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Abstract
We present imGHUM, the first holistic generative model

of 3D human shape and articulated pose, represented as
a signed distance function. In contrast to prior work, we
model the full human body implicitly as a function zero-
level-set and without the use of an explicit template mesh.
We propose a novel network architecture and a learning
paradigm, which make it possible to learn a detailed im-
plicit generative model of human pose, shape, and seman-
tics, on par with state-of-the-art mesh-based models. Our
model features desired detail for human models, such as
articulated pose including hand motion and facial expres-
sions, a broad spectrum of shape variations, and can be
queried at arbitrary resolutions and spatial locations. Addi-
tionally, our model has attached spatial semantics making it
straightforward to establish correspondences between dif-
ferent shape instances, thus enabling applications that are
difficult to tackle using classical implicit representations. In
extensive experiments, we demonstrate the model accuracy
and its applicability to current research problems.

1. Introduction
Mathematical models of the human body have been

proven effective in a broad variety of tasks. In the last
decades models of varying degrees of realism have been
successfully deployed e.g. for 3D human motion analysis
[46], 3D human pose and shape reconstruction [24, 52], per-
sonal avatar creation [3, 54], medical diagnosis and treat-
ment [16], or image synthesis and video editing [53, 21].
Modern statistical body models are typically learnt from
large collections of 3D scans of real people, which are used
to capture the body shape variations among the human pop-
ulation. Dynamic scans, when available, can be used to fur-
ther model how different poses affect the deformation of the
muscles and the soft-tissue of the human body.

The recently released GHUM model [49] follows this
methodology by describing the human body, its shape vari-
ation, articulated pose including fingers, and facial ex-
pressions as a moderate resolution mesh based on a low-
dimensional, partly interpretable parameterization. In the

* The first two authors contributed equally.

Figure 1. imGHUM is the first parametric full human body model
represented as an implicit signed distance function. imGHUM
successfully models broad variations in pose, shape, and facial ex-
pressions. The level sets of imGHUM are shown in blue-scale.

deep learning literature GHUM and similar models [27, 23]
are typically used as fixed function layers. This means that
the model is parameterized with the output of a neural net-
work or some other non-linear function, and the resulting
mesh is used to compute the final function value. While
this approach works well for several tasks, including, more
recently, 3D reconstruction, the question of how to best rep-
resent complex 3D deformable and articulated structures is
open. Recent work dealing with the 3D visual reconstruc-
tion of general objects aimed to represent the output not as
meshes but as implicit functions [28, 32, 7, 29]. Such ap-
proaches thus describe surfaces by the zero-level-set (deci-
sion boundary) of a function over points in 3D-space. This
has clear benefits as the output is neither constrained by a
template mesh topology, nor is it discretized and thus of
fixed spatial resolution.

In this work, we investigate the possibility to learn a
data-driven statistical body model as an implicit function.
Given the maturity of state of the art explicit human models,
it is crucial that an equivalent implicit representation main-
tains their key, attractive properties – representing compa-
rable variation in shape and pose and similar level of detail.
This is challenging since recently-proposed implicit func-
tion networks tend to produce overly smooth shapes and
fail for articulated humans [8]. We propose a novel net-
work architecture and a learning paradigm that enable, for
the first time, constructing detailed generative models of hu-
man pose, shape, and semantics, represented as Signed Dis-
tance Functions (SDFs) (see fig. 1). Our multi-part archi-
tecture focuses on difficult to model body components like
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✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ GHUM [49]
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ IF-Net [8]
✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ IGR [14]
✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ NASA [11]
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ imGHUM

Table 1. Comparison of different approaches to model human bod-
ies. GHUM is meshed-based and thus discretized. IGR only al-
lows for shape interpolation. NASA lacks generative capabilities
for shape, hands, and facial expressions and only returns occu-
pancy values. Only imGHUM combines all favorable properties.

hands and faces. Moreover, imGHUM models its neighbor-
hood through distance values, enabling e.g. collision tests.
Our model is not bound to a specific resolution and thus can
be easily queried at arbitrary locations. Being template-free
further paves the way to our ultimate goal to fairly represent
diversity of mankind, including disabilities which may not
be always well covered by a generic template of standard
topology. Finally, in contrast to recent implicit function net-
works, our model additionally carries on the explicit seman-
tics of mesh-based models. Specifically, our implicit func-
tion also returns correspondences to a canonical represen-
tation near and on its zero-level-set, enabling e.g. texturing
or body part labeling. This holistic approach is novel and
significantly more difficult to produce, as can be noted in
prior work which could only demonstrate individual prop-
erties, c.f . tab. 1. Our contribution – and the key to success
– stems from the novel combination of adequate, genera-
tive latent representations, network architectures with fine
grained encoding, implicit losses with attached semantics,
and the consistent aggregation of multi-part components.
Besides extensive evaluation of 3D deformable and artic-
ulated modeling capabilities, we also demonstrate surface
completion using imGHUM and give an outlook to mod-
eling varying topologies. Our models are available for re-
search [1].

