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Abstract

We address the problem of generalized zero-shot se-
mantic segmentation (GZS3) predicting pixel-wise seman-
tic labels for seen and unseen classes. Most GZS3 meth-
ods adopt a generative approach that synthesizes visual
features of unseen classes from corresponding semantic
ones (e.g., word2vec) to train novel classifiers for both seen
and unseen classes. Although generative methods show de-
cent performance, they have two limitations: (1) the visual
features are biased towards seen classes; (2) the classifier
should be retrained whenever novel unseen classes appear.
We propose a discriminative approach to address these lim-
itations in a unified framework. To this end, we leverage
visual and semantic encoders to learn a joint embedding
space, where the semantic encoder transforms semantic fea-
tures to semantic prototypes that act as centers for visual
features of corresponding classes. Specifically, we intro-
duce boundary-aware regression (BAR) and semantic con-
sistency (SC) losses to learn discriminative features. Our
approach to exploiting the joint embedding space, together
with BAR and SC terms, alleviates the seen bias problem.
At test time, we avoid the retraining process by exploiting
semantic prototypes as a nearest-neighbor (NN) classifier.
To further alleviate the bias problem, we also propose an in-
ference technique, dubbed Apollonius calibration (AC), that
modulates the decision boundary of the NN classifier to the
Apollonius circle adaptively. Experimental results demon-
strate the effectiveness of our framework, achieving a new
state of the art on standard benchmarks.

1. Introduction
Recent works using convolutional neural net-

works (CNNs) [6, 36, 45, 57] have achieved significant
success in semantic segmentation. They have proven
effective in various applications such as image editing [34]
and autonomous driving [54], but semantic segmentation
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Figure 1: In contrast to generative methods [3, 32] (top), we up-
date both visual and semantic encoders to learn a joint embedding
space, and leverage a nearest neighbor classifier in the joint em-
bedding space at test time (bottom). This alleviates a bias problem
towards seen classes, and avoids re-training the classifier. We visu-
alize visual features and semantic prototypes by circles and stars,
respectively. Best viewed in color.

in the wild still has two limitations. First, existing methods
fail to generalize to new domains/classes, assuming that
training and test samples share the same distribution. Sec-
ond, they require lots of training samples with pixel-level
ground-truth labels prohibitively expensive to annotate.
As a result, current methods could handle a small set of
pre-defined classes only [23].

As alternatives to pixel-level annotations, weakly-
supervised semantic segmentation methods propose to ex-
ploit image-level labels [19], scribbles [35], and bounding
boxes [8], all of which are less labor-intensive to anno-
tate. These methods, however, also require a large num-
ber of weak supervisory signals to train networks for novel
classes. On the contrary, humans can easily learn to recog-
nize new concepts in a scene with a few visual examples,
or even with descriptions of them. Motivated by this, few-
and zero-shot learning methods [29, 42, 48] have been pro-
posed to recognize objects of previously unseen classes with
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a few annotated examples and even without them, respec-
tively. For example, few-shot semantic segmentation (FS3)
methods [47, 49] typically exploit an episode training strat-
egy, where each episode consists of randomly sampled sup-
port and query sets, to estimate query masks with a few
annotated support examples. Although these FS3 methods
show decent performance for unseen classes, they are ca-
pable of handling a single unseen class only. Recently, the
work of [56] first explores the problem of zero-shot seman-
tic segmentation (ZS3), where it instead exploits pre-trained
semantic features using class names (i.e., word2vec [38]).
This work, however, focuses on predicting unseen classes,
even if a given image contains both seen and unseen ones.
To overcome this, generalized ZS3 (GZS3) has recently
been introduced to consider both seen and unseen classes
in a scene during inference. Motivated by generative ap-
proaches [2, 50, 52] in zero-shot image classification, many
GZS3 methods [3, 15, 32] first train a segmentation net-
work that consists of a feature extractor and a classifier
with seen classes. They then freeze the feature extractor
to extract visual features, and discard the classifier. With
the fixed feature extractor, a generator [14, 25] is trained to
produce visual features from semantic ones (e.g., word2vec)
of corresponding classes. This enables training novel clas-
sifiers with real visual features of seen classes and gener-
ated ones of unseen classes (Fig. 1 top). Although genera-
tive methods achieve state-of-the-art performance in GZS3,
they have the following limitations: (1) the feature extractor
is trained without considering semantic features, causing a
bias towards seen classes. The seen bias problem becomes
even worse through a multi-stage training strategy, where
the generator and novel classifiers are trained using the fea-
ture extractor; (2) the classifier needs to be re-trained when-
ever a particular unseen class is newly included/excluded,
hindering deployment in a practical setting, where unseen
classes are consistently emerging.

