
Semi-Supervised Learning of Visual Features by Non-Parametrically
Predicting View Assignments with Support Samples

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin,
Nicolas Ballas*, and Michael Rabbat*

Facebook AI Research
{massran, mathilde, imisra, bojanowski, ajoulin, ballasn, mikerabbat}@fb.com

Abstract

This paper proposes a novel method of learning by
predicting view assignments with support samples (PAWS).
The method trains a model to minimize a consistency loss,
which ensures that different views of the same unlabeled
instance are assigned similar pseudo-labels. The pseudo-
labels are generated non-parametrically, by comparing the
representations of the image views to those of a set of ran-
domly sampled labeled images. The distance between the
view representations and labeled representations is used
to provide a weighting over class labels, which we inter-
pret as a soft pseudo-label. By non-parametrically incor-
porating labeled samples in this way, PAWS extends the
distance-metric loss used in self-supervised methods such
as BYOL and SwAV to the semi-supervised setting. Despite
the simplicity of the approach, PAWS outperforms other
semi-supervised methods across architectures, setting a new
state-of-the-art for a ResNet-50 on ImageNet trained with
either 10% or 1% of the labels, reaching 75.5% and 66.5%
top-1 respectively. PAWS requires 4⇥ to 12⇥ less training
than the previous best methods.

1. Introduction
Learning with less labeled data has been a longstand-

ing challenge of computer vision and machine learning re-
search. One popular approach for learning with few la-
bels is to first perform unsupervised pre-training on a large
dataset followed by supervised fine-tuning on the small set
of available labels. Self-supervised methods generally ad-
here to this paradigm (e.g., see [1] for an analysis in the
context of semi-supervised learning), and they have demon-
strated competitive performance on semi-supervised learn-
ing benchmarks across a wide range of self-supervised pre-
training strategies [2, 1, 3, 4]. However, the self-supervised

⇤Co-last author
Code: github.com/facebookresearch/suncet

0 200 400 600 800 1,000 1,200

68

69

70

71

72

73

74

75

76
PAWS

SwAV+CT
SwAV

BYOL

SimCLRv2
(+Self.Dist.)

UDA

FixMatch

MPL

Pre-training Epochs

To
p

1
(%

)

(ImageNet, ResNet-50, 10% labels)

label prop.
repr. learning

Figure 1: Training a ResNet-50 on ImageNet when only 10% of the train-
ing set is labeled. The figure shows top-1 validation accuracy as a function
of the number of training epochs. The proposed method, PAWS, achieves
higher accuracy than previous work while requiring significantly fewer
training epochs. Concretely, 100 epochs of PAWS training takes less than
8.5 hours using 64 NVIDIA V100-16G GPUs.

paradigm also requires substantially more computational ef-
fort than other approaches and does not make use of labeled
data when it is available.

An alternative line of work suggests to use available la-
beled data to generate pseudo-labels for the unlabeled data,
and then train a model using the labeled and pseudo-labeled
data [5, 6, 7, 8, 9, 10, 11]. This begs the question, can we get
the best of both worlds, leveraging labeled data throughout
training while also building on advances in self-supervised
learning?

This paper proposes a novel method of learning by
predicting view assignments with support samples (PAWS).
The method trains a model to minimize a consistency loss,
which ensures that different views of the same unlabeled
instance are assigned similar pseudo-labels. The pseudo-
labels are generated non-parametrically, by comparing the
representations of the image views to those of a set of ran-

8443



domly sampled labeled images. The distance between the
view representations and labeled representations is used to
provide a weighting over class labels, which we interpret
as a soft pseudo-label. By non-parametrically incorporat-
ing labeled samples in this way, PAWS extends the distance-
metric loss in self-supervised methods such as BYOL [4]
and SwAV [3] to the semi-supervised setting.

Despite the simplicity of the approach, PAWS outper-
forms other semi-supervised methods across architectures,
setting a new state-of-the-art for a ResNet-50 trained on Im-
ageNet with either 10% or 1% of the training instances la-
beled, achieving 75% and 66% top-1 respectively. More-
over, this is achieved with only 200 epochs of training,
which is 4⇥ less than that of the previous best method. The
same conclusion holds when training with wider ResNet ar-
chitectures as well (i.e., ResNet-50 2⇥ or 4⇥).

2. Related Work
Semi-supervised learning. One procedure to simultane-
ously learn with both labeled and unlabeled data is to
combine a supervised loss on the labeled samples with an
unsupervised loss on the unlabeled samples. For exam-
ple, [12, 13, 14] train a model by adding an unsupervised
regularization term to a supervised cross-entropy loss. Sim-
ilarly, UDA [15] adds a supervised cross-entropy loss to an
appropriately weighted unsupervised regularization term.
Likewise, S4L [16] adds a supervised cross-entropy loss
to a weighted mixture of self-supervised pretext loss terms.
This idea of an adding a supervised cross-entropy loss to an
unsupervised instance-based loss has also been exploited to
learn representations suitable for both image classification
and instance recognition [17].

There is also a family of semi-supervised methods re-
lated to self-training [5] that explicitly generate pseudo-
labels for the unlabeled samples and that optimize predic-
tion accuracy on both the ground truth labels (for the labeled
samples) and the pseudo-labels (for the unlabeled samples).
For example Pseudo-Label [18] and earlier related meth-
ods [19, 20, 21] first train a model on the labeled samples,
use this model to assign pseudo-labels to unlabeled samples,
and then re-train the model using both the labeled and un-
labeled samples. The MixMatch trilogy of work [10, 9, 11]
operates similarly, but generates the pseudo-labels in an on-
line fashion. Specifically, FixMatch [11] trains with a su-
pervised cross-entropy loss while simultaneously making
predictions on weakly augmented unlabeled images. When
the unsupervised predictions are confident enough, they
are used as pseudo-labels for strongly augmented views of
those same unlabeled images.

