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Abstract

In video highlight detection, the goal is to identify the
interesting moments within an unedited video. Although
the audio component of the video provides important cues
for highlight detection, the majority of existing efforts fo-
cus almost exclusively on the visual component. In this pa-
per, we argue that both audio and visual components of a
video should be modeled jointly to retrieve its best moments.
To this end, we propose an audio-visual network for video
highlight detection. At the core of our approach lies a bi-
modal attention mechanism, which captures the interaction
between the audio and visual components of a video, and
produces fused representations to facilitate highlight detec-
tion. Furthermore, we introduce a noise sentinel technique
to adaptively discount a noisy visual or audio modality. Em-
pirical evaluations on two benchmark datasets demonstrate
the superior performance of our approach over the state-of-
the-art methods.

1. Introduction

We have witnessed an explosion of online video con-
tent in recent years, which may be partly attributed to the
rapid adoption of video based social networks like Insta-
gram and TikTok. This has led to increasing demands
for video highlight detection, which aims to automatically
detect interesting moments (called “highlights”) within a
video. Highlight detection is important due to its broad
range of downstream applications including video summa-
rization, recommendation, editing, and browsing. In con-
sequence, there has been significant progress in the field in
recent years [37, 12, 46, 50, 17, 49, 7, 44, 31, 15, 42].

However, the majority of existing research efforts focus
on visual highlight detection. Audio-visual highlight de-
tection is largely unexplored territory. In this paper, we
posit that interesting moments can be identified from both
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Figure 1. Audio-visual highlight detection: audio can be informa-
tive about which part of the video is a highlight. In this video, a
car crashes during a race in front of a large crowd. The highlight
(in green) is the crash, and we also show the top three audio class
probabilities from a pre-trained audio classification network [22].
The class probabilities (speech, cheering, and crowd) show that the
cheering and crowd noise dies out during the crash, while talking
increases. Intuitively, we understand that if people stop cheering
suddenly, something must have happened. In this work, we learn
to utilize such audio cues.

visual and audio information. For example, Fig. 1, shows
a video of a car crashing during a race. We may identify
the interesting part of the video by seeing the crash. On the
other hand, hearing people stop cheering and start talking
could also be an indicator that the moment is interesting.
While we can process the visual and audio information sep-
arately, our insight is that they also interact with each other.
We can imagine that if we were in the crowd depicted in
Fig. 1, we would look to see what had happened if every-
body suddenly stopped cheering. It can also work the other
way around: what we hear can reinforce our beliefs that
the given moment is interesting. These observations moti-
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vate us to propose an approach that jointly learns from vi-
sual and audio information to detect highlights in videos. It
consists of two different attention mechanisms: a unimodal
self-attention mechanism that models the relationships be-
tween moments belonging to the same modality; and a bi-
modal attention mechanism that models the interaction be-
tween the two modalities.

Furthermore, we impart the ability to ignore a modality
on our model. Intuitively, if we hear something interesting,
but do not see anything interesting when we look, we would
like to be able to ignore what we hear. In addition, if we do
not hear anything of interest, it is also not worth looking.
Inspired by the visual sentinel [24], we introduce a noise
sentinel in the bimodal attention mechanism that allows our
model to “look-away” from a modality by attending to the
noise sentinel instead.

The proposed attention mechanisms and the noise sen-
tinel are novel and effective as empirically indicated in the
ablation studies. We demonstrate our model’s superior per-
formance on three well-known benchmarks, where our ap-
proach significantly outperforms the state-of-the-art meth-
ods.

2. Related Work
Video Highlight Detection: Early efforts in video high-

light detection mainly deal with sports videos [41, 45, 38].
Later works were proposed to deal with videos from social
media [37], as well as first-person videos [47].

Some works formulate highlight detection as a classifica-
tion problem [31], while it is also popular to formulate high-
light detection as a ranking problem [37, 7, 17, 12, 49, 42],
where a ranking network is trained to rank highlight clips
higher than non-highlight clips.

Recently, weakly-supervised highlight detection meth-
ods have been proposed [44, 15], where the training label
is only available at the entire video level. The work of [44]
takes advantage of the fact that clips from shorter videos
are more likely to be highlights to train a ranking network.
MN [15], on the other hand, proposes a multiple instance
ranking framework that learns to rank clips from a given
category higher than clips from other categories.