We introduce a discriminative approach for GZS3,
dubbed JoEm, that addresses the limitations of generative
methods in a unified framework (Fig. 1 bottom). Specif-
ically, we exploit visual and semantic encoders to learn a
joint embedding space. The semantic encoder transforms
semantic features into semantic prototypes acting as centers
for visual features of corresponding classes. Our approach
to using the joint embedding space avoids the multi-stage
training, and thus alleviates the seen bias problem. To this
end, we propose to minimize the distances between visual
features and corresponding semantic prototypes in the joint
embedding space. We have found that visual features at
object boundaries could contain a mixture of different se-
mantic information due to the large receptive field of deep
CNNs. Directly minimizing the distances between the vi-
sual features and semantic prototypes might distract dis-
criminative feature learning. To address this, we propose a

boundary-aware regression (BAR) loss that exploits seman-
tic prototypes linearly interpolated to gather the visual fea-
tures at object boundaries along with its efficient implemen-
tation. We also propose to use a semantic consistency (SC)
loss that transfers relations between seen classes from a se-
mantic embedding space to the joint one, regularizing the
distances between semantic prototypes of seen classes ex-
plicitly. At test time, instead of re-training the classifier
as in the generative methods [3, 15, 32], our approach to
learning discriminative semantic prototypes enables using a
nearest neighbor (NN) classifier [7] in the joint embedding
space. In particular, we modulate the decision boundary of
the NN classifier using the Apollonius circle. This Apollo-
nius calibration (AC) method also makes the NN classifier
less susceptible to the seen bias problem. We empirically
demonstrate the effectiveness of our framework on standard
GZS3 benchmarks [10, 40], and show that AC boosts the
performance significantly. The main contributions of our
work can be summarized as follows:

• We introduce a simple yet effective discriminative ap-
proach for GZS3. We propose BAR and SC losses, which
are complementary to each other, to better learn discrim-
inative representations in the joint embedding space.

• We present an effective inference technique that modu-
lates the decision boundary of the NN classifier adap-
tively using the Apollonius circle. This alleviates the seen
bias problem significantly, even without re-training the
classifier.

• We demonstrate the effectiveness of our approach exploit-
ing the joint embedding space on standard benchmarks
for GZS3 [10, 40], and show an extensive analysis with
ablation studies.

2. Related work
Zero-shot image classification. Many zero-shot learn-
ing (ZSL) [11, 29, 42] methods have been proposed for
image classification. They typically rely on side informa-
tion, such as attributes [11, 27], semantic features from
class names [37, 55], or text descriptions [30, 44], for re-
lating unseen and seen object classes. Early ZSL meth-
ods [1, 12, 44, 55] focus on improving performance for
unseen object classes, and typically adopt a discrimina-
tive approach to learn a compatibility function between vi-
sual and semantic embedding spaces. Among them, the
works of [13, 30, 37, 53] exploit a joint embedding space
to better align visual and semantic features. Similarly, our
approach leverages the joint embedding space, but differs
in that (1) we tackle the task of GZS3, which is much
more challenging than image classification, and (2) we pro-
pose two complementary losses together with an effective
inference technique, enabling learning better representa-
tions and alleviating a bias towards seen classes. Note that
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a straightforward adaptation of discriminative ZSL meth-
ods [4, 28, 41] to generalized ZSL (GZSL) suffers from the
seen bias problem severely. To address this, a calibrated
stacking method [5] proposes to penalize scores of seen ob-
ject classes at test time. This is similar to our AC in that
both aim at reducing the seen bias problem at test time.
The calibrated stacking method, however, shifts the deci-
sion boundary with a constant value, while we modulate the
decision boundary adaptively. Recently, instead of learning
the compatibility function between visual and semantic em-
bedding spaces, generative methods [2, 22, 31, 46, 50, 52]
attempt to address the task of GZSL by using generative ad-
versarial networks [14] or variational auto-encoders [25].
They first train a generator to synthesize visual features
from corresponding semantic ones or attributes. The gener-
ator then produces visual features of given unseen classes,
and uses them to train a new classifier for both seen and un-
seen classes. In this way, generative methods reformulate
the task of GZSL as a standard classification problem, out-
performing the discriminative ones, especially on the gen-
eralized setting.