1.1. Related Work

We review developments in 3D human body modeling,
variants of implicit function networks, and applications of
implicit function networks for 3D human reconstruction.

Human Body Models. Parametric human body models
based on geometric primitives have been proposed early on
[48] and successfully applied e.g. for human reconstruction
from video data [36, 46, 45]. SCAPE [35] was one of the
first realistic large scale data-driven human body models.
Later variants inspired by blend skinning [17] modeled
correlations between body shape and pose [15], as well as
soft-tissue dynamics [37]. SMPL variants [27, 23, 33, 31]
are also popular parametric body models, with linear
shape spaces, compatible with standard graphics pipelines
and offering good full-body representation functionality.

GHUM is a recent parametric model [49] that represents
the full body model using deep non-linear models – VAEs
for shape and normalizing flows for pose, respectively –
with various trainable parameters, learned end-to-end. In
this work, we rely on GHUM to build our novel implicit
model. Specifically, besides the static and dynamic 3D
human scans in our dataset, we also rely on GHUM (1)
to represent the latent pose and shape state of our implicit
model, (2) to generate supervised training data in the form
of latent pose and shape codes with associated 3D point
clouds, sampled from the underlying, posed, GHUM mesh.

Implicit Function Networks (IFNs) have been proposed
recently [28, 32, 7, 29]. Instead of representing shapes as
meshes, voxels, or point clouds, IFNs learn a shape space
as a function of a low-dimensional global shape code and
a 3D point. The function either classifies the point as in-
side/outside [28, 7] (occupancy networks), or returns its dis-
tance to the closest surface [32] (distance functions). The
global shape is then defined by the decision boundary or the
zero-level-set of this function.

Despite advantages over mesh- and voxel-based repre-
sentations in tasks like e.g. 3D shape reconstruction from
partial views or given incomplete data, initial work has
limitations. First, while the models can reliably encode
rigid axis-aligned shape prototypes, they often fail for more
complex shapes. Second, the reconstructions are often
overly smooth, hence they lack detail. Different approaches
have been presented to address these. Part-based models
[13, 22, 12] assemble a global shape from smaller local
models. Some methods do not rely on a global shape code
but on features computed from convolving with an input
observation [8, 10, 34, 9]. Others address such limitations
by changing the learning methodology: tailored network
initialization [4] and point sampling strategies [50], or
second-order losses [14, 44] have been proposed towards
this end. We found the latter to be extremely useful and
rely on similar losses in this work.

IFNs for Human Reconstruction. Recently implicit func-
tions have been explored to reconstruct humans. Huang et
al. [18] learn an occupancy network that conditions on im-
age features in a multi-view camera setup. Saito et al. [41]
use features from a single image and an estimated normal
image [42] together with depth values along camera rays as
conditioning variables. ARCH [19] combines implicit func-
tion reconstruction and explicit mesh-based human models
to represent dressed people. Karunratanakul et al. [25] pro-
pose to use SDFs to learn human grasps and augment their
SDFs output with sparse regional labels. Similarly to us,
Deng et al. [11] represent a pose-able human subject as a
number of binary occupancy functions modeled in a kine-
matic structure. In contrast to our work, this framework is
restricted to a single person and the body is only coarsely
approximated, lacking facial features and hand detail. Also
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Figure 2. Overview of imGHUM. We compute the signed distance s = S(p,α) and the semantics c = C(p,α) of a spatial point p to the
surface of an articulated human shape defined by the generative latent code α. Using an explicit skeleton, we transform the point p into the
normalized coordinate frames as {p̃j} for N = 4 sub-part networks, modeling body, hands, and head. Each sub-model {Sj} represents
a semantic signed-distance function. The sub-models are finally combined consistently using an MLP U to compute the outputs s and c
for the full body. Our multi-part pipeline builds a full body model as well as sub-part models for head and hands, jointly, in a consistent
training loop. On the right, we visualize the zero-level-set body surface extracted with marching cubes and the implicit correspondences to
a canonical instance given by the output semantics. The semantics allows e.g. for surface coloring or texturing.

related, SCANimate [43] builds personalized avatars from
multiple scans of a single person. Concurrent to our work,
LEAP [30] learns an occupancy model of human shape and
pose also without hand poses, expressions, or semantics. In
this work we aim for a full implicit body model, featuring a
large range of body shapes corresponding to diverse humans
and poses, with detailed hands, and facial expressions.