MN [15] is the only other work that proposes an audio-
visual framework. Their network operates independently
for each clip, and uses a variant of simple concatenation
to produce a fused audio-visual feature. In contrast, our
model can utilize the context within the entire video through
the self-attention and bimodal attention layers. In addition,
while their work assumes that audio is useful only as a com-
plementary feature to the visual features, we make no such
assumption, and allow each modality to modulate the other.

Video Summarization is a closely related task aimed
at producing a compact and cohesive summary of a given
video. Early works in video summarization are predomi-

nantly unsupervised [19, 20, 23, 25, 26, 27, 29, 34, 33, 57,
53], and as such, many rely on heuristics such as diversity
and representativeness to obtain a summary video.

Weakly supervised methods [30, 19, 20, 34, 28, 3, 32]
have also been developed to utilize video-level information.
Benefiting from the massive user tagging of online videos,
research efforts in supervised learning [9, 10, 11, 33, 51, 52,
56, 5] are also progressing rapidly.

Our work is influenced by the attention-based model
of [5] that operates on sequences of clips as potential high-
lights. Unlike their work, our work is multi-modal, and uses
a different formulation of the attention.

Multi-modal Learning: Recent progress has been made
in multi-modal learning in various fields such as salient
object detection [54, 55, 16], action recognition [6], and
speech recognition [1, 36]. It has been observed [43] that
simple fusion strategies often fail. We also observe in our
experiments that late and early fusion strategies are subopti-
mal, and propose the use of a bimodal attention layer which
captures the interaction between modalities.

Our work is also related to audio-visual speech recog-
nition [1, 36]. The work of [1] uses an attention network
but does not model the interplay between audio and visual
channels, instead the output of the previous decoding layer
is used as the query for both modalities. The work of [36]
considers a one-way relation where the audio can be used
to query the visual features, but not vice-versa. In contrast,
our model is symmetric, and allows the visual features to
query the audio features.

Visual Sentinel is a concept introduced in image caption
generation by [24]. The key idea is that caption generation
models do not always need to attend to the image: some
words like “and”,“of”, and “from” have no visual ground-
ing within images. Therefore, the visual sentinel [24] is
proposed as a “look-away” mechanism. When generating
words without visual grounding, their model learns to at-
tend to the visual sentinel instead of the image.

This inspires us to formulate a noise sentinel in our con-
text to automatically “look away” from a modality if it is
noisy. As we shall see in the experiments, this greatly im-
proves the empirical performance of our approach.

3. Our Approach
We show the overall architecture of our framework in

Fig. 2. We first split a video V into clips of a fixed length
(e.g. 100 frames), resulting in N clips. We characterize the
i-th clip by two vectors, vi for the visual features, and ai for
the audio features, where i ∈ 1, 2, ..., N . These visual and
audio features are extracted using pre-trained visual [13, 39]
and audio feature extractors [22]. Therefore, the input video
is sufficiently represented by two sets of feature vectors, the
visual {vi}Ni=1 and the audio features {ai}Ni=1. Moreover,
as explained in Fig. 2, the interactions among clips as well
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Figure 2. An overview of our framework. An input video is evenly split into clips of a fixed length, producing N total clips. The visual and
audio modalities of the i-th clip are then represented as vectors, vi and ai, respectively. For each modality, the relationship between clips
are tackled separately in the self-attention layer; this leads to the self-attended features vv

i for visual, and aa
i for audio. It is then fed into

the bimodal attention layers to model the cross-modality relationships, and produce the bimodally attended features va
i (audio attended

visual features) and av
i (visually attended audio features). A more detailed inspection of the bimodal attention layer is shown in Fig. 3.

Finally, the self-attended and bimodally attended features come together with a learned weighted sum, to produce the feature zi, which is
processed to output the final clip highlight score si for the i-th clip.

as between the visual and audio modalities are captured by
two different attention mechanisms, namely self-attention
and bimodal attention. For each modality, the self-attention
layer captures interactions among clips of the same modal-
ity. The output of both modalities are then fed to the two in-
put branches of the bimodal attention layers which capture
the interplay between the two modalities. These attended
features are subsequently fused and fed to a classifier which
produces a score si for the i-th clip, indicating whether this
clip is a highlight or not.
Unimodal Self-Attention. A given clip by itself is often
inadequate to determine whether it is a highlight; rather it is
beneficial to consider the relationship of this clip with other
clips in the video. The self-attention mechanism [40] and its
variants have been shown to be effective in modeling such
dependencies. Our self-attention mechanism is an adapta-
tion of the disentangled attention block [48] to our context.
Without loss of generality, we describe in what follows our
self-attention mechanism for the visual features, {vi}Ni=1.