Zero-shot semantic segmentation. Recently, there are
many attempts to extend ZSL methods for image classifica-
tion to the task of semantic segmentation. They can be cat-
egorized into discriminative and generative methods. The
work of [56] adopts the discriminative approach for ZS3,
focusing on predicting unseen classes in a hierarchical way
using WordNet [39]. The work of [21] argues that adverse
effects from noisy samples are significant especially in the
problem of ZS3, and proposes uncertainty-aware losses [24]
to prevent a segmentation network from overfitting to them.
This work, however, requires additional parameters to es-
timate the uncertainty, and outputs a binary mask for a
given class only. SPNet [51] exploits a semantic embed-
ding space to tackle the task of GZS3, mapping visual fea-
tures to fixed semantic ones. Differently, we propose to use
a joint embedding space, better aligning visual and semantic
spaces, together with two complementary losses. In contrast
to discriminative methods, ZS3Net [3] leverages a genera-
tive moment matching network (GMMN) [33] to synthesize
visual features from corresponding semantic ones. Train-
ing ZS3Net requires three stages for a segmentation net-
work, the GMMN, and a new classifier, respectively. While
ZS3Net exploits semantic features of unseen classes at the
last stage only, CSRL [32] incorporates them in the second
stage, encouraging synthesized visual features to preserve
relations between seen and unseen classes in the seman-
tic embedding space. CaGNet [15] proposes a contextual
module using dilated convolutional layers [43] along with
a channel-wise attention mechanism [20]. This encourages
the generator to better capture the diversity of visual fea-
tures. The generative methods [3, 15, 32] share the com-
mon limitations as follows: First, they require re-training

the classifier whenever novel unseen classes are incoming.
Second, they rely on the multi-stage training framework,
which might deteriorate the seen bias problem, with sev-
eral hyperparameters (e.g., the number of synthesized vi-
sual features and the number of iterations for training a new
classifier). To address these limitations, we advocate using
a discriminative approach that avoids the multi-stage train-
ing scheme and re-training the classifier.

3. Method
In this section, we concisely describe our approach to

exploiting a joint embedding space for GZS3 (Sec. 3.1), and
introduce three training losses (Sec. 3.2). We then describe
our inference technique (Sec. 3.3).

3.1. Overview
Following the common practice in [3, 15, 32, 51], we di-

vide classes into two disjoint sets, where we denote by S
and U sets of seen and unseen classes, respectively. We
train our model including visual and semantic encoders with
the seen classes S only, and use the model to predict pixel-
wise semantic labels of a scene for both seen and unseen
classes, S and U , at test time. To this end, we jointly update
both encoders to learn a joint embedding space. Specifi-
cally, we first extract visual features using the visual en-
coder. We then input semantic features (e.g., word2vec [38])
to the semantic encoder, and obtain semantic prototypes
that represent centers for visual features of correspond-
ing classes. We have empirically found that visual fea-
tures at object boundaries could contain a mixture of dif-
ferent semantics (Fig. 2(a) middle), which causes discrep-
ancies between visual features and semantic prototypes. To
address this, we propose to use linearly interpolated se-
mantic prototypes (Fig. 2(a) bottom), and minimize the
distances between the visual features and semantic proto-
types (Fig. 2(b)). We also encourage the relationships be-
tween semantic prototypes to be similar to those between
semantic features explicitly (Fig. 3). At test time, we use
the semantic prototypes of both seen and unseen classes as
a NN classifier without re-training. To further reduce the
seen bias problem, we modulate the decision boundary of
the NN classifier adaptively (Fig. 4(c)). In the following,
we describe our framework in detail.

3.2. Training
We define an overall objective for training our model

end-to-end as follows:

L = Lce + Lbar + λLsc, (1)

where we denote by Lce, Lbar, and Lsc cross-entropy (CE),
BAR, and SC terms, respectively, balanced by the parame-
ter λ. In the following, we describe each loss in detail.
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Figure 2: (a) While the semantic feature map abruptly changes at object boundaries due to the stacking operation using a ground-truth
mask (top), the visual one smoothly varies due to the large receptive field of the visual encoder (middle). We leverage a series of nearest-
neighbor and bilinear interpolations to smooth a sharp transition at object boundaries in an efficient way (bottom). (b) Visual features at
object boundaries might contain a mixture of different semantics, suggesting that minimizing the distances to the exact semantic prototypes
is not straightforward (dashed lines). Our BAR loss exploits a virtual prototype to pull the visual features at object boundaries (solid lines).
Best viewed in color.