Another closely related line of work in self-training uses
an explicit teacher-student configuration. For example,
Mean Teacher [8] and Noisy Student [7] use a teacher net-
work to assign pseudo-labels to unlabeled samples, which

are then used to train a student network. Similarly, MPL [6]
uses a teacher network to pseudo-label unlabeled images
for a student network. The student then performs an up-
date by minimizing its prediction error with respect to the
teacher’s pseudo-label. Subsequently, the student is evalu-
ated on a mini-batch of labeled samples, and the teacher net-
work is updated using a meta-learning loss based on the stu-
dent’s evaluation performance. In MPL, the overall teacher
update consists of the combination of the student’s meta-
learning loss plus a separate UDA loss. After self-training,
the MPL student model is subsequently fine-tuned on the
labeled samples using a standard cross-entropy loss.

There is also the Co-training framework [22] which
bears a coarse resemblance to the self-training procedure,
but posseses notable differences. Specifically, Co-training
learns a separate feature extractor on each (conditionally in-
dependent) view of the data, combines the predictions of the
different feature extractors, and alternates between pseudo-
labeling a subset of the data and training on the generated
pseudo-labels.

Few-shot learning. In few-shot classification, a network
must be adapted to learn to recognize new classes when
given only a few labeled examples of these classes [23,
24, 25, 26]. One common approach, which is adopted by
Matching Networks [23] and Prototypical Networks [24],
is to learn a metric space to embed the data. A differen-
tiable nearest-neighbour classifier is then used in this space
to predict the class of a query point given some labeled
data-points in the support set [23, 24]. Although there are
few-shot approaches that learn entirely from unsupervised
data [27], the majority train using labeled data, which is in
contrast to the self-supervised approaches discussed next.

Self-supervised learning. Major advances have been
made in learning useful image representations from unla-
beled data. Some methods take the approach of incorporat-
ing domain-specific knowledge in the form of specific pre-
training tasks, such as solving jigsaws [28]. More recent
success has been achieved by contrasting multiple views of
an image [2, 29, 30], where the views come from different
random augmentations. Such methods aim to learn a map-
ping from images to a representation space such that differ-
ent views of the same image have similar representations.
Various approaches have been proposed to avoid the trivial
solution of collapsing all images to the same point, includ-
ing contrasting negative samples [2] and using Sinkhorn-
Knopp normalization [31, 3].

It has been demonstrated that self-supervised pre-
training produces image representations that can be lever-
aged effectively for semi-supervised learning [1]. Con-
trastive self-supervised pre-training generally benefits from
training with very large batch sizes, containing sufficiently

8444



many positive and negative examples, and consequently
is very computationally expensive, e.g., requiring between
800–1000 epochs of pre-training to learn state-of-the-art
representations on ImageNet. Some recent works have
demonstrated that the batch-size requirements can be re-
duced at the expense of maintaining an additional memory
bank [32, 29, 30, 4, 3]. Further performance benefits have
been obtained by distilling very large pre-trained teacher
models to smaller student models [1]. In contrast, PAWS
only trains with positive examples, and leverages available
annotated data during pre-training to significantly reduce
the amount of pre-training required.

3. Methodology

We consider a large dataset of unlabeled images D =
(xi)i2[1,N ] and a small support dataset of annotated images
S = (xsi, yi)i2[1,M ], with M ⌧ N .1 Our goal is to learn
image representations by leveraging both D and S during
pre-training. After pre-training with D and S , we fine-tune
the learned representations using only the labeled set S .

3.1. High-level Description

A schematic of the high-level pre-training approach is
shown in Figure 2. Given an image xi from D, we use a
random set of data augmentations to generate two views, an
anchor view x̂i, and an associated positive view x̂+

i . Learn-
ing proceeds by non-parametrically assigning soft pseudo-
labels to the anchor and positive view and subsequently
minimizing the cross-entropy H(·, ·) between them.

The soft pseudo-labels are generated using a differen-
tiable similarity-based classifier ⇡d that measures the simi-
larity of a given representation to those of a mini-batch of
labeled samples from the support set S , and outputs a (soft)
class label. We use a simple Soft Nearest Neighbours strat-
egy [33] for the similarity classifier ⇡d.

Connection to few-shot learning. The mini-batch of la-
beled samples is obtained by first sampling a subset of
classes and then sampling a few instances of each class.
This, along with the use of a soft nearest-neighbours strat-
egy is similar to approaches previously used for few-shot
classification [23]. However, unlike [23], we do not use
LSTMs or other mechanisms for encoding or accessing el-
ements of the support set, and furthermore, we never seek
to directly predict the labels of elements of the support set.
Rather, the support set is only used to assign pseudo-labels
to unlabeled image views, and the loss is only evaluated
with respect to the pseudo-labels assigned to the unlabeled
image views.

1Note that the images in the support set S may overlap with the images
in the dataset D.

x̂ fq z
pd

x̂s

ys

fq zs

ys

x̂+ fq z+

pd
//

prediction p

target p+

H(p+, p)

anchor
view

support
samples

positive
view

images representations

(soft)

pseudo-labels

Figure 2: PAWS. The method assigns soft pseudo-labels to an anchor view
of an image and an associated positive view, and subsequently minimizes
the cross-entropy H between them. The soft pseudo-labels are generated
using a differentiable similarity classifier ⇡d that measures the similarity
to a mini-batch of labeled support samples, and outputs a soft class distri-
bution. Positive views are created using data-augmentations of the anchor
view. Since the trivial collapse of all representations to a single vector
would lead to high-entropy predictions by the similarity classifier, sharp-
ening the target pseudo-labels is sufficient to eliminate all trivial solutions.