Let us denote the visual self-attention relationship with
v → v (we attend from visual to visual features). We de-
note by Wq,v→v , Wk,v→v , and Wm,v→v linear projection
matrices, and define the following quantities:

qv→v(vi) = q̂v→v(vi)−
1

N

N∑
l=1

q̂v→v(vl), (1)

kv→v(vj) = k̂v→v(vj)−
1

N

N∑
l=1

k̂v→v(vl), (2)

Here qv→v(vi) and kv→v(vj) are called the query and
the key in self-attention. q̂v→v(vi) and k̂v→v(vj) repre-
sent linear projections. We subtract the mean of these linear
projections from each quantity in Eq. (1) and Eq. (2).

q̂v→v(vi) = Wq,v→vvi, (3)

k̂v→v(vj) = Wk,v→vvj . (4)

We also define the term mj , which is a linear projection
of each key into a scalar real. mj is called the unary term.

mj = Wm,v→vvj . (5)

Now, the visual self-attention score ωv→v(vi,vj) be-
tween two clips vi and vj is defined by

ωv→v(vi,vj) =softmax(c qv→v(vi)
⊺kv→v(vj))

+ softmax(mj), (6)

where the softmax is over the key indices j (over the at-
tended sequence). Following [40], the constant c is used
to normalize the dot product and to improve gradient flow
through the softmax operator.

Intuitively, the attention score ωv→v(vi,vj) captures
the amount of dependency of vi on vj relative to other
clips in the video. As suggested by [48], the pairwise
term qv→v(vi)

⊺kv→v(vj) captures the relationship be-
tween clips, while the unary term mj represents the saliency
of every clip within the video. This allows our module to
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Figure 3. Detailed illustration of the bimodal attention layer. It
aims to capture the relationship between the audio and visual
modalities. The figure showcases attending to audio using visual
features (v → a). The noise sentinel is a part of the bimodal at-
tention layer, formed by concatenating along the time axis to the
modality attended to. The bimodal attention is then computed ac-
cording to Eq.(19).

learn a representation that takes into account the relation-
ship between clips as well as the overall importance of each
clip in the entire video.

We define the linear projection matrix, Wg,v→v . The
attended features are then produced by applying attention
scores to re-weight the input features,

gv→v(vj) = Wg,v→vvj , (7)

vv
i =

N∑
j=1

ωv→v(vi,vj)gv→v(vj) + vi, (8)

where gv→v(vj) is called the value embedding of vj . The
attended feature vector vv

i is the combination of the origi-
nal feature vi and the sum of other clip features weighted
by their corresponding attention scores. Here we adopt the
convention of using superscript to denote the modality that
is used as a query. For example, vv

i refers to the visually-
attended visual features of the i-th clip.

The self-attended features of the audio modality (a → a)
can be similarly defined as:

aa
i =

N∑
j=1

ωa→a(ai,aj)ga→a(aj) + ai. (9)

Bimodal Attention. The self-attention only captures the

clip interactions within one modality. To capture the in-
teractions across modalities, we extend the self-attention
mechanism and devise a bimodal attention, shown in Fig. 3.
In our bimodal attention, we compute the query from one
modality, and the key and value from the other modality.
This is presented in the following case of using visual fea-
tures to attend to the audio, i.e. v → a, as:

av
i =

N∑
j=1

ωv→a(vi,aj)gv→a(aj) + aa
i . (10)

Here ωv→a(vi,aj) and gv→a(aj) are similarly defined
w.r.t. Eqs. (1)–(6). The bimodal attention mechanism al-
lows the information from two different modalities to influ-
ence each other.

Noise Sentinel. Given the features from the self-attention
and bimodal attention, a simple strategy is to directly fuse
these features (e.g. via concatenation) for final prediction.
Empirically, we have found that this strategy does not give
the best performance. This is possibly due to the noise in
the features. For example, if the audio features are noisy,
the visually attended audio features from the bimodal at-
tention layer are not reliable. In addition, using the noisy
audio to query the visual features would also result in unre-
liable visual features. Intuitively, we would like our model
to have the capacity to ignore a certain modality when it is
noisy. Inpired by the visual sentinel [24] used in image cap-
tioning, we present a novel noise sentinel mechanism for
this purpose.