CE loss. Given an image of size Ho × Wo, the visual
encoder outputs a visual feature map v ∈ RH×W×C ,
where H , W , and C are height, width, and the num-
ber of channels, respectively. We denote by y a corre-
sponding ground-truth mask, which is resized to the size
of H ×W using nearest-neighbor interpolation, and v(p)
a C-dimensional local visual feature at position p. To
encourage these visual features to better capture rich se-
mantics specific to the task of semantic segmentation, we
use a CE loss widely adopted in supervised semantic seg-
mentation. Differently, we apply this for a set of seen
classes (i.e., S) only as follows:

Lce = −
1∑

c∈S |Rc|
∑
c∈S

∑
p∈Rc

log
ewc·v(p)∑
j∈S e

wj ·v(p)
, (2)

where wc is a C-dimensional classifier weight for a class c
and Rc indicates a set of locations labeled as the class c
in y. We denote by | · | the cardinality of a set.
BAR loss. Although the CE loss trains the classifier to dis-
criminate seen classes, the learned classifier weights w are
not adaptable to recognize unseen ones. To address this, we
instead use the semantic encoder as a hypernetwork [16]
that generates classifier weights. Specifically, the semantic
encoder transforms a semantic feature (e.g., word2vec [38])
into a semantic prototype that acts as a center for visual fea-
tures of a corresponding class. We then use semantic proto-
types of both seen and unseen classes as a NN classifier at
test time.

A straightforward way to implement this is to minimize
the distances between visual features and corresponding se-

mantic prototypes during training. To this end, we first ob-
tain a semantic feature map s of sizeH×W×D as follows:

s(p) = sc for p ∈ Rc, (3)

where we denote by sc ∈ RD a semantic feature for a
class c. That is, we stack a semantic feature for a class c
into corresponding regions Rc labeled as the same class in
the ground truth y. Given the semantic feature map, the se-
mantic encoder then outputs a semantic prototype map µ of
size H ×W × C, where

µ(p) = µc for p ∈ Rc. (4)

We denote by µc ∈ RC a semantic prototype for a class c.
Accordingly, we define a pixel-wise regression loss as fol-
lows:

Lcenter =
1∑

c∈S |Rc|
∑
c∈S

∑
p∈Rc

d (v(p), µ(p)) , (5)

where d(·, ·) is a distance metric (e.g., Euclidean distance).
This term enables learning a joint embedding space by up-
dating both encoders with a gradient of Eq. (5). We have
observed that the semantic feature map s shows a sharp
transition at object boundaries due to the stacking opera-
tion, making the semantic prototype map µ discrete accord-
ingly1, as shown in Fig. 2(a) (top). By contrast, the vi-
sual feature map v smoothly varies at object boundaries due

1This is because we use a 1 × 1 convolutional layer for the semantic
encoder. Note that we could not use a CNN as the semantic encoder since
it requires a ground-truth mask to obtain the semantic feature map at test
time.
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to the large receptive field of the visual encoder as shown
in Fig. 2(a) (middle). That is, the visual features at ob-
ject boundaries could contain a mixture of different seman-
tics. Thus, directly minimizing Eq. (5) might degrade per-
formance, since this could also close the distances between
semantic prototypes as shown in Fig. 2(b) (dashed lines).
To address this, we exploit linearly interpolated semantic
prototypes, which we refer to as virtual prototypes. The vir-
tual prototype acts as a dustbin that gathers the visual fea-
tures at object boundaries as shown in Fig. 2(b) (solid lines).
However, manually interpolating semantic prototypes at all
boundaries could be demanding.

We introduce a simple yet effective implementation that
gives a good compromise. Specifically, we first downsam-
ple the ground-truth mask y by a factor of r using nearest-
neighbor interpolation. Similar to the previous case, we
stack semantic features but with the downsampled ground-
truth mask, and obtain a semantic feature map. We up-
sample this feature map by a factor of r again using bi-
linear interpolation, resulting in an interpolated one s̃ of
size H×W ×D. Given the semantic feature map s̃, the se-
mantic encoder outputs an interpolated semantic prototype
map µ̃ accordingly, as shown in Fig. 2(a) (bottom). Us-
ing the interpolated semantic prototype map µ̃, we define a
BAR loss as follows:

Lbar =
1∑

c∈S |Rc|
∑
c∈S

∑
p∈Rc

d (v(p), µ̃(p)) . (6)