3.2. Detailed Methodology

Let x 2 Rn⇥(3⇥H⇥W ) denote a mini-batch of n an-
chor image views, and let x+ 2 Rn⇥(3⇥H⇥W ) denote the
associated n positive image views. Similarly, let xS 2
Rm⇥(3⇥H⇥W ) denote a mini-batch of m support images
drawn from S with one-hot class labels yS 2 Rm⇥K , where
K is the number of classes.

Encoder. Given a parameterized encoder, denoted by f✓ :
R3⇥H⇥W ! Rd, let z 2 Rn⇥d and z+ 2 Rn⇥d denote
the representations computed from x and x+, respectively,
and let zS 2 Rm⇥d denote the m support representations
computed from xS . In our experiments below, the encoder
will be the trunk of a deep residual network [34]. The ith

representation in the mini-batch z is written as a row-vector
zi 2 R1⇥d, and its associated positive view in the mini-
batch is denoted z+

i ; i.e., zi = f✓(xi) and z+
i = f✓(x

+
i ).

For a scalar-valued similarity function d(·, ·) � 0, the simi-
larity classifier ⇡d(·, ·) is given by

⇡d(zi, zS) =
X

(zsj ,yj)2zS

 
d(zi, zsj)P

zsk2zS
d(zi, zsk)

!
yj

where yj is the one-hot ground truth label vector associated
with the jth row vector zsj from zS .

8445



Similarity metric and predictions. In this work, we take
the similarity metric d(a, b) to be exp(aT b/kakkbk⌧), the ex-
ponential temperature-scaled cosine. For L2-normalized
representations, the similarity classifier ⇡d(·, ·) can be con-
cisely written as

pi := ⇡d(zi, zS) = �⌧ (ziz
>
S )yS ,

where �⌧ (·) is the softmax with temperature ⌧ > 0, and
pi 2 [0, 1]K is the prediction for representation zi.2 The
positive view predictions p+

i are calculated similarly from
representations z+

i .
To avoid representation collapse, rather than contrast

negative samples or incorporate Sinkhorn-Knopp normal-
ization, we compare the prediction of one view with the
sharpened prediction of the other view. We define the sharp-
ening function ⇢(·) with temperature T > 0 as

[⇢(pi)]k :=
[pi]k

1/T

PK
j=1 [pi]j

1/T
, k = 1, . . . , K.

Sharpening the targets encourages the network to produce
confident predictions. As will be clear in Section 4, sharp-
ening the targets is provably sufficient to eliminate collaps-
ing solutions in the PAWS framework. Empirically, we have
observed that training without sharpening can result in col-
lapsing solutions.

Note that in the case where the support set contains only
one instance per sampled class, sharpening the target pre-
dictions is equivalent to using a lower temperature in the
cosine similarity between the unlabeled representation and
support representations. However, when the sampled sup-
port set contains more than one instance per sampled class,
then sharpening the target predictions is actually different
from adjusting the cosine temperature. In this case, it is
preferable to sharpen the target predictions rather than use a
different temperature in the cosine similarity, since chang-
ing the cosine temperature can significantly affect the accu-
racy of the similarity classifier ⇡d.

Training objective. To train the encoder, we penalize
when the predictions pi and p+

i of two views of the same
image are different. As mentioned above, we compare the
prediction of one view with the sharpened prediction of the
other view; i.e., H(⇢(pi), p

+
i ) + H(⇢(p+

i ), pi).
We also incorporate a regularization term to encour-

age the image view representations to utilize the full set
of classes represented in the support set. Let p :=
1
2n

Pn
i=1

�
⇢(pi) + ⇢(p+

i )
�

denote the average of the sharp-
ened predictions across all unlabeled representations. The

2Specifically, given a vector a 2 RK , the softmax �⌧ (a) 2 [0, 1]K is
defined as [�⌧ (a)]k :=

exp(ak/⌧)PK
j=1 exp(aj/⌧)

for k = 1, . . . , K.

regularization term, which we refer to as mean entropy max-
imization (ME-MAX), seeks to maximize the entropy of p,
denoted H(p). That is, while the individual predictions
are encouraged to be confident, the average prediction is
encouraged to be close to the uniform distribution. The
ME-MAX regularizer has previously been used in the dis-
criminative unsupervised clustering community for balanc-
ing learned cluster sizes (see, e.g., [35]).

Thus, the overall objective to be minimized when train-
ing the parameters ✓ of the encoder f✓ is

1

2n

nX

i=1

�
H(⇢(p+

i ), pi) + H(⇢(pi), p
+
i )
�
�H(p). (1)

Note that we only differentiate the cross-entropy loss terms
with respect to the predictions pi and p+

i , and not the sharp-
ened targets ⇢(pi) and ⇢(p+

i ).
The discussion so far has assumed that we only generate

two views for each unlabeled image. One could generate
more than two views, in which case we sum the loss over
all views and take the target to be the average prediction
across the other views of the same image.

The proposed approach seeks to improve on existing
self-supervised approaches for semi-supervised learning
by: (i) efficiently using available task information, and (ii)
addressing representation collapse. On the first issue, since
the similarity classifier is differentiable, we evaluate gradi-
ents with respect to the labeled samples, but do not directly
optimize prediction accuracy on the ground truth labels to
avoid overfitting. On the second issue, since the trivial col-
lapse of all representations to a single vector would lead to
high-entropy predictions by the similarity classifier, sharp-
ening the target pseudo-labels is sufficient to eliminate all
trivial solutions as we will demonstrate in Section 4.