The noise sentinel is a parameter within the bimodal at-
tention layer. It has the same channel-dimension as the at-
tended features within the attention layer, and is initialized
to zero. It is then concatenated to each of the self-attended
sequences as follows:

[aa
1 ,a

a
2 , . . . ,a

a
N ,na] , (11)

[vv
1,v

v
2, . . . ,v

v
N ,nv] , (12)

where na and nv represent the noise sentinel parameters.
We use the self-attended visual features vv

i as queries to at-
tend to the sequence in Eq. (11). Symmetrically, we use the
the self-attended audio features aa

i to attend to the sequence
in Eq. (12). Note we do not use the noise embedding as a
query. In what follows, we derive the visually-attended au-
dio features av

i . The audio-attended visual features va
i can

be obtained by following-suit.

Let us denote the key for the audio noise embedding na

as knoise, and the unary term for the noise embedding as
mnoise. We define a few more variables for notational con-
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venience.

qi = qv→a(v
v
i ), (13)

kj = kv→a(a
a
j ), knoise = kv→a(na), (14)

mj = Wm,v→aa
a
j , mnoise = Wm,v→ana, (15)

g(aa
j ) = Wg,v→aa

a
j , g(na) = Wg,v→ana. (16)

We are ready to define the attention scores. The attention
score from the visual to audio clips is

ωv→a(v
v
i ,a

a
j ) =

exp(cq⊺
i kj)

exp(cq⊺
i knoise) +

∑N
l=1 exp(cq

⊺
i kl)

+
exp(mj)

exp(mnoise) +
∑N

l=1 exp(ml)
; (17)

and the attention score between the visual clip and audio
noise embedding is

ωv→a(v
v
i ,na) =

exp(cq⊺
i knoise)

exp(cq⊺
i knoise) +

∑N
l=1 exp(cq

⊺
i kl)

+
exp(mnoise)

exp(mnoise) +
∑N

l=1 exp(ml)
. (18)

Concretely, the visually attended audio features with noise
sentinel is formulated by

av
i =

N∑
j=1

ωv→a(v
v
i ,a

a
j )gv→a(a

a
j ) + aa

i

+ ωv→a(v
v
i ,na)gv→a(na). (19)

If the attended modality is noisy, our network can learn
to ignore it by attending to the noise embedding instead.
e.g. by setting the attention weight for the noise sentinel
ω(vv

i ,na) much higher than the attention weights on the
audio clips, ω(vv

i ,a
a
j ).

Classifier. Let {αk}4k=1 be the set of learned weights with
convex sum,

∑4
k=1 αk = 1. The final feature representation

for the i-th clip, zi, is then computed as a weighted sum of
the unimodal self-attended and bimodally attended features,
zi = α1v

v
i + α2v

a
i + α3a

v
i + α4a

a
i . The final bit of our

framework is a two-layer network that outputs the highlight
score of the i-th clip, as si = σ (f2 (ReLU (f1(zi)))). Here
each layer fi(·), with i ∈ {1, 2}, contains layer-norm [2]
and dropout [35] (p = 0.5), which is followed by a linear
projection matrix Wi. The second layer f2(·) specifically
projects our features into a scalar, followed by the sigmoid
activation σ(·) to produce the score si, indicating the prob-
ability of the i-th clip being a highlight.
Model Learning. The highlight detection datasets are
highly imbalanced, since the majority of training clips are
not highlights. We address this issue by adopting a weighted

Input video
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Figure 4. Attention maps for an example video (top row) with-
out noise sentinel (middle row) and with noise sentinel (bottom
row). ns denotes the attention weights placed on the noise sentinel
(last column of the bimodal attention maps). This surfing video
has noisy audio - the microphone constantly has water splashing
against it, or is submerged in water. Consequently, our model
chooses to attend largely to the noise sentinel for the audio at-
tended visual features and visually attended audio features (bot-
tom row) - since the audio is unreliable both as a query (there are
no audio cues) and as a key (there is nothing of interest to attend
to in the audio).

binary cross entropy loss, where a positive example (high-
light) carries a higher weight (wp) than a negative ex-
ample (non-highlight). Our final training loss becomes
L =

∑N
i=1 −[wpyi log(si) + (1 − yi) log(1 − si)], with

yi ∈ {0, 1} the ground-truth label of the i-th clip.