2. Methodology

In this section, we describe our models and the losses
used for training. We introduce two variants: a single-part
model that encodes the whole human in a single network
and a multi-part model. The latter constructs the full body
from the output superposition of four body part networks.

Background. We rely on neural networks and implicit
functions to generate 3D human shapes and articulated
poses. Given a latent representation α of the human shape
and pose, together with an underlying probability distri-
bution, we model the posed body as the zero iso-surface
decision boundaries of Signed Distance Functions (SDFs)
given by deep feed-forward neural networks. A signed dis-
tance S(p,α) ∈ R is a continuous function which, given
an arbitrary spatial point p ∈ R3, outputs the shortest dis-
tance to the surface defined by α, where the sign indicates
the inside (negative) or outside (positive) side w.r.t. the sur-
face. The posed human body surface is implicitly given by
S(·,α) = 0.

GHUM [49] represents the human model as an articu-
lated mesh X(α). GHUM has a minimally-parameterized
skeleton with J = 63 joints (124 Euler angle DOFs), and
skinning deformations, explicitly sensitive to the pose kine-
matics θ ∈ R124. A kinematic prior based on normaliz-
ing flows defines the distribution of valid poses [52]. Each
kinematic pose θ represents a set of joint transformations
T(θ, j) ∈ RJ×3×4 from the neutral to a posed state, where
j ∈ RJ×3 are the joint centers that are dependent on the
neutral body shape. The statistical body shapes are mod-

eled using a nonlinear embedding βb ∈ R16. In addition
to skeleton articulation, a nonlinear latent code βf ∈ R20

drives facial expressions. The implicit model we design
here shares the same probabilistic latent representation as
GHUM, α = (βb,βf ,θ), but in contrast to computing
an articulated mesh, we estimate a signed distance value
s = S(p,α) for each arbitrary spatial point p.

2.1. Models and Training

Given a collection of full-body human meshes Y,
together with the corresponding GHUM encodings
α = (βb,βf ,θ), our goal is to learn a MLP-based SDF
representation S(p,α) so that it approximates the shortest
signed distance to Y for any query point p. Note that
Y could be arbitrary meshes, such as raw human scans,
mesh registrations, or samples drawn from the GHUM
latent space. The zero iso-surface S(·,α) = 0 is sought to
preserve all geometric detail in Y, including body shapes
and poses, hand articulation, and facial expressions.

Single-part Network. We formulate one global neural net-
work that decodes S(p,α) for a given latent code α and
a spatial point p. Instead of pre-computing the continuous
SDFs from point samples as in DeepSDF [32], we train a
MLP network S(p,α;ω) with weights ω, similar in spirit
to IGR [14], to output a solution to the Eikonal equation

∥∇pS(p,α;ω)∥ = 1, (1)

where S is a signed distance function that vanishes at the
surface Y with gradients equal to surface normals. Mathe-
matically, we formulate our total loss as a weighted combi-
nation of

Lo(ω) =
1

|O|
∑
i∈O

(|S(pi,α)|+ ∥∇piS(pi,α)− ni∥) (2)

Le(ω) =
1

|F |
∑
i∈F

(∥∇piS(pi,α)∥ − 1)2 (3)

Ll(ω) =
1

|F |
∑
i∈F

BCE(li, ϕ(kS(pi,α))), (4)
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where ϕ is the sigmoid function, O are surface samples from
Y with normals n, and F are off surface samples with in-
side/outside labels l, consisting of both uniformly sampled
points within a bounding box and sampled points near the
surface. The first term Lo encourages the surface samples to
be on the zero-level-set and the SDF gradient to be equal to
the given surface normals ni. The Eikonal loss Le is derived
from (1) where the SDF is differentiable everywhere with
gradient norm 1. We obtain the SDF gradient ∇pi

S(pi,α)
analytically via network back-propagation. In practice, we
also find it useful to include a binary cross-entropy error
(BCE) loss Ll for off-the-surface samples, where k controls
the sharpness of the decision boundary. We use k = 10
in our experiments. Our training losses only require sur-
face samples with normals and inside/outside labels for off-
surface samples. Those are much easier and faster to obtain
than pre-computing ground truth SDF values.