Neural architectures with external memory. PAWS can
be interpreted as a neural network architecture with an ex-
ternal memory. Typically, in those architectures, a differ-
entiable neural attention mechanism is used to read and ac-
cess a memory space which contains a set of elements that
are relevant to the task at hand. In PAWS, the support rep-
resentations zS of labeled images characterize the external
memory of the network, while the non-parameteric classi-
fier ⇡d corresponds to the soft-attention operation that re-
trieves memory elements given a query zi. From this per-
spective, PAWS optimizes an encoder network such that two
views of the same image activate the same elements in the
memory. Moreover, by randomly sampling a subset of la-
beled images to use as the support set at each iteration,
PAWS avoids developing a strong dependence on any par-
ticular elements in the memory.

Assimilation & Accommodation. PAWS also has con-
nections to Piaget’s Constructivist learning theory of assim-

8446



ilation & accommodation [36], which provided grounding
for work in cybernetics [37, Chapter VII].3 At the heart of
Constructivism is the idea that every individual possesses
representations relating to distinct semantic concepts that
are updated through the process of assimilation and accom-
modation. During assimilation, the mind adapts its repre-
sentations of new observations to fit its past observations,
while during accommodation, the representations of past
observations are updated to account for the new observa-
tions (cf. Appendix G). In the PAWS procedure, backprop-
agating with respect to the image views can be seen as a
process of assimilation, ensuring that new observations (the
image views) are consistent with the current schemata (the
support representations). Similarly, backpropagating with
respect to the support samples can be seen as a process
of accommodation, ensuring that the current schemata (the
support representations) are effective at describing the new
observations (the image views).

4. Theoretical Guarantees
Next we show that PAWS is guaranteed to avoid the triv-

ial collapse of representations under the following assump-
tions.

Assumption 1 (Class Balanced Sampling). Each mini-
batch of labeled support samples contains an equal number
of instances from each of the sampled classes.

Assumption 2 (Target Sharpening). The target p+ is sharp-
ened, such that it is not equal to the uniform distribution.

Proposition 1 (Non-Collapsing Representations). Suppose
Assumptions 1 and 2 hold. If f✓ is such that the rep-
resentations collapse, i.e., zi = z for all zi 2 S , then
kr✓H(p+, p)k > 0.

Proof. Since z = zi for all zi 2 S , it holds that d(z, zi) =
d(z, zj) for all zi, zj 2 S . Therefore p := ⇡d (z, S) =
1/n
P

(zi,yi)
yi, where yi is the one-hot class label for the

representation zi. Let K denote the number of classes rep-
resented in the mini-batch of support samples. By Assump-
tion 1, since the mini-batch of support samples contains an
equal number of instances from each sampled class, it fol-
lows that there are n/K instances for each of the K repre-
sented classes. Therefore, the prediction p further simpli-
fies to 1

n

�
1K

n
K

�
= 1

K 1K, the uniform distribution over the
K classes. However, by Assumption 2, the targets p+ are
sharpened such that they are not equal to the uniform dis-
tribution. Therefore, p 6= p+, from which it follows that
krH(p+, p)k > 0. ⌅

3This connection did not readily carry-over to Artificial Intelligence
(AI) in the 70’s due to the largely symbolic nature of AI approaches at the
time; e.g., it was not obvious how to represent the near infinite variations
of a hand-drawn curve in a single concise representation; an issue which
is now largely resolved by gradient-based learning and modern neural net-
work architectures.

Proposition 1 provides a theoretical guarantee that the
proposed method is immune to the trivial collapse of repre-
sentations. It is also straightforward to extend Proposition 1
to accommodate certain popular transformations of the la-
bels yi, such as label smoothing. In short, the underlying
principle is that collapsing representations result in high en-
tropy predictions under the non-parametric similarity clas-
sifier, but the targets are always low-entropy (because we
sharpen them), and so collapsing all representations to a sin-
gle vector is not a stationary point of the training dynamics.

Note that the sharpening function defined in Section 3
may not always satisfy Assumption 2, unless one introduces
a simple tie-breaking mechanism. However, in practice,
such a mechanism is not necessary as the targets never be-
come uniform (since we apply sharpening from the start of
the training). There are also alternative strategies to guaran-
tee the non-collapse of representations without making the
target-sharpening assumption, such as by directly using the
available class labels for prediction or adding an entropy-
minimization term; see Appendix E for more details.

5. Implementation Details

We first pre-train a network using PAWS, and then fine-
tune the learned representations for the classification task
using only the labeled samples. We also report results
using the pre-trained representations directly in a nearest-
neighbour classifier.

We adopt similar hyper-parameter settings that have pre-
viously been reported in the self-supervised literature [1, 2,
32, 3, 4]. Specifically, for pre-training, we use the LARS
optimizer [38] with a momentum value of 0.9, weight de-
cay 10�6, cosine-similarity temperature of ⌧ = 0.1, and
batch-size of 4096. We linearly warm-up the learning-rate
from 0.3 to 6.4 during the first 10 epochs of pre-training,
and decay it following a cosine schedule [39] thereafter.

To construct the different image views, we use the multi-
crop strategy from SwAV [3], generating two large crops
(224 ⇥ 224), and six small crops (96 ⇥ 96) of each unla-
beled image. Each small crop has two positive views (the
two large crops), while each large crop has only one pos-
itive view (the other large crop).4 To construct the sup-
port mini-batch at each iteration, we also randomly sam-
ple 6720 images, comprising 960 classes and 7 images per
class, from the labeled set. For all sampled images (both un-
labeled images and support images), we apply the SimCLR
data-augmentations [2, 1], specifically random crop, hori-
zontal flip, color distortion, and Gaussian blur. For the sam-
pled support images, we also apply label smoothing with a
smoothing factor of 0.1. Lastly, for the target sharpening,
we use a temperature of T = 0.25.