4. Experiments

4.1. Datasets and Setup

We utilize three datasets, namely the YouTube High-
lights dataset [37], TVSum dataset [34], as well as the Video
Titles in the Wild (VTW) dataset [50]. The YouTube High-
lights dataset [37] contains six different categories: dog,
gymnastics, parkour, skating, skiing, and surfing. There
are approximately 100 videos for each category. Following
the practice of prior efforts, we train a highlight detector
for each category. The TVSum dataset contains 50 videos
across ten categories. We follow prior works and train a
highlight detector for each category using a random 80/20
split. The Video Titles in the Wild (VTW) dataset [50] con-
tains highlight labels, but does not have categorical infor-
mation. We follow the work of [50] and adopt their split of
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RRAE
(V)
[46]

GIFs
(V)
[12]

LSVM
(V)
[37]

CLA
(V)
[44]

LM
(V)
[44]

MN
(V)
[15]

MN
(AV)
[15]

Trail.
(V)
[42]

SA
(V)

Ours
(AV)

dog 0.49 0.308 0.60 0.502 0.579 0.5368 0.5816 0.633 0.649 0.645 (↓)
gym. 0.35 0.335 0.41 0.217 0.417 0.5281 0.6165 0.825 0.715 0.719 (↑)
park. 0.50 0.540 0.61 0.309 0.670 0.6888 0.7020 0.623 0.766 0.808 (↑)
ska. 0.25 0.554 0.62 0.505 0.578 0.7094 0.7217 0.529 0.606 0.620 (↑)
ski. 0.22 0.328 0.36 0.379 0.486 0.5834 0.5866 0.745 0.712 0.732 (↑)
surf. 0.49 0.541 0.61 0.584 0.651 0.6383 0.6514 0.793 0.782 0.783 (↑)
Avg. 0.383 0.464 0.536 0.416 0.564 0.6138 0.6436 0.691 0.705 ±0.004 0.718 ±0.006 (↑)

Table 1. Highlight detection results (mAP) on the YouTube dataset. Our visual only model, SA (V), outperforms all prior methods, and our
full audio-visual model achieves state-of-the-art performance. Best and second-best results are in bold and with underline, respectively.
(↑)/(↓) indicate an improvement/decline relative to the unimodal visual baseline, SA (V). We show the modalities used for each method in
brackets: (V) for visual, and (AV) for audio-visual.

Method mAP
VTW (V) [50] 0.583
SA (V) 0.722 ± 0.003
Ours (AV) 0.812 ± 0.002

Table 2. Highlight detection results (mAP) on the VTW dataset.
Our approach outperforms baselines, and outperforms the prior
state-of-the-art method [50] by 22.9% mAP. We show the modali-
ties used for each method in brackets: (V) for visual, and (AV) for
audio-visual.

2,000 videos for training, 300 for validation, and 2,000 for
testing.
Features: On the YouTube Highlights and TVSum
datasets, we follow the work of [42] and use a 3D CNN [13]
with ResNet-34 [14] backbone pretrained on the Kinetics-
400 dataset [4] to obtain the visual frame-level features.
Since the 3D CNN performs temporal convolution over 16
consecutive frames, we consider a 3D feature to be a part of
a clip if it overlaps by at least 50% with the clip.

On the VTW dataset, we follow the original work
of [50], and use a C3D network [39] pretrained on Sports-
1M [18] to obtain visual features. Each video is also divided
into clips of 100 frames following [50].

For all datasets, we use a PANN audio network [22] pre-
trained on AudioSet [8] to obtain audio features that align
with the visual clips. Frame-level features are average-
pooled within each clip for both audio and visual features
to generate a clip-level feature.
Implementation Details: We train our model using
Adam [21], with a learning rate of 5 × 10−5. We train
for 30 epochs on the YouTube and TVSum datasets, and 5
epochs on the VTW dataset. Before the attention modules,
we project each modality into a vector of fixed-size length
512. The key, query, and value vectors all follow the same
size. The constant c for all attention modules is set to 0.06.

We set the positive class weight wp = 5 for the loss term.
Evaluation Metrics: We adopt the widely-used mean Av-
erage Precision or mAP as the evaluation metric for the
YouTube and VTW datasets. On the TVSum dataset, we
follow prior works [44] and adopt the mAP at top-5 met-
ric. Following prior studies [37, 42, 12], a mAP/maP at
top-5 score is separately computed for every video, because
a highlighted moment in one video is not necessarily more
interesting than non-highlight moments in other videos; we
report the average mAP over all videos. We repeat each ex-
periment 10 times with different random seeds, and report
the average performance and standard deviation over these
10 trials.