This term enables learning discriminative semantic proto-
types. Note that it has been shown that uncertainty estimates
of [21] are highly activated at object boundaries. We can
thus interpret the BAR loss as alleviating the influence of
visual features at object boundaries in that this term encour-
ages the visual features at object boundaries to be closer to
virtual prototypes than the exact ones. Note also that Eq. (5)
is a special case of our BAR loss, that is, µ = µ̃when r = 1.
SC loss. Although CE and BAR terms help to learn discrim-
inative representations in the joint embedding space, they
do not impose explicit constraints on the distances between
semantic prototypes during training. To complement this,
we propose to transfer the relations of semantic features in
the semantic embedding space to the semantic prototypes
in the joint one. For example, we reduce the distances be-
tween semantic prototypes in the joint embedding space if
corresponding semantic features are close in the semantic
one (Fig. 3). Concretely, we define the relation between two
different classes i and j in the semantic embedding space as
follows:

rij =
e−τsd(si,sj)∑
j∈S e

−τsd(si,sj)
, (7)

where τs is a temperature parameter that controls the
smoothness of relations. Similarly, we define the relation
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Figure 3: We visualize the relations between seen classes in se-
mantic and joint embedding spaces. Our SC loss transfers the re-
lations from the semantic embedding space to the joint one. This
adjusts the distances between semantic prototypes explicitly, com-
plementing the BAR loss. Best viewed in color.

in the joint embedding space as follows:

r̂ij =
e−τµd(µi,µj)∑
j∈S e

−τµd(µi,µj)
, (8)

where τµ is a temperature parameter. To encourage the con-
sistency between two embedding spaces, we define a SC
loss as follows:

Lsc = −
∑
i∈S

∑
j∈S

rij log
r̂ij
rij
. (9)

This term regularizes the distances between semantic pro-
totypes of seen classes. Similarly, CSRL [32] distills the
relations of real visual features to the synthesized ones. It
however exploits semantic features of unseen classes dur-
ing training, suggesting that both generator and classifier
should be trained again to handle novel unseen classes.

3.3. Inference
Our discriminative approach enables handling semantic

features of arbitrary classes at test time without re-training,
which is suitable for real-world scenarios. Specifically, the
semantic encoder takes semantic features of both seen and
unseen classes, and outputs corresponding semantic proto-
types. We then compute the distances from individual visual
features to each semantic prototype. That is, we formulate
the inference process as a retrieval task using the semantic
prototypes as a NN classifier in the joint embedding space.
A straightforward way to classify each visual feature2 is to
assign the class of its nearest semantic prototype as follows:

ŷnn(p) = argmin
c∈S∪U

d(v(p), µc). (10)

Although our approach learns discriminative visual fea-
tures and semantic prototypes, visual features of un-
seen classes might still be biased towards those of seen
classes (Fig. 4(a)), especially when both have similar ap-
pearance. For example, a cat (a unseen object class) is more

2We upsample v into the image resolution Ho × Wo using bilinear
interpolation for inference.
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Figure 4: Comparison of CS [5] and AC. We visualize seman-
tic prototypes and visual features by stars and circles, respectively.
The decision boundary of the NN classifier is shown as dashed
lines. (a) We show the seen bias problem with the distribution of
visual features in two cases. One is when two different semantic
prototypes are distant (left), and the other is the opposite situa-
tion (right). Note that visual features of seen classes are tightly
clustered, while those of unseen classes are skewed. (b) CS shifts
the decision boundary to semantic prototypes of seen classes. Al-
though CS alleviates the seen bias problem (left), it might degrade
performance for seen classes (right). Thus, the value of γ should
be chosen carefully. (c) We modulate the decision boundary with
the Apollonius circle. This gives a good compromise between im-
proving performance for unseen classes (left) and preserving that
for seen ones (right). Best viewed in color.

likely to be predicted as a dog (a seen one). To address this,
the work of [5] proposes a calibrated stacking (CS) method
that penalizes scores of seen classes with a constant value.
In our case, this can be formulated with an adjustable pa-
rameter γ as follows:

ŷcs(p) = argmin
c∈S∪U

d(v(p), µc)− γ1[c ∈ U ], (11)

where we denote by 1[·] an indicator function whose value
is 1 if the argument is true, and 0 otherwise. We inter-
pret this as shifting the decision boundary of the NN clas-
sifier to semantic prototypes of seen classes. CS allevi-
ates the seen bias problem when the first two nearest pro-
totypes of a particular visual feature are distant as shown
in Fig. 4(b) (left). It however applies the same value of γ
to the case when the first two nearest prototypes are close
as shown in Fig. 4(b) (right), degrading performance for

seen classes. Finding the best value of γ is thus not triv-
ial. Instead of shifting, we propose to modulate the deci-
sion boundary using the Apollonius circle. Specifically, we
first compute the distances to the first two nearest semantic
prototypes for individual visual features as follows:

d1(p) = d(v(p), µc1st) and d2(p) = d(v(p), µc2nd),
(12)

where 0 < d1(p) ≤ d2(p). We denote by c1st and c2nd
the class of the first and second nearest prototype, respec-
tively. We then define the Apollonius circle, which is used
as our decision boundary, with an adjustable parameter σ as
follows:

A(σ) = {p | d1(p) : d2(p) = σ : 1}, (13)

where we denote by A(σ) the boundary of the Apollonius
circle. The decision rule is defined with this circle as fol-
lows:

ŷac(p) =

{
c12(p) , c1st ∈ S and c2nd ∈ U
c1st , otherwise

, (14)

where

c12(p) = c1st1

[
d1(p)

d2(p)
≤ σ

]
+ c2nd1

[
d1(p)

d2(p)
> σ

]
.