4The target for the small crops is the average of the large crop predic-
tions.

8447



Following previous self-supervised methods, the en-
coder f✓ in our experiments is a ResNet trunk with a 3-
layer MLP projection head [1, 4]. To facilitate comparison
with BYOL [4], we also include a 2-layer MLP prediction
head, g⇣ , after f✓, before computing the anchor predictions.
Specifically, the representations z and zS are fed into g⇣
before computing their cosine similarity. While this pre-
diction head is included in our default setup for consistency
with previous work, the ablation experiments below (see Ta-
ble 6), show that PAWS also works well without it. Similar
to previous self-supervised methods [1, 2, 4], we also use
global batch normalization during pre-training, and exclude
the bias and batch-norm parameters from weight decay and
LARS adaptation.

After pre-training, we fine-tune a linear classifier from
the first layer of the projection head in the encoder f✓, and
follow the evaluation protocol of BYOL [4]. Specifically,
we simultaneously fine-tune the encoder/classifier weights
using the available labeled samples and a standard super-
vised cross-entropy loss. See Appendix A for more details,
and Section 7 for ablation experiments.

We also report the results of using the pre-trained rep-
resentations directly in a nearest-neighbour classifier (i.e.,
without fine-tuning). Specifically, the nearest-neighbour
classifier compares the representations of new query images
to those of the available labeled data. We refer to this ap-
proach as PAWS-NN.

6. Main Results
In this section we analyze the features learned by PAWS

on ImageNet [41]. The standard procedure for evaluating
semi-supervised methods on ImageNet is to assume that
some percentage of the data is labeled, and treat the rest of
the data as unlabeled. For reproducibility, we use the same
1% and 10% data splits used in previous works [2, 1].

While we assume that the overall support set contains all
relevant labels for the downstream task, we believe this is
reasonable since the overall (labeled) support set is small
and can be more easily curated. Exploring performance in
settings with class imbalance or partial coverage are beyond
the scope of this paper and are left as future work.

Baselines. We focus on comparing PAWS to other meth-
ods in the literature that train using the same architectures
to make a fair comparison. We do not include comparisons
with results that first train a larger teacher model and then
distill it to a smaller student [1]. For reference, the best
reported result in the literature for a ResNet-50 and 1% or
10% labeled data are 73.9% and 77.5% top-1, achieved by
distilling from a ResNet-152 with 3⇥ wider channels and
selective kernels [1]. We impose this constraint on the base-
lines to provide a fair comparison and better isolate what
factors contribute to performance improvements. It is know

ResNet-50

Top 1
Method Epochs 1% 10%
Methods using label propagation:

UDA [15] 800 – 68.1
FixMatch [11] 300 – 71.5
MPL [6] ?800 – 73.9

Methods using only representation learning:

BYOL [4] 1000 53.2 68.8
SwAV [3] 800 53.9 70.2
SwAV+CT [40] 400 – 70.8
SimCLRv2 [1] 800 57.9 68.4
SimCLRv2 (+Self.Dist.) [1] 1200 60.0 70.5
PAWS 100 63.8 73.9
PAWS 200 66.1 75.0
PAWS 300 66.5 75.5

Non-parametric classification (no fine-tuning):

PAWS-NN 100 61.5 71.0
PAWS-NN 200 63.2 71.9
PAWS-NN 300 64.2 73.1

Table 1: (ResNet-50, ImageNet) *For label propagation methods, the
number of epochs is counted with respect to the unsupervised mini-
batches. *For Meta Pseudo-Labels (MPL), the number of epochs only
includes the student-network updates, and does not count the additional
500,000 teacher-network updates (computationally equivalent to an addi-
tional 800 epochs) that must happen sequentially (not in parallel) with the
student updates. PAWS-NN refers to performing nearest-neighbour classifi-
cation directly using the PAWS-pretrained representations, with the labeled
training samples as support, while PAWS refers to fine-tuning a classifier
using the available labeled data after PAWS-pretraining.

Additional ResNet Architectures

Top 1
Method Architecture Epochs 1% 10%
BYOL [4] ResNet-50 (2⇥) 1000 62.2 73.5
SimCLRv2 [1] ResNet-50 (2⇥) 800 66.3 73.9
PAWS ResNet-50 (2⇥) 100 68.2 77.0
PAWS ResNet-50 (2⇥) 200 69.6 77.8

SimCLR [2] ResNet-50 (4⇥) 1000 63.0 74.4
BYOL [4] ResNet-50 (4⇥) 1000 69.1 75.7
PAWS ResNet-50 (4⇥) 100 69.8 78.5
PAWS ResNet-50 (4⇥) 200 69.9 79.0

Table 2: Semi-supervised classification results on ImageNet when training
with larger ResNet architectures.

that using distillation in conjunction with larger architec-
tures can result in improvements for any method, and we
leave further investigation of distilling larger models pre-
trained with PAWS for future work.