Recent work suggests that standard coordinate-based
MLP networks encounter difficulties in learning high-
frequency functions, a phenomenon referred to as spectral
bias [39, 47]. To address this limitation, inspired by [47],
we therefore encode our samples using the basic Fourier
mapping ei = [sin(2πp̃i), cos(2πp̃i)]

⊤, where we first un-
pose the samples with the root rigid transformation T−1

0

and normalize them into [0, 1]3 with a shared bounding box
B = [bmin,bmax], as

p̃i =
T−1

0 (θ, j)[pi, 1]
⊤ − bmin

bmax − bmin
. (5)

Note that our SDF is defined w.r.t. the original meshes
Y and therefore we do not unpose and scale the sample
normals. Also, the loss gradients are derived w.r.t. pi.

Multi-part Network. Our single-part network represents
well the global geometric features for various human body
shapes and kinematic poses. However, despite its spatial
encoding, the network still has difficulties capturing facial
expressions and articulated hand poses, where the SDF has
local high-frequency variations. To augment geometric de-
tail on face and hands regions, we therefore propose a multi-
part network that decomposes the human body into N = 4
local regions, i.e. the head, left and right hand, and the
remaining body, respectively. This significantly reduces
spectral frequency variations within each local region al-
lowing the specialized single-part networks to capture local
geometric detail. A consistent full-body SDF S(p,α) is
composed from the local single-part SDF network outputs
sj = Sj(p,α), j ∈ {1, . . . , N}.

We follow the training protocol described in §2.1 for
each local sub-part network with surface and off-surface
samples within a bounding box Bj defined for each part.
Note that we use the neck and wrist joints as the the root
transformation for the head and hands respectively. In
GHUM, the joint centers j are obtained as a function given

the neutral body shapes X̄(βb). However, X̄ is not ex-
plicitly presented in our implicit representation. Therefore,
we build a nonlinear joint regressor from βb to j, which is
trained, supervised, using GHUM’s latent space sampling.

In order to fuse the local SDFs into a consistent full-body
SDF, while at the same time preserving local detail, we
merge the last hidden layers of the local networks using an
additional light-weight MLP U . To train the combined net-
work, a sample point pi, defined for the full body, is trans-
formed into the N local coordinate frames using Tj

0 and
then passed to the single-part local networks, see fig. 2. The
union SDF MLP then aggregates the shortest distance to the
full body among the local distances. We apply our losses
to the union full-body SDF as well, to ensure that the out-
put for full body satisfies the SDF property (1). Our multi-
part pipeline produces sub-part models and a full-body one,
trained jointly and leveraging data correlations among dif-
ferent body components.

Our spatial point encoding ei requires all samples
p to be inside the bounding box B, which otherwise
might result in periodic SDFs due to sinusoidal encoding.
However, a point sampled from the full body is likely to
be outside of a sub-part’s local bounding box Bj . Instead
of clipping or projecting to the bounding box, we augment
our encoding of sample pi for sub-part networks Sj as
eji = [sin(2πp̃j

i ), cos(2πp̃
j
i ), tanh(π(p̃

j
i − 0.5))]⊤, where

the last value indicates the relative spatial location of the
sample w.r.t. the bounding box. If a point pi is outside the
bounding box Bj , the union SDF MLP will learn to ignore
Sj(pj

i ,α) for the final union output.

Implicit Semantics. In contrast to explicit models like
GHUM, implicit functions do not naturally come with point
correspondences between different shape instances. How-
ever, many applications, such as pose tracking, texture map-
ping, semantic segmentation, surface landmarks, or cloth-
ing modeling, largely benefit from such correspondences.
Given an arbitrary spatial point, on or near the surface Y,
i.e, |S(pi,α)| < σ, we are therefore interested to inter-
pret its semantics. We define the semantics as a 3D implicit
function C(p,α) ∈ R3. Given a query point pi, it returns a
correspondence point on a canonical GHUM mesh X(α0)
as

C(pi,α) = wivf (α0) = ci, p∗
i = wivf (α) (6)

where p∗
i is the closest point of pi in the GHUM mesh

X(α) with f the nearest face and w the barycentric weights
of the vertex coordinates vf . In contrast to alternative se-
mantic encodings, such as 2D texture coordinates, our se-
mantic function C(p,α) is smooth in the spatial domain
without distortion and boundary discontinuities, which fa-
vors the learning process, c.f . [5].

By definition, implicit SDFs return the shortest distance
to the underlying implicit surface for a spatial point whereas
implicit semantics associate the query point to its closest
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surface neighbor. Hence, we consider implicit semantics as
highly correlated to SDF learning. We co-train both tasks
with our augmented multi-part network (§2.1) computing
both S(p,α) and C(p,α). Semantics are trained fully su-
pervised, using an L1 loss for a collection of training sam-
ple points near and on the surface Y. Due to the correlation
between tasks, our network is able to predict both signed
distance and semantics, without expanding its capacity.