(15)
That is, we assign c1st and c2nd to the visual features in-
side and outside the Apollonius circle, respectively, pro-
viding a better compromise between performance for seen
and unseen classes. This is more intuitive than CS in that
visual features of seen classes are tightly centered around
corresponding semantic prototypes, while those of unseen
classes are distorted and dispersed (Fig. 4(a)). Note that the
radius of this circle adaptively changes in accordance with
the distance between the first two nearest semantic proto-
types3. As shown in Fig. 4(c), this enables reducing the seen
bias problem in both cases, while maintaining performance
for seen classes even with the same value of σ (right). Fur-
thermore, unlike CS, we modulate the decision boundary,
only when the class of the first and second nearest semantic
prototype belongs to S and U , respectively, since the seen
bias problem is most likely to occur in this case. Note that
AC reduces to the NN classifier in Eq. (10) when the ad-
justable parameter σ = 1.

4. Experiments
4.1. Implementation details
Dataset and evaluation. We perform experiments on stan-
dard GZS3 benchmarks: PASCAL VOC [10] and PASCAL
Context [40]. The PASCAL VOC dataset provides 1, 464

3Please refer to the supplementary material for a more detailed descrip-
tion of this.
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Table 1: Quantitative results on the PASCAL VOC [10] and Context [40] validation sets in terms of mIoU. Numbers in bold are the best
performance and underlined ones are the second best. We report our average scores over five runs with standard deviations in parentheses.

Datasets Methods unseen-2 unseen-4 unseen-6 unseen-8 unseen-10
mIoUS mIoUU hIoU mIoUS mIoUU hIoU mIoUS mIoUU hIoU mIoUS mIoUU hIoU mIoUS mIoUU hIoU

VOC

DeViSE [12] 68.1 3.2 6.1 64.3 2.9 5.5 39.8 2.7 5.1 35.7 2.0 3.8 31.7 1.9 3.6
SPNet [51] 71.8 34.7 46.8 67.3 21.8 32.9 64.5 20.1 30.6 61.2 19.9 30.0 59.0 18.1 27.7
ZS3Net [3] 72.0 35.4 47.5 66.4 23.2 34.4 47.3 24.2 32.0 29.2 22.9 25.7 33.9 18.1 23.6
CSRL [32] 73.4 45.7 56.3 69.8 31.7 43.6 66.2 29.4 40.7 62.4 26.9 37.6 59.2 21.0 31.0
Ours 68.9 (1.0) 43.2 (0.9) 53.1 (0.4) 67.0 (1.2) 33.4 (0.4) 44.6 (0.3) 63.2 (0.4) 30.5 (0.3) 41.1 (0.2) 58.5 (0.9) 29.0 (0.8) 38.8 (0.6) 63.5 (0.4) 22.5 (0.4) 33.2 (0.4)

Context

DeViSE [12] 35.8 2.7 5.0 33.4 2.5 4.7 31.9 2.1 3.9 22.0 1.7 3.2 17.5 1.3 2.4
SPNet [51] 38.2 16.7 23.2 36.3 18.1 24.2 31.9 19.9 24.5 28.6 14.3 19.1 27.1 9.8 14.4
ZS3Net [3] 41.6 21.6 28.4 37.2 24.9 29.8 32.1 20.7 25.2 20.9 16.0 18.1 20.8 12.7 15.8
CSRL [32] 41.9 27.8 33.4 39.8 23.9 29.9 35.5 22.0 27.2 31.7 18.1 23.0 29.4 14.6 19.5
Ours 38.2 (1.2) 32.9 (1.4) 35.3 (0.9) 36.9 (0.8) 30.7 (1.5) 33.5 (0.7) 36.2 (0.6) 23.2 (0.4) 28.3 (0.4) 32.4 (0.9) 20.2 (0.4) 24.9 (0.3) 33.0 (0.6) 14.9 (0.7) 20.5 (0.6)