Comparison to self-supervised pre-training. We com-
pare PAWS to other self-supervised pre-training ap-

8448



proaches, namely SimCLRv2 [1], BYOL [4], SwAV [3],
and SwAV+CT [40], which simply adds a supervised
contrastive-task loss to SwAV pre-training. Results are re-
ported in Table 1 for a ResNet-50 encoder network and in
Figure 1. PAWS outperforms all other self-supervised rep-
resentation learning approaches while using roughly 10⇥
fewer pre-training epochs. Specifically, with just 100
epochs of pre-training, PAWS surpasses the state-of-the-art
in self-supervised representation learning. With 200 epochs
of pre-training, PAWS further improves upon this result and
achieves 75% top-1 accuracy in the 10% label setting and
66% top-1 in the 1% label setting, setting a new state-of-
the-art for a ResNet-50. Using the pre-trained representa-
tions directly in a nearest-neighbour classifier (PAWS-NN)
also performs surprisingly well—surpassing all other self-
supervised representation learning methods—although fine-
tuning increases top-1 accuracy by 1–3%. Because PAWS
with fine-tuning consistently achieves superior results com-
pared to PAWS-NN, we only report results for PAWS for the
remainder of the paper.

By reducing the number of pre-training epochs, PAWS
can obtain significant computational savings compared to
other approaches. We illustrate this observation by com-
paring PAWS training time on 64 NVIDIA V100-16G GPUs
to the self-supervised SwAV method trained on identical
hardware [3]. Pre-training with SwAV for 800 epochs re-
quires 49.6 hours, while pre-trianing with PAWS for 100
epochs only requires 8.2 hours, and results in a +9.9% im-
provement in top-1 accuracy in the 1% label setting, and
a +3.7% improvement in top-1 accuracy in the 10% label
setting. In contrast to SimCLRv2 and BYOL, the PAWS
method does not use an additional momentum encoder or
a memory buffer, and thereby avoids this added computa-
tional and memory overhead, but may also benefit (in terms
of final model accuracy) by incorporating such innovations.

Comparison to semi-supervised methods. We also
compare PAWS to other semi-supervised learning methods,
namely UDA [15], FixMatch [11] and MPL [6]. Results
are reported in Table 1 for a ResNet-50 encoder network in
the 10% label setting. MPL holds the current state-of-art in
semi-supervised learning, and simultaneously trains a stu-
dent and teacher network for 800 epochs by adding a meta-
learning loss and a teacher network to the UDA objective.
PAWS outperforms MPL, the state-of-art semi-supervised
learning approach, while requiring significantly fewer train-
ing epochs.

Impact of larger architectures. We examine the impact
of training larger encoder networks with PAWS pre-training.
Specifically, we pre-train ResNet-50 encoders with width
multipliers of 2⇥ and 4⇥ in Table 2. As expected, increas-
ing the model capacity improves semi-supervised perfor-

mance. Specifically, pre-training a Resnet-50 (4⇥) for 200
epochs with PAWS achieves 69.9% top-1 accuracy in the 1%
label setting and 79.0% top-1 accuracy in the 10% label
setting. We expect increasing the model capacity further
to yield additional performance improvements. In general,
results with the larger models are consistent with previous
observations; PAWS pre-training outperforms other meth-
ods using similar architectures, while requiring significantly
fewer pre-training epochs.

7. Ablation Study
Learning during pre-training. To further examine the
behaviour of PAWS, we examine some metrics related to
model quality during pre-training in Figure 3. Figure 3a
shows the training cross-entropy loss when pre-training for
100 epochs. As expected, this loss decreases during train-
ing, indicating that the model is learning to assign similar
pseudo-labels to different views of the same image.

Figure 3b shows two additional losses computed us-
ing the sampled mini-batch and support set during train-
ing. Here, the instance discrimination loss is the normal-
ized temperature-scaled cross-entropy loss [2] computed
using only unlabeled samples in the minibatch, and the
classification loss is supervised noise-contrastive estimation
loss [40, 42] computed using only labeled samples in the
support set. Note that these losses are only computed and
reported to better understand PAWS pre-training, and they
are not used to train the model. The decreasing instance
discrimination loss (top) indicates that the model is learning
representations that are invariant to the data augmentations
used to construct different views. The decreasing classifica-
tion loss (bottom) also indicates that the model is learning
to correctly classify labeled examples in the support set, de-
spite not directly using labeled examples as targets.

Support set construction. PAWS pre-training requires
specifying how to sample a support set. At each iteration, a
support set is sampled by first sampling a subset of the K
classes, and then sampling a certain number of images per
class. We ablate the effect of these two parameters in Ta-
ble 3. Since we experiment with ImageNet, we can sample
up to 1000 classes. Overall, we observe that using a larger
support set consistently improves performance. Sampling
more classes and fewer samples per class is better than the
contrary (cf. bottom two rows). Note that no result is re-
ported for 1000 classes and 16 images per class for the case
of 1% labeled data, since in that case there are only 12811
labeled images in total.

Small batch training. Our default PAWS implementation
runs on 64 GPUs, with a batch-size of 4096 unlabeled im-
ages and a supervised support mini-batch of 6720 images,

8449



0 20 40 60 80 100
2

4

6

Pre-training Epochs

Lo
ss

PAWS Training Cross-Entropy Loss

(a)

0 20 40 60 80 100

4
6
8

Pre-training Epochs

Lo
ss

Instance Discrimination (Reporting Only)

0 20 40 60 80 100
2

4

6

Pre-training Epochs

Lo
ss

Classification (Reporting Only)

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pre-training Epochs

Avg. Confidence: 1
2n Â2n

i=1 max
k2[K]

[p+
i ]k

(c)

Figure 3: Reporting various metric during training of a ResNet-50 on ImageNet, when 10% of the data is labeled. Fig.3a Cross-entropy loss between anchor
view and (target) positive view during training. As expected, this loss decreases during training, indicating that the model is learning to assign similar
pseudo-labels to different views of the same image. Fig.3b Additional losses computed with the sampled mini-batch and support-set during training for
reporting purposes only. Specifically, no gradient is computed with respect to these losses. The decrease in the instance discrimination loss during training
suggests that the model is learning representations that are invariant to the data-augmentations used for training. The decrease in the classification loss
indicates that the model is learning to correctly classify the labeled support samples. Fig.3c The average confidence of the argmax target prediction during
training. As training progresses, the model’s target predictions become increasingly confident.

