it is essen-
tial to measure reconstruction quality with respect to infer-
ence time, resulting in a so-called quality-time trade-off.

Qualitative Evaluation. We begin by showing a qualita-
tive comparison of ReStyle and the alternative inversion ap-

proaches across various domains in Figure 4. It is impor-
tant to emphasize that we do not claim to achieve superior
reconstruction quality over optimization. The comparison
instead serves to show that ReStyle is visually comparable
to the latter. Attaining comparable reconstruction quality
with a significantly lower inference time places ReStyle at
an appealing point on the quality-time trade-off curve.

With that, we do note the improved reconstruction ob-
tained by ReStyle in comparison with the pSp and e4e en-
coders, especially in the preservation of fine details. For
example in the comparison with pSp (the top three rows),
observe the collar of the man in the top left and the hair
of the woman in the top right. Similarly, observe the Audi
symbol and the license plate in the car comparison on the
left-hand side. In the comparison with e4e (the bottom two
rows), observe how ReStyle better captures the background
of the wild animals and the pose of the horse.

Quantitative Evaluation. We now perform a quantitative
comparison of the different inversion approaches across var-
ious data domains. To measure both pixel-wise and per-
ceptual similarities we apply the commonly-used L2 and
LPIPS [49] metrics. In addition, for the human facial do-
main, to measure each method’s ability to faithfully pre-
serve identity, we measure the identity similarity between
the reconstructed images and their source using the state-
of-the-art CurricularFace [19] facial recognition method.
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Figure 5. Quantitative comparison. We compare ReStyle with current state-of-the-art optimization-based and encoder-based methods by
analyzing reconstruction via three evaluation metrics — ID similarity for faces, L2 loss for cars, and LPIPS loss for churches — while
measuring each method’s inference time. Each encoder-based method is represented using a ? symbol. The corresponding hybrid method
is marked using a dashed line of the same color with the ReStyle applied over the base method shown using a solid line of the same color.
Optimization results are shown using a dashed green line. Methods based on pSp are shown in red with methods based on e4e shown in
blue. Finally, results obtained using IDInvert [50] are shown in orange. Note that both axes are shown in log-scale.

To illustrate the trade-off between the different methods
we additionally measure each method’s inference time per
image. As mentioned, both optimization and ReStyle can
be viewed as a continuous curve on a quality-time graph —
with each additional step, we attain improved reconstruc-
tion quality at the cost of additional inference time.

To provide a complete comparison of all inversion meth-
ods, we construct a quality-time graph for each domain.
Such graphs can be visualized in Figure 5. To form each
graph, we performed the following evaluations for each in-
version technique. For each encoder-based inversion, we
ran a single forward pass to obtain the reconstruction im-
age, resulting in a single point on the graph. For measuring
the optimization technique from [25], we invert the input
image using a varying number of steps from 1 optimiza-
tion step up to 1, 500 steps. For hybrid approaches, given
the computed latent codes obtained from the correspond-
ing encoder, we performed optimization with an increasing
number of steps between 1 to 500 steps. Finally, for our two
ReStyle encoders, we performed up to 10 feedback loops.

We begin by analyzing the facial domain. Compared to
the conventional pSp and e4e encoders, our ReStyle variants
match or surpass their counterparts. More notably, while
optimization techniques achieve improved identity similar-
ity compared to ReStyle, they require ≈ 20× more time to
match the similarity attained by ReStyle. A similar trade-off
can be observed in the cars domain where now the advan-
tage of ReStyle over typical encoders is more pronounced
when evaluating the L2 loss of the reconstructions. In the
unstructured churches domain, ReStyle applied over pSp
nearly matches both optimization and hybrid techniques in
reconstruction quality with a significantly lower inference
time. Observe that the first output of ReStyle may be worse
than that of a conventional encoder due to the more re-
laxed training formulation of ReStyle as it is trained to per-

1→ 2 2→ 3 3→ 4 4→ 5

Figure 6. In each sub-image, we display a heatmap showing
which image regions changed the most (in red) and which regions
changed the least (in blue) between the specified iterations.

1→ 2 2→ 3 3→ 4 4→ 5

Figure 7. Similar to Figure 6, with the difference that here all im-
ages are normalized with respect to each other. As shown, the
magnitude of change decreases with each step.

form multiple steps at inference. With that, ReStyle quickly
matches or surpasses the quality of single-shot encoders.

These comparisons point to the appealing nature of
ReStyle: although optimization typically achieves superior
reconstruction, ReStyle offers an excellent balance between
reconstruction quality and inference time. See the supple-
mentary materials for results on all domains and metrics.

5.3. ReStyle Analysis

In this section, we explore various aspects of ReStyle
to gain a stronger understanding of its behavior and attain
key insights into its efficiency. Specifically, we analyze the
main details focused on by the encoder at each step and
analyze the number of steps needed for convergence during
inference. Additional analyses in both the image space and
latent space can be found in the supplementary materials.
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Figure 8. Editing Comparison. We apply edits on inversions obtained from several methods. For performing the edits in the human facial
domain we use InterFaceGAN [36], for the cars domain we use GANSpace [16], and for the horse domain we use SeFa [37].

Where’s the focus? We begin by exploring which regions
of the image are focused on by the encoder at each step
during inference. To do so, we consider the human facial
domain. For each step t and each input image x, we com-
pute the squared difference in the image space between the
generated images at steps t and t − 1. That is, we compute
d =

∥∥yt − yt−1

∥∥
2

where yt is defined in Equation 4.