training and 1, 449 validation samples of 20 object classes,
while the PASCAL Context dataset contains 4, 998 train-
ing and 5, 105 validation samples of 59 thing and stuff
classes. Both datasets include a single background class,
resulting in 21 and 60 classes in total, respectively. Fol-
lowing the common practice in [3, 15, 32, 51], we use aug-
mented 10, 582 training samples [17] for PASCAL VOC.
We follow the experiment settings provided by ZS3Net [3].
It provides five splits for each dataset, where each split
contains previous unseen classes gradually as follows: (1)
2-cow/motorbike, (2) 4-airplane/sofa, (3) 6-cat/tv, (4) 8-
train/bottle, (5) 10-chair/potted-plant for PASCAL VOC,
and (1) 2-cow/motorbike, (2) 4-sofa/cat, (3) 6-boat/fence,
(4) 8-bird/tvmonitor, (5) 10-keyborad/aeroplane for PAS-
CAL Context. In all experiments, we exclude training sam-
ples that contain unseen classes, and adopt word2vec [38]
obtained from the names of corresponding classes as se-
mantic features, whose dimension is 300. For evaluation,
we use the mean intersection-over-union (mIoU) metric. In
detail, we provide mIoU scores for sets of seen and unseen
classes, denote by mIoUS and mIoUU , respectively. Since
the arithmetic mean might be dominated by mIoUS , we
compute the harmonic mean (hIoU) of mIoUS and mIoUU .
We do not apply dCRF [26] and a test-time augmentation
strategy during inference. Note that we present more results
including the experiment settings provided by SPNet [51] in
the supplementary material.
Training. For fair comparison, we use DeepLabV3+ [6]
with ResNet-101 [18] as our visual encoder. Following
ZS3Net [3], ResNet-101 is initialized with the pre-trained
weights for ImageNet classification [9], where training sam-
ples of seen classes are used only. We train the visual en-
coder using the SGD optimizer with learning rate, weight
decay, and momentum of 2.5e-4, 1e-4, and 0.9, respectively.
We adopt a linear layer as the semantic encoder, and train
it using the Adam optimizer with learning rate of 2e-4. The
entire model is trained for 50 and 200 epochs with a batch
size of 32 on PASCAL VOC [10] and Context [40], respec-
tively. We use the poly schedule to adjust the learning rate.
In all experiments, we adopt a Euclidean distance for d(·, ·).
Hyperarameters. We empirically set (r, τs, τµ) to (4, 5, 1)

and (4, 7, 1) for PASCAL VOC [10] and Context [40], re-
spectively. Other parameters (λ, σ) are chosen by cross-
validation for each split as in [2]. We provide a detailed
analysis on these parameters in the supplementary material.

4.2. Results
We compare in Table 1 our approach with state-of-

the-art GZS3 methods on PASCAL VOC [10] and Con-
text [40]. We report average scores over five runs with stan-
dard deviations. All numbers for other methods are taken
from CSRL [32]. From this table, we have three findings as
follows: (1) Our approach outperforms SPNet [51] on both
datasets by a considerable margin in terms of mIoUU and
hIoU. This confirms that exploiting a joint embedding space
enables learning better representations. (2) We achieve a
new state of the art on four out of five PASCAL VOC
splits. Although CSRL shows better results on the unseen-2
split, they require semantic features of unseen classes dur-
ing training. This suggests that both generator and classifier
of CSRL should be retrained whenever novel unseen classes
appear, which is time consuming. Our discriminative ap-
proach is more practical in that the semantic encoder takes
semantic features of arbitrary classes without the retrain-
ing process. (3) We can clearly see that our approach out-
performs all other methods including the generative meth-
ods [3, 32] on all splits of PASCAL Context. A plausible
reason is that PASCAL Context contains four times more
seen classes including stuff ones than VOC. This makes the
generative methods suffer from a severe bias problem to-
wards seen classes.

4.3. Discussion
Ablation study. In the first four rows of Table 2, we present
an ablation analysis on different losses in our framework.
We adopt a simple NN classifier to focus on the effect of
each term. Since the CE loss is crucial to learn discrim-
inative visual features, we incorporate it to all variants.
To the baseline, we report mIoU scores without both Lbar

and Lsc, i.e., r = 1 and λ = 0, in the first row. The sec-
ond row shows that the BAR loss gives a hIoU gain of 0.9%
over the baseline. This is significant in that the difference
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between the first two rows is whether a series of two inter-
polations is applied to a semantic feature map or not, be-
fore inputting it to a semantic encoder (see Sec. 3.2). We
can also see that explicitly regularizing the distances be-
tween semantic prototypes improves performance for un-
seen classes in the third row. The fourth row demonstrates
that BAR and SC terms are complementary to each other,
achieving the best performance.