Top 1
Classes Imgs. per Class 1% 10%

1000 16 – 74.5
1000 12 63.9 74.2
960 7 63.8 73.9
960 4 63.7 72.0
448 8 61.8 70.1

Table 3: Support Set. Ablating the composition of the sampled support
mini-batches when training a ResNet-50 on ImageNet for 100 epochs. Our
default setup is shaded in green. Increasing the size of the support set im-
proves performance. However, when sampling a fixed number of instances,
it is preferable to sample many classes with a few images per class, rather
than few classes with many images per class.

comprising 960 classes and 7 images per class. We observe
that PAWS can also be effectively trained with small batch
sizes as well. Table 4 ablates the effect of the batch size
when training on 8 NVIDIA V100-16G GPUs, when 10% of
the training set is labeled. For this small-batch experiment,
we set the unsupervised batch size to 256 and attempt to use
as large a support set as is possible on 8 GPUs, since the ab-
lation in Table 3 shows that larger supports lead to better
performance. Following a roughly square-root scaling of
the learning-rate (relative to the large-batch default setup),
we linearly warmup the learning-rate from 0.3 to 1.2 during
the first 10 epochs of pre-training, and decay it following a
cosine schedule thereafter. We also disable ME-MAX reg-
ularization for the small batch experiment, since it is not
obvious, a priori, that such regularization will be effective
for small batches. All other settings are kept fixed. Table 4
demonstrates that PAWS can still achieve good performance
with small batches after only 100 epochs of pre-training on
8 GPUs.

Support Set
GPUs Batch Size Classes Imgs. per Class Top 1
8 V100 256 560 3 70.2
64 V100 4096 448 8 70.1
64 V100 4096 960 7 73.9

Table 4: Batch Size. Examining the effect of the batch size when training
a ResNet-50 on ImageNet for 100 epochs and 10% of the training set is
labeled. PAWS still achieves good performance after only 100 epochs of
pre-training with small batch sizes on 8 NVIDIA V100-16G GPUs.

8. Discussion

By leveraging a small labeled support set during pre-
training, PAWS achieves competitive classification accu-
racy for semi-supervised problems and requires signifi-
cantly less training than previous works. PAWS also prov-
ably avoids collapsing solutions, a common challenge in
self-supervised approaches.

PAWS can be interpreted as a neural network architecture
with an external memory that is trained using the assimila-
tion & accommodation principle [36]. During assimilation,
PAWS updates the representations of new observations so
that they are easily described by its external memory (or
schemata), while during accommodation, PAWS updates its
external memory to account for the new observations.

The use of a supervised support set has some practical
advantages as well, since it enables the model to learn effi-
ciently. However, it remains an interesting question to see if
one can learn competitive representations in this framework
using only instance supervision and more flexible memory
representations. We plan to investigate those directions in
future work.

8450



References
[1] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hin-

ton, “Big self-supervised models are strong semi-supervised
learners,” arXiv preprint arXiv:2006.10029, 2020. 1, 2, 3, 5,
6, 7, 11, 15, 16

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A sim-
ple framework for contrastive learning of visual representa-
tions,” preprint arXiv:2002.05709, 2020. 1, 2, 5, 6, 7, 14

[3] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski,
and A. Joulin, “Unsupervised learning of visual fea-
tures by contrasting cluster assignments,” arXiv preprint
arXiv:2006.09882, 2020. 1, 2, 3, 5, 6, 7, 12

[4] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G.
Azar, et al., “Bootstrap your own latent: A new approach to
self-supervised learning,” arXiv preprint arXiv:2006.07733,
2020. 1, 2, 3, 5, 6, 7, 11, 13

[5] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk,
and Q. V. Le, “Rethinking pre-training and self-training,”
arXiv preprint arXiv:2006.06882, 2020. 1, 2

[6] H. Pham, Q. Xie, Z. Dai, and Q. V. Le, “Meta pseudo labels,”
arXiv preprint arXiv:2003.10580, 2020. 1, 2, 6, 7, 15

[7] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training
with noisy student improves imagenet classification,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10687–10698, 2020. 1, 2

[8] A. Tarvainen and H. Valpola, “Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results,” arXiv preprint
arXiv:1703.01780, 2017. 1, 2, 15

[9] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,
A. Oliver, and C. A. Raffel, “Mixmatch: A holistic approach
to semi-supervised learning,” in Advances in Neural Infor-
mation Processing Systems, pp. 5050–5060, 2019. 1, 2, 15

[10] D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, K. Sohn,
H. Zhang, and C. Raffel, “Remixmatch: Semi-supervised
learning with distribution alignment and augmentation an-
choring,” arXiv preprint arXiv:1911.09785, 2019. 1, 2, 15

[11] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D.
Cubuk, A. Kurakin, H. Zhang, and C. Raffel, “Fixmatch:
Simplifying semi-supervised learning with consistency and
confidence,” arXiv preprint arXiv:2001.07685, 2020. 1, 2, 6,
7, 15

[12] Y. Grandvalet and Y. Bengio, “Entropy regularization,”
Semi-supervised learning, pp. 151–168, 2006. 2, 16

[13] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual
adversarial training: a regularization method for supervised
and semi-supervised learning,” IEEE transactions on pattern
analysis and machine intelligence, vol. 41, no. 8, pp. 1979–
1993, 2018. 2, 15

[14] V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, Y. Ben-
gio, and D. Lopez-Paz, “Interpolation consistency
training for semi-supervised learning,” arXiv preprint
arXiv:1903.03825, 2019. 2, 15