Averaging over all test samples we obtain the average
image difference between the two steps. Finally, we nor-
malize the average image to the range [0, 1] and visualize
the regions of the image that incur the most change at the
current step t. We visualize this process in Figure 6 showing
ReStyle’s incremental refinements. As can be seen, in the
early steps the encoder focuses on refining the background
and pose while in subsequent steps the encoder moves its
focus to adjusting finer details along the eyes and hair.

In Figure 6 we show only the magnitude of change within
each step. That is, the absolute magnitude of change may
vary between the different steps. To show that the overall
amount of change decreases with each step, we refer the
reader to Figure 7. There, all images are normalized with
respect to each other allowing one to see how the largest
changes occur in the first step and decrease thereafter.

In a sense, the encoder operates in a coarse-to-fine man-
ner, beginning by concentrating on low frequency details
which are then gradually complemented by adjusting high
frequency, fine-level details.

Input ReStylepSp Iterative Outputs −→

Input ReStylee4e Iterative Outputs −→

Figure 9. Given the input image on the left, we visualize the inter-
mediate outputs of ReStyle applied over pSp [35] and e4e [40].

ReStyle’s iterative progress. We now turn to Figure 9
and show how the reconstruction quality incrementally im-
proves with each additional step of ReStyle. Specifically,
observe how ReStylepSp is able to gradually improve the
reconstruction of the highly non-frontal input image in the
top row. Similarly, notice how ReStylee4e is able to itera-
tively refine the posture of the horse rider and capture the
skewed structure of the church building.
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5.4. Editability via Latent Space Manipulations

Previous works [50, 52, 40, 52] have discussed the im-
portance of evaluating the editability of inversion methods.
Here, we show that the editability achieved by ReStyle is
comparable to that of the conventional encoders. Since e4e
is designed specifically for image manipulations, we choose
to show that inversions obtained by combining e4e with
ReStyle are still editable. We show visual examples in Fig-
ure 8. Compared to e4e, ReStyle is able to better reconstruct
the input while still allowing for realistic edits. Notably,
observe the more plausible edits over ReStyle’s inversions
compared to those obtained via optimization. For example,
observe the artifacts in the front bumpers of the car edits
when applied over the optimization-based inversions.

5.5. Encoder Bootstrapping

Finally, we explore a new concept, which we call en-
coder bootstrapping. To motivate this idea, let us consider
the image toonification task in which we would like to trans-
late real face images into their toonified, or animated, ver-
sion. Pinkney et al. [33] propose solving this image-to-
image task by projecting each real input image to its closest
toon image in the latent space of a toon StyleGAN obtained
via fine-tuning the FFHQ StyleGAN generator. In a sim-
ilar sense, ReStyle can be applied over pSp to solve this
task. Here, ReStyle is initialized with the average toon la-
tent code and its corresponding image. Then, N steps are
performed to translate the image to its toonified version.

With encoder bootstrapping, we take a slightly different
approach. Rather than initializing the iterative process using
the average toon image, we first pass the given real image
to an encoder tasked with embedding real images into the
latent space of a StyleGAN trained on FFHQ. Doing so will
result in an inverted code w1 and reconstructed image ŷ1.
This inverted code and reconstructed image are then taken
to initialize the toonification translation using ReStyle. This
idea is illustrated in Figure 10. Notice that this technique is
possible thanks to the residual nature of ReStyle. By uti-
lizing the FFHQ encoder to obtain a better initialization, we
are able to more easily learn a proper residual for translating
the input image while more faithfully preserving identity.

We compare several real-to-toon variants in Figure 11.
Observe how bootstrapping the toonification process with
the FFHQ code results in translations able to better capture
the input characteristics and toonify style. Observe the abil-
ity of the bootstrapped variant to better preserve make-up,
eyeglasses, hairstyle, and expression. In Figure 12, we vi-
sualize the inverted real image used to initialize the toonify
encoder followed ReStyle’s toonified outputs.

The bootstrapping technique is intriguing as it is not im-
mediately clear why the code in the FFHQ latent space re-
sults in a meaningful code in the toonify space. We refer the
reader to the supplementary materials for further analysis.

𝐹𝐹𝐻𝑄
𝒙
𝒚#𝟏 𝑇𝑜𝑜𝑛𝑖𝑓𝑦

𝒙𝒇𝒇𝒉𝒒%𝒂𝒗𝒈 𝒚#𝒕
𝒙

𝒘𝟏

Figure 10. Encoder bootstrapping overview.

Input Toonify [33] ReStylepSp ReStyleBS
pSp

Figure 11. Toonify comparison. Applying ReStyle with bootstrap-
ping, denoted ReStyleBS

pSp, is able to better preserve the identity
characteristics of the input real image.

Input Inverted Iterative Outputs −→
Figure 12. For each input, we show the inverted image obtained
after a single step of our ReStylepSp FFHQ encoder followed by
the iterative outputs of our ReStylepSp toonify encoder.

6. Conclusions
In our work, we have focused on improving the inver-

sion accuracy of encoders and presented a new scheme for
training GAN encoders. Instead of predicting the inversion
in one shot, we perform multiple forward passes, which
more accurately and quickly converge to the target inver-
sion. In a sense, this scheme allows the encoder to learn
how to efficiently guide its convergence to the desired inver-
sion. Moreover, the encoder is trained on a larger, richer set
of images consisting not only of the original dataset itself,
but also the intermediate reconstructions. We also explored
pairing the ReStyle scheme with a bootstrapping technique
for the image toonification task. We view this bootstrapping
idea and the resulting transformations to be intriguing and
may further open the door for additional tasks, leveraging
the nature of our residual-based, iterative scheme.
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