Using trained implicit semantics, we can e.g. apply
textures to arbitrary iso-surfaces at level set |z| ≤ σ,
reconstructed from our implicit SDF. During inference,
an iso-surface mesh S(·,α) = z can be extracted using
Marching Cubes [26]. Then for every generated vertex ṽi

we query its semantics C(ṽi,α). The queried correspon-
dence point C(ṽi,α) might not be exactly on the canonical
surface and therefore we project it onto X(α0). Now,
we can interpolate the UV texture coordinates and assign
them to ṽi. Similarly, we can also assign segmentation
labels or define on- or near-surface landmarks. In fig. 2
(right) we show an imGHUM reconstruction textured and
with a binary ‘clothing’ segmentation. We use the latter
throughout the paper demonstrating that our semantics
allow the transfer of segmentation labels to different
iso-surface reconstructions. Please refer to §3.3 for more
applications of our implicit semantics e.g. landmarks or
clothed human reconstruction.

Architecture. For the single-part network we use a similar
feed-forward architecture as DeepSDF [32] or IGR [14]
with eight 512-dimensional fully-connected layers. To
enable higher-order derivatives, we use Swish nonlinear
activation [40] instead of ReLU. IGR originally proposed
SoftPlus, however, we found Swish superior (see tab. 3).
The multi-part network is composed out of one 8-layer
256-dimensional MLP for the body and three 4-layer 256-
dimensional MLPs for hands and head. Each sub-network
has a skip connection to the middle layer. The last hidden
layers of sub-networks are aggregated in a 128-dimensional
fully-connected layer with Swish nonlinear activation,
before the final network output. The final model features
2.49 million parameters and performs 4.99 million FLOPs
per point query.

Dataset. Our training data consists of a collection of full-
body human meshes Y together with the corresponding
GHUM latent code α, where X(α) best approximates Y.
For each mesh, we perform Poisson disk sampling on the
surface and obtain |O| = 32K surface samples, together
with their surface normals. In addition, within a predefined
2.2× 2.8× 2.2m3 bounding box centered at the origin, we
sample |F |/2 = 16K points uniformly. Another 16K sam-
ples are generated by randomly displacing surface sample
points with isotropic normal noise with σ = 0.05m. All off-
surface samples are associated with inside/outside labels,
computed by casting randomized rays and checking parity.

We also label semantics for on and near surface samples,
which are drawn with random face indices and barycen-
tric weights of the GHUM mesh and randomly displaced
for near-surface samples. With the corresponding face and
barycentric weights, semantic labels are generated using (6)
in a light-weight computation with no need for projection or
nearest neighbor search. Each mesh Y is then decomposed
into N = 4 parts and we generate the same number of train-
ing samples per body part (we use σ = 0.02m for surface
samples near the hands).

We use two types of human meshes for our imGHUM
training. We first randomly sample 75K poses from H36M
and the CMU mocap dataset, with Gaussian sampled body
shapes, expressions and hand poses from the GHUM latent
priors, where Y are the posed GHUM meshes. In addition,
we collect 35K human scans, on which we perform As-
Conformal-As-Possible (ACAP) registrations [51] with the
GHUM topology and fit GHUM parameters as well. Our
human scans include the CAESAR dataset, full body pose
scans, as well as close-up head and hand scans. Due to the
noise and incompleteness in some of the raw scans we use
the registrations for training. We fine-tune imGHUM – ini-
tially trained on GHUM sampling – using the registration
dataset. In this way, imGHUM can capture geometric detail
not well represented by GHUM (see tab. 2).

3. Experiments
We evaluate imGHUM qualitatively and quantitatively

in multiple experiments. First, we compare imGHUM with
its explicit counterpart GHUM (§3.1). Then, we perform an
extensive baseline and ablation study, demonstrating the ef-
fect of imGHUM’s architecture and training scheme (§3.2).
We also build a model to compare to the recent single-
subject occupancy model NASA. Finally, we show the per-
formance of imGHUM on three representative applications
demonstrating its usefulness and versatility (§3.3).

We report three different metrics. Bi-directional
Chamfer-L2 distance measures the accuracy and complete-
ness of the surface (lower is better). Normal Consistency
(NC) evaluates estimated surface normals (higher is better).
Volumetric Intersection over Union (IoU) compares the re-
constructed volume with the ground truth shape (higher
is better). The latter can only be reported for watertight
shapes. Please note that metrics not always correlate with
the perceived quality of the reconstructions. We therefore
additionally include qualitative side-by-side comparisons.