[15] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V.
Le, “Unsupervised data augmentation,” arXiv preprint
arXiv:1904.12848, 2019. 2, 6, 7, 15

[16] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l:
Self-supervised semi-supervised learning,” in Proceedings
of the IEEE international conference on computer vision,
pp. 1476–1485, 2019. 2

[17] M. Berman, H. Jégou, A. Vedaldi, I. Kokkinos, and
M. Douze, “Multigrain: a unified image embedding for
classes and instances,” arXiv preprint arXiv:1902.05509,
2019. 2

[18] D.-H. Lee, “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in In
International Conference on Machine Learning Workshop,
2013. 2

[19] H. Scudder, “Probability of error of some adaptive pattern-
recognition machines,” IEEE Transactions on Information
Theory, vol. 11, no. 3, 1965. 2

[20] D. Yarowsky, “Unsupervised word sense disambiguation ri-
valing supervised methods,” in In 33rd Annual Meeting of
the Association for Computational Linguistics, 1995. 2

[21] E. Riloff, “Automatically generating extraction patterns from
untagged text,” in In Proceedings of the National Conference
on Artificial Intelligence, 1996. 2

[22] A. Blum and T. Mitchell, “Combining labeled and unlabeled
data with co-training,” in Proceedings of the eleventh annual
conference on Computational learning theory, pp. 92–100,
1998. 2

[23] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra, “Matching networks for one shot learning,”
arXiv preprint arXiv:1606.04080, 2016. 2, 3

[24] J. Snell, K. Swersky, and R. S. Zemel, “Prototyp-
ical networks for few-shot learning,” arXiv preprint
arXiv:1703.05175, 2017. 2

[25] S. Ravi and H. Larochelle, “Optimization as a model for few-
shot learning,” 2016. 2

[26] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Ger-
shman, “Building machines that learn and think like people,”
Behavioral and brain sciences, vol. 40, 2017. 2

[27] K. Hsu, S. Levine, and C. Finn, “Unsupervised learning via
meta-learning,” arXiv preprint arXiv:1810.02334, 2018. 2

[28] I. Misra and L. van der Maaten, “Self-supervised learning
of pretext-invariant representations,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 6707–6717, 2020. 2

[29] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momen-
tum contrast for unsupervised visual representation learn-
ing,” arXiv preprint arXiv:1911.05722, 2019. 2, 3

[30] X. Chen, H. Fan, R. Girshick, and K. He, “Improved base-
lines with momentum contrastive learning,” arXiv preprint
arXiv:2003.04297, 2020. 2, 3

[31] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “Self-labelling
via simultaneous clustering and representation learning,”
arXiv preprint arXiv:1911.05371, 2019. 2

8451



[32] X. Chen and K. He, “Exploring simple siamese representa-
tion learning,” arXiv preprint arXiv:2011.10566, 2020. 3, 5,
11, 13

[33] R. Salakhutdinov and G. Hinton, “Learning a nonlinear em-
bedding by preserving class neighbourhood structure,” in
Artificial Intelligence and Statistics, pp. 412–419, PMLR,
2007. 3

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 770–
778, 2016. 3

[35] A. Joulin and F. Bach, “A convex relaxation for weakly su-
pervised classifiers,” arXiv preprint arXiv:1206.6413, 2012.
4

[36] J. Piaget, “Cognitive development in children: Piaget,” Jour-
nal of research in science teaching, vol. 2, no. 3, pp. 176–
186, 1964. 5, 8

[37] M. A. Boden, Jean Piaget. Viking Adult, 1980. 5

[38] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of
convolutional networks,” arXiv preprint arXiv:1708.03888,
2017. 5

[39] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient de-
scent with warm restarts,” arXiv preprint arXiv:1608.03983,
2016. 5

[40] M. Assran, N. Ballas, L. Castrejon, and M. Rabbat, “Re-
covering petaflops in contrastive semi-supervised learning
of visual representations,” arXiv preprint arXiv:2006.10803,
2020. 6, 7, 15

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual
recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015. 6, 13

[42] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised con-
trastive learning,” arXiv preprint arXiv:2004.11362, 2020. 7

[43] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers
of features from tiny images,” 2009. 13, 15

[44] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-
Paz, “mixup: Beyond empirical risk minimization,” arXiv
preprint arXiv:1710.09412, 2017. 14

[45] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cut-
mix: Regularization strategy to train strong classifiers with
localizable features,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pp. 6023–6032,
2019. 14

[46] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V.
Le, “Autoaugment: Learning augmentation strategies from
data,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 113–123, 2019. 14

[47] S. Laine and T. Aila, “Temporal ensembling for semi-
supervised learning,” arXiv preprint arXiv:1610.02242,
2016. 15

[48] J. Jackson and J. Schulman, “Semi-supervised learning by
label gradient alignment,” arXiv preprint arXiv:1902.02336,
2019. 15

[49] X. Wang, D. Kihara, J. Luo, and G.-J. Qi, “Enaet: Self-
trained ensemble autoencoding transformations for semi-
supervised learning,” arXiv preprint arXiv:1911.09265,
2019. 15

[50] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2016. 15

[51] M. A. Boden, “Artificial intelligence and piagetian theory,”
Synthese, pp. 389–414, 1978. 17

[52] J. Piaget, “Biology and knowledge: An essay on the relations
between organic regulations and cognitive processes.,” 1971.
17

[53] J. S. Bruner, “Reply to individual and collective problems in
the study of thinking,” Annals of the New York Academy of
Sciences, vol. 91, no. 1, pp. 22–37, 1961. 17

8452