Comparison with CS. The last two rows in Table 2 show a
quantitative comparison of CS [5] and AC in terms of mIoU
scores. We can see that both CS and AC improve perfor-
mance for unseen classes by large margins. A reason is that
visual features for unseen classes are skewed and biased to-
wards those of seen classes (Fig. 4(a)). It is worth noting
that AC further achieves a mIoUU gain of 2.7% over CS
with a negligible overhead, demonstrating the effectiveness
of using the Apollonius circle. In Fig. 5, we plot perfor-
mance variations according to the adjustable parameter for
each method, i.e., γ and σ, in the range of [0, 12] and (0, 1]
with intervals of 0.5 and 0.05 for CS and AC, respectively.
We first compare the mIoUU -mIoUS curves in Fig. 5 (left).
For comparison, we visualize the mIoUS of the NN clas-
sifier by a dashed line. We can see that AC always gives
better mIoUU scores for all mIoUS values on the left-hand
side of the dashed line, suggesting that AC is more robust
w.r.t. the adjustable parameter. We also show that how false
negatives of seen classes change according to true positives
of unseen classes (TPU ) in Fig. 5 (right). In particular, we
compute false negatives of seen classes, when they are pre-
dicted as one of unseen classes, denoted by FNS→U . We
can clearly see that CS has more FNS→U than AC at the
same value of TPU , confirming once again that AC is more
robust to the parameter, while providing better results.

Analysis of embedding spaces. To verify that exploit-
ing a joint embedding space alleviates a seen bias prob-
lem, we compare in Table 3 variants of our approach with
ZS3Net [3]. First, we attempt to project visual features to
corresponding semantic ones without exploiting a semantic
encoder. This, however, provides a trivial solution that all
visual features are predicted as a background class. Second,
we adopt a two-stage discriminative approach, that is, train-
ing visual and semantic encoders sequentially. We first train
a segmentation network that consists of a feature extractor
and a classifier with seen classes. The learned feature ex-
tractor is then fixed and it is used as a visual encoder to
train a semantic encoder (‘S→V’). We can see from the first
two rows that this simple variant with BAR and SC terms
already outperforms ZS3Net, demonstrating the effective-
ness of the discriminative approach. These variants are,
however, outperformed by our approach that gives the best
hIoU score of 44.6 (Table 1). To further verify our claim,
we train the generator of ZS3Net using visual features ex-
tracted from our visual encoder (‘ZS3Net‡’). For compar-

Table 2: Comparison of mIoU scores using different loss terms
and inference techniques on the unseen-4 split of PASCAL Con-
text [40]. For an ablation study on different loss terms, we use a
NN classifier without applying any inference techniques in order
to focus more on the effect of each term. CS: calibrated stack-
ing [5]; AC: Apollonius circle.

Lce Lcenter Lbar Lsc CS AC mIoUS mIoUU hIoU
X X 37.7 10.0 15.8
X X 37.9 10.7 16.7
X X X 36.1 11.8 17.8
X X X 36.2 12.9 19.0
X X X X 36.2 29.1 32.3
X X X X 35.7 31.8 33.7
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Figure 5: Comparison of CS [5] and AC by varying γ and σ,
respectively, on the unseen-4 split of PASCAL Context [40]. We
show the mIoUU -mIoUS curves (left), and how FNS→U changes
w.r.t. TPU (right). Best viewed in color.

Table 3: Quantitative comparison on the unseen-4 split of PAS-
CAL VOC [10]. †: reimplementation; ‡: our visual encoder.

Methods mIoUS mIoUU hIoU
S→V: Lcenter 61.7 20.9 31.2
S→V: Lbar + Lsc 65.7 30.3 41.5
ZS3Net [3] 66.4 23.2 34.4
ZS3Net† 68.8 28.8 40.6
ZS3Net‡ 68.5 31.8 43.4

ison, we also report the results obtained by our implemen-
tation of ZS3Net (‘ZS3Net†’). From the last two rows, we
can clearly see that ‘ZS3Net‡’ outperforms ‘ZS3Net†’. This
confirms that our approach alleviates the seen bias problem,
enhancing the generalization ability of visual features.

5. Conclusion
We have introduced a discriminative approach, dubbed

JoEm, that overcomes the limitations of generative ones in
a unified framework. We have proposed two complemen-
tary losses to better learn representations in a joint embed-
ding space. We have also presented a novel inference tech-
nique using the circle of Apollonius that alleviates a seen
bias problem significantly. Finally, we have shown that our
approach achieves a new state of the art on standard GZS3
benchmarks.
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