For visualization and numerical evaluation we extract
meshes from imGHUM using Marching Cubes [26]. To
this end, we approximate the bounding box of the surface
though probing and then run Marching Cubes with a reso-
lution of 2563 within the bounding box. Hereby, the signed
distances support acceleration using Octree sampling: we
use the highest grid density only near the surface and sam-
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Figure 3. Bodies generated and reconstructed using imGHUM. Left: imGHUM with Gaussian sampling of the shape, expression and pose
latent space. Middle: Reconstructed motion sequence from the CMU mocap dataset [2] (fixed body shape). Right: Body shape and facial
expressions latent code interpolation (fixed pose). See supplementary material for more examples.

ple far less frequently away from it. However, we note that
for most applications, such as human reconstruction and
collision detection, Marching Cubes are not needed, except
only once for the final mesh visualization.

3.1. Representational Power

In fig. 3, we show reconstructions of a motion capture se-
quence applied to imGHUM. Our model captures well the
articulated full-body motion, with consistent body shape for
various poses. By sharing the latent priors with GHUM,
imGHUM supports realistic body shape and pose gener-
ation (fig. 3, left) as well as smooth interpolation within
the shape and expression latent spaces (fig. 3, right). Our
model generalizes well to novel body shapes, expressions,
and poses, and has interpretable and decoupled latent repre-
sentations.

In tab. 2, we compare the representation power of
imGHUM with the explicit GHUM on our registration test-
set. imGHUM better captures present detail as numeri-
cally demonstrated. An imGHUM model trained only using
GHUM samples captures the body deformation due to artic-
ulation less well, indicating that GHUM is a useful surro-
gate to ‘synthetically’ bootstrap the training of the implicit
network, but that real data is important as well.
Limitations of imGHUM are sometimes apparent for very
extreme pose configurations that have not been covered in
the training set, such as anthropometrically invalid poses
that are impossible for a human, e.g. resulting in self-
intersection or by bending joints beyond their anatomical
range of motion. imGHUM produces plausible results for
inputs not too far from expected configurations, but the re-
sults occasionally feature some defects e.g. distorted or in-
complete geometry or inaccurate semantics, see fig. 8 for
examples.

3.2. Baseline Experiments

In the next section, we compare imGHUM to various
baselines inspired by recent work. The first is an auto-
encoder, where the encoder side is PointNet++ [38] and
the decoder is our single-part network. The idea is to
let the network find the best representation instead of pre-
computing a low dimensional representation. In practice
this means that latent codes are not interpretable. Further,

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
imGHUM ‡ 0.900 0.071 0.977
GHUM 0.913 0.055 0.983
imGHUM 0.932 0.040 0.984

Table 2. GHUM comparisons on registration dataset. imGHUM
marked with ‡ is trained only based on GHUM sampling data.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
Autoencoder 0.831 2.457 0.923
Single-part † 0.957 0.085 0.983
Single-part ⊕ 0.958 0.070 0.983
Single-part 0.965 0.052 0.986
Single-part deeper † 0.961 0.070 0.984
Single-part deeper 0.967 0.058 0.986
imGHUM † 0.955 0.095 0.984
imGHUM w/o Ll (4) 0.966 0.051 0.988
imGHUM 0.969 0.036 0.989

Table 3. Numerical comparison with baselines. Models marked
with † don’t use the Fourier input mapping. ⊕ marks Softplus
activation as in [14].

Model IoU ↑ Ch. ×10−3 ↓ NC ↑
Head / Hands Head / Hands Head / Hands

Single-part 0.967 / 0.818 0.010 / 0.201 0.937 / 0.790
Single-part deep. 0.968 / 0.832 0.011 / 0.271 0.938 / 0.811
imGHUM 0.976 / 0.929 0.007 / 0.031 0.944 / 0.934

Table 4. Unidirectional metrics (GT to generated mesh) for critical
body parts. Our multi-part architecture significantly improves the
head and hand reconstruction accuracy.

we experiment with our single part network without Fourier
input mapping, largely following the training scheme pro-
posed by IGR [14]. We also use input mapping and finally
trained a deeper single-part network variant (10 layers) hav-
ing roughly the same number of variables as imGHUM.