4.2. Baselines

We define the following baseline approaches for compar-
ison:

• SA (A) and SA (V): In the unimodal case (audio or
visual features only), we use self-attention to obtain
the self-attended features, and use the same classifier
architecture to classify each clip. We dub this model
SA (V) for self-attended visual model, and SA (A) for
self-attended audio model. The SA (V) model is di-
rectly comparable to prior works

• SA (AV)early: We try out a self-attention based audio-
visual network that concatenates the audio and visual
features in an early-fusion fashion, then does self-
attention and uses the same classifier to classify each
clip. We call this network SA (AV)early.

• SA (AV)late: In addition, we try out a self-attention
based audio-visual network that sums the self-attended
features from each modality in a late-fusion fashion,
then uses the same classifier to classify each clip. We
call this network SA (AV)late.
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sLSTM
(V)
[52]

SM
(V)
[11]

SG
(V)
[26]

LM
(V)
[44]

DSN
(V)
[28]

VESD
(V)
[3]

Trail.
(V)
[42]

MN
(AV)
[15]

SA
(V)

Ours
(AV)

VT 0.411 0.415 0.423 0.559 0.373 0.447 0.613 0.8062 0.8337 0.8370 (↑)
VU 0.462 0.467 0.472 0.429 0.441 0.493 0.546 0.6832 0.6469 0.5726 (↓)
GA 0.463 0.469 0.475 0.612 0.428 0.496 0.657 0.7821 0.8444 0.7845 (↓)
MS 0.477 0.478 0.489 0.540 0.436 0.503 0.608 0.8183 0.8651 0.8605 (↓)
PK 0.448 0.445 0.456 0.604 0.411 0.478 0.591 0.7807 0.7032 0.8009 (↑)
PR 0.461 0.458 0.473 0.475 0.417 0.485 0.701 0.6584 0.6749 0.6922 (↑)
FM 0.452 0.451 0.464 0.432 0.412 0.487 0.582 0.578 0.6690 0.7003 (↑)
BK 0.406 0.407 0.417 0.663 0.368 0.441 0.647 0.7502 0.6808 0.7300 (↑)
BT 0.471 0.473 0.483 0.691 0.435 0.492 0.656 0.8019 0.9496 0.9741 (↑)
DS 0.455 0.453 0.466 0.626 0.416 0.488 0.681 0.6551 0.6079 0.6747 (↑)
Avg. 0.451 0.461 0.462 0.563 0.424 0.481 0.628 0.7324 0.7476±0.021 0.7627±0.020 (↑)

Table 3. Highlight detection results (top-5 mAP) on the TVSum dataset. Our visual only model, SA (V), outperforms all prior methods, and
our full audio-visual model achieves state-of-the-art performance. Best and second-best results are in bold and with underline, respectively.
(↑)/(↓) indicate an improvement/decline relative to the unimodal visual baseline, SA (V). We show the modalities used for each method
in brackets: (V) for visual, and (AV) for audio-visual. We see an improvement in seven out of ten categories over the unimodal SA (V)
baseline with our full model.

Method TVSum YouTube VTW
SA (V) 0.748±0.02 0.705±0.004 0.722±0.003

SA (A) 0.687±0.03 0.670±0.008 0.794±0.002

SA (AV)early 0.750±0.01 0.703±0.004 0.798±0.003

SA (AV)late 0.750±0.02 0.709±0.004 0.805±0.003

Ours (AV) 0.763±0.02 0.718±0.006 0.812±0.002

Table 4. Comparison to Baselines: mAP/top-5 mAP with stan-
dard deviation on TVSum, YouTube, and VTW datasets for sev-
eral baselines and our full model.

We also compare with state-of-the-art methods on each
dataset. For each method, we use “(V)” if it only uses the
visual signal, and “(AV)” if it is an audio-visual method.

4.3. Highlight Detection Results

YouTube Highlights: We show the main results on the
YouTube dataset in Table 1. We achieve state-of-the-art
performance on the YouTube dataset using our visual only
model SA (V) model, outperforming a prior audio-visual
network, MN (AV) [15]. We see a further gain of 1.3%
when we use the proposed architecture. Our final archi-
tecture achieves better performance in five out of six cate-
gories, while maintaining reasonably good performance in
the other category, dog.
TVSum: We show the results for the TVSum dataset in Ta-
ble 3. Our visual-only model SA (V) outperforms the prior
audio-visual state-of-the-art, and our audio-visual model
improves performance by another 1.5%. We note that we
see an improvement over the visual model in seven out of
ten categories.