In tab. 3 we report the metrics for different variants on
our test set containing 1 000 GHUM samples. In fig. 4, we
show a side-by-side comparison. The Fourier input map-
ping consistently improves results for all variants. We have
also tried higher-dimensional Fourier features but empir-
ically found the basic encoding to work best in our set-
ting. The auto-encoder produces large artifacts especially in
the hand region. Similar problems, large blobs or missing
pieces, can be observed in results from single-part variants,
especially for the hands and, less severe, also for the facial
region. These problems, however, are not well captured by

5466



globally evaluating the whole shape. To this end, we eval-
uate imGHUM and our single-part models specifically for
these critical regions, see tab. 4. Only imGHUM consis-
tently produces high-quality results also for hands and the
face, supporting the proposed architecture choices.

Next, we compare imGHUM to the recent single-subject
multi-pose implicit human occupancy model NASA [11].
With a fixed body shape, we generate 22 500 random
GHUM full-body training poses and 2 500 testing poses
from Human3.6M [20] and the CMU mocap dataset [2], in-
cluding head and hand poses. Using the original point sam-
pling strategy in NASA, we have trained the network until
convergence, based on the original source code. Please see
the supplementary material for details on how we adapted
NASA for the GHUM skeleton. For comparison, we have
trained an imGHUM architecture with 2× fewer layers than
our full multi-subject model, each with half-dimensionality,
using the same dataset. Even though GHUM-based NASA
has 3× more parameters, our smaller-size single-subject
imGHUM still performs significantly better in representing
both the global shape and local detail (see hand reconstruc-
tions in fig. 5). In contrast to NASA, which computes bi-
nary occupancy, imGHUM returns more informative signed
distance values which produce smooth decision boundaries
and preserve the detailed geometry much better. Further key
differences to NASA are our considerably simpler architec-
ture that requires far less computation to produce a recon-
struction, our semantics, and the carefully chosen learning
model (i.e. Fourier encoding, second-order losses) that pays
particular attention to surface detail. Moreover, imGHUM
additionally models body shape, fingers, and facial expres-
sions using generative latent codes (tab. 1).

3.3. Applications

We apply imGHUM to three key tasks: body surface
reconstruction, partial point cloud completion, and dressed
and inclusive human reconstruction.

Triangle Set Surface Reconstruction. Given a triangle set
(‘soup’) with n vertices {v̂} ∈ R3n along with oriented
normals {n̂} ∈ R3n, we deploy our parametric implicit
SDF for surface reconstruction with semantics. This task
is necessary for triangle soups produced by 3D scanners.
To extract the surface from an incomplete scan, we apply
a BFGS optimizer to fit α = (βb,βf ,θ) such that all ver-
tices v̂ are close to the implicit surface S(·,α) = 0. More-
over, we enforce gradients at v̂ to be close to normals n̂,
and generated off-surface samples to have distances with
the expected signs. In addition, we sample near surface
points with a small distance η along surface normals, and
enforce S(v̂ ± ηn̂,α) = ±η, as in [32]. Note that all these
operations can be easily implemented and are fully differ-
ential due to imGHUM being a SDF. When 3D landmarks
are available on the target surface, e.g. as triangulated from

Figure 4. Qualitative comparison with baseline experiments. From
left to right: autoencoder, single-part model without and with
Fourier input mapping, our multi-part imGHUM, ground-truth
GHUM. We use our semantics network to color baseline results.

Figure 5. Comparison with NASA [11] on our single-subject
multi-pose dataset. Top to bottom: GT, single-subject imGHUM,
and NASA reconstructions. imGHUM better captures global and
local geometry, despite using a significantly smaller network ver-
sion in this experiment. Also numerically our results are superior:
IoU (↑) 0.962 (ours) vs. 0.839 (theirs), Ch. (↓) 0.068×10−3 (ours)
vs. 3.53× 10−3 (theirs), NC (↑) 0.985 (ours) vs. 0.903 (theirs).

2D detected landmarks of raw scanner images, we addition-
ally augment the optimization with landmark losses based
on the imGHUM semantics. Please see the supplementary
material for details of the losses.

For reference, we also show results on IF-Net [8], a
recent method for implicit surface extraction, completion,
and voxel super-resolution. We trained IF-Net with the
same pose and shape variation as used for imGHUM –
presumably much more variation than the 2 183 scans in the
original paper. In both training and testing we generate 15K
random samples from the observed shape and pass them
through IF-Net for surface reconstruction. Note that IF-Net
is using less information compared to our method, but is
also solving an easier task as it is not computing a global
and semantically meaningful shape code. An entirely fair
comparison is thus not possible. However, we believe
that by comparing with IF-Net, we show that imGHUM is
adequate for this task. Fig. 6 qualitatively shows examples
of both imGHUM fits and of IF-Net inference results
for 150 human scans containing 20 subjects. Our model
not only fits well to the volume of the scans but also
reconstructs the facial expressions and hand poses. Using
landmarks and ICP losses, one could also fit GHUM to
the triangle sets. However, our fully differential imGHUM
losses show superior performance over ICP-based GHUM
fitting (Chamfer (↓) 0.77× 10−3, NC (↑) 0.921).

Partial Point Cloud Completion. Another relevant task
for many applications is shape completion. Here we show
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Figure 6. Left: Triangle set surface reconstruction (input scan, imGHUM fit, and IF-Net inference from left to right). Numerically,
imGHUM fits are better than IF-Net with Chamfer distance (↓) 0.156× 10−3 (ours) vs. 0.844× 10−3 (IF-Net), and NC (↑) 0.954 (ours)
vs. 0.914 (IF-Net). Right: Partial point cloud completion (input point cloud, imGHUM fit, IF-Net, and ground truth scan).

surface reconstruction and completion from partial point
clouds as recorded e.g. using a depth sensor. We synthe-
size depth maps from A-posed scans of 10 subjects from the
Faust dataset [6] using the intrinsics and the resolution of a
Kinect V2 sensor. To complete the partial view, we search
for the α such that all points from the depth point cloud are
close to imGHUM’s zero-level-set. We sample additional
points along surface normals (estimated from depth image
gradients) and enforce estimated distances by imGHUM to
be close to true distances. We also sample points in front of
the depth cloud and around it and enforce their Ll label loss.
Finally, we also supervise the estimated normals. We do not
rely on landmarks or other semantics in this experiment.

We show IF-Net [8] results for comparison. We trained
IF-Net specifically for this task while we use the same
imGHUM for all experiments. Our reconstructions are
numerically better with Chamfer distance (↓) 0.103× 10−3

(ours) vs. 0.315×10−3 (theirs) and NC (↑) 0.962 (ours) vs.
0.936 (theirs). Qualitatively, our results contain much more
of the desirable reconstruction detail, especially for hands
and faces, see fig. 6, right. Note, again, that IF-Net only
reconstructs a surface while we recover the parametrization
of a body model, a considerably harder task.
Dressed and Inclusive Human Modeling. imGHUM is
template-free which is a valuable property for future devel-
opments. While this work deals primarily with the method-
ology of learning a generative implicit human model – in it-
self a complex and novel task – we also give an outlook for
possible future directions. Building a detailed model of the
human body shape including hair and clothing, or learning
inclusive models could be such directions. However, cur-
rently the data needed for building such models does not ex-
ist at large enough scale. To demonstrate that imGHUM is
a valuable building block for such models, we leverage it as
an inner layer for personalized human models. Concretely,
we augment imGHUM with a light-weight residual SDF
network, conditioned on the output of imGHUM, both the
signed distances and semantics. We estimate the residual
model using the same learning scheme as for imGHUM, but
limit training to a single scan. The final output models the
human with layers, including the inner body shape repre-
sented with imGHUM and the personalization (hair, cloth-
ing, non-standard body topology) as residuals, c.f . fig. 7.
This layered representation can be reposed by changing the
parameterization of the underlying imGHUM. Hereby, the

Figure 7. From left to right: scan, GHUM template mesh ACAP
registration, imGHUM+residual fit (color-scale represents seman-
tics), reposed imGHUM+residual, imGHUM+residual fits to peo-
ple with limb differences. In contrast to the fitted template mesh,
imGHUM+residual successfully models topologies different from
the plain human body and captures more geometric detail.

Figure 8. Failure modes. Interpenetration can lead to unwanted
shapes and semantics (leaked hand semantics to the cheek). Ex-
treme poses may produce deformed body parts (thin arms).

residual model acts as a fitted layer around imGHUM and
deforms according to the distance and semantic field de-
fined by imGHUM. Please see the supplementary material
for more examples, a numerical evaluation, and implemen-
tation details.

4. Discussion and Conclusion
We introduced imGHUM, the first 3D human body

model, with controllable pose and shape, represented as an
implicit signed distance function. imGHUM has compa-
rable representation power to state-of-the-art mesh-based
models and can represent significant variations in body
pose, shape, and facial expressions, as well as underlying,
precise, semantics. imGHUM has additional valuable prop-
erties, since its underlying implicit SDF represents not only
the surface of the body but also its neighborhood, which e.g.
enables collision tests with other objects or efficient dis-
tance losses. imGHUM can be used to build diverse, fair
models of humans who may not match a standard template.
This paves the way for transformative research and inclu-
sive applications like modeling clothing, enabling immer-
sive virtual apparel try-on, or free-viewpoint photorealistic
visualization. Our models are available for research [1].
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