VTW: We show the results for the VTW dataset in Ta-
ble 2. Our approach outperforms the visual only baseline
by a large margin. This is due in part to the importance of
audio on this dataset, as shown in Table 4, where the audio-
only baseline SA (A) outperforms its visual counterpart by
7.2% mAP. Upon further investigation, we determined that
this is because the dataset contains chiefly user generated
videos, where highlight-worthy moments are typically ac-
companied by man-made sounds such as cheering and clap-
ping. This strengthens our belief that audio can be a useful
as a stand-alone signal for highlight detection.
Comparison to Baselines: We compare our full model to
the three different baselines outlined in Sec. 4.2. The results
are shown in Table. 4.

Our visual-only model SA (V) outperforms its audio
counterpart SA (A) on the TVSum and YouTube datasets.
On the VTW dataset SA (A) outperforms SA (V) by a
large margin. Qualitative analysis of the VTW dataset de-
termined that the interesting moments in the dataset were
often accompanied by sounds like clapping and cheering.

Even so, our audio-based models SA (A) often perform
on-par with visual state-of-the-art methods. On the TVSum
and YouTube datasets, SA (A) outperforms all but the prior
state-of-the-art on the respective dataset. This lends cre-
dence to the hypothesis that audio can be a useful stand-
alone signal for highlight detection.

Our full model outperforms the multimodal early and
late fusion baselines for all three datasets. This shows the
effectiveness of our bimodal attention and noise sentinel
components.
Qualitative Results: We visualize the attention maps pro-
duced by our approach in Fig. 4. The self-attention lay-
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Figure 5. Qualitative results: Highlight moments are outlined in green, and the output of our model is plotted along with ground truth
highlights below each video. The attention maps are visualized to the right of each video. The model attends to the noise sentinel ns for
the surfing video (top), while attending to the opposite modality for the skating (bottom) video. The skating video has audio cues (cheering
and skateboard noises) which our model utilizes.

ers produce similar attention maps. However, the attention
maps of the bimodal attention layer exhibit a strong differ-
ence with and without the noise sentinel. With the noise
sentinel, our model largely chooses to attend to the noise
sentinel for the bimodally attended features. This particu-
lar video contains noisy audio, as the microphone is often
submerged in water. Our approach learns to ignore the in-
teraction between the modalities as the audio is not useful
as a cue (query) nor as complementary information to the
visual features (key, values). We present additional quali-
tative highlight detection results along with their attention
maps in Fig. 5.

4.4. Ablation Studies

Impact of Disentangled Attention: In this experiment, we
analyze the impact of disentangled attention compared with
classic self-attention, where the attention score is formu-
lated as ωv→v(vi,vj) = softmax(cq̂v→v(vi)

⊺k̂v→v(vj))
for self-attention and similarly for our bimodal attention
layers. We show the result in Table 5. We see that dis-
entangled attention improves our results for both datasets.

Impact of Noise Sentinel: In this experiment, we study
the impact of the noise sentinel on the overall performance.
We show the result in Table 6. The result demonstrates that
using the noise sentinel improves the performance on both
datasets.

Attention mechanisms VTW YouTube
Classic self-attention 0.808 0.705
Disentangled attention (ours) 0.812 0.718

Table 5. Ablation study on disentangled attention: We achieve the
best result with the disentangled attention.

Noise sentinel VTW YouTube
W/o noise sentinel 0.804 0.716
W/ noise sentinel (ours) 0.812 0.718

Table 6. Ablation study on noise sentinel: We achieve superior
performance with the noise sentinel.

5. Conclusion and Outlook

We proposed an audio-visual framework for video high-
light detection. Our architecture models the relationship be-
tween audio and visual information through a bimodal at-
tention layer to produce fused representations. We also in-
troduced an adaptive noise sentinel mechanism that “looks
away” from a noisy audio or visual modality. We empiri-
cally showed that our framework achieves superior perfor-
mance on well-known benchmark datasets. While we fo-
cus on highlight detection, the proposed techniques could
benefit other audio-visual tasks such as audio-visual speech
recognition, action localization and video summarization.
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