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Abstract

Geometric feature extraction is a crucial component of
point cloud registration pipelines. Recent work has demon-
strated how supervised learning can be leveraged to learn
better and more compact 3D features. However, those ap-
proaches’ reliance on ground-truth annotation limits their
scalability. We propose BYOC: a self-supervised approach
that learns visual and geometric features from RGB-D
video without relying on ground-truth pose or correspon-
dence. Our key observation is that randomly-initialized
CNNs readily provide us with good correspondences; al-
lowing us to bootstrap the learning of both visual and ge-
ometric features. Our approach combines classic ideas
from point cloud registration with more recent representa-
tion learning approaches. We evaluate our approach on in-
door scene datasets and find that our method outperforms
traditional and learned descriptors, while being competitive
with current state-of-the-art supervised approaches.

1. Introduction
One’s ability to align two views of the same scene is

closely intertwined with their ability to identify correspond-
ing points between the two views. The duality between
correspondence estimation and point cloud registration has
long been recognized and serves as the basis for many ap-
proaches in both problems . Given an accurate registration
of a scene, one can easily extract correspondences between
the two views. Conversely, given point correspondences,
one can easily register two views of a scene. Can we lever-
age this cycle to jointly learn both correspondence estima-
tion and point cloud registration from scratch?

At the core of this cycle is the ability to generate good
feature descriptors for points in the scene. The prevail-
ing approach to 3D feature learning relies on preregistered
scenes to sample ground-truth correspondences for the su-
pervised training of a feature encoder. This is done by
sampling positive and negative feature pairs and applying
triplet [12, 32, 35, 57] or contrastive [3, 12, 56] losses.
While very successful, these approaches require us to have

Figure 1. BYOC estimates visual correspondences and uses them
to train a visual and a geometric encoder on RGB-D video frames.
At test time, it can successfully register raw point clouds.

already registered the raw depth or RGB-D scans to gener-
ate the training data. This limits this approach to data that
can be successfully registered with automated approaches
like COLMAP [46]. Ideally, we would leverage the success
of supervised approaches without relying on ground-truth
correspondence labels.

To this end, we propose Bootstrap Your Own Correspon-
dences (BYOC): a self-supervised end-to-end approach
that learns point cloud registration by leveraging pseudo-
correspondence labels. Our approach extracts pseudo-
correspondences using the features of a randomly initial-
ized feature encoder. We use the sampled correspondences
to register the point clouds and apply losses based on the
quality of the registration to train the feature encoders. This
allows us to slowly bootstrap1 the feature learning process
and learn from RGB-D scans without relying on any pose
or correspondence supervision.

1We use bootstrap in its idiomatic rather than its statistical sense.
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This approach works well for registering RGB-D frames,
but it is less effective for raw point clouds. This is pri-
marily due to the fact that randomly initialized 2D CNNs
produce more distinctive features than current point cloud
encoders, as shown in Fig. 3. We leverage this observation
and propose bootstrapping the geometric feature learning
using visual correspondences. We do this by using the es-
timated visual correspondences, as opposed to ground-truth
correspondences [3, 12, 32, 35, 56, 57], to train the geomet-
ric encoder. We train the geometric encoder by adapting
SimSiam [8], a non-contrastive self-supervised approach,
for 3D representation learning. Unlike typical contrastive
self-supervised approaches, SimSiam allows us to train the
model using only positive pairs without requiring negative
sampling or momentum encoders.

Our work draws inspiration from two sources: iterative
closest point algorithm (ICP) [4, 9, 61] and self-supervised
learning with pseudo-labels [7, 26, 34]. While seemingly
different, the same intuition lies at the core of both lines
of work. ICP is a registration algorithm that assumes that
the closest points between two point clouds correspond to
each other. Through iterative refinement and resampling,
it can register roughly aligned point clouds. Meanwhile,
self-supervised learning with pseudo-labels learns to predict
pseudo-labels in the form of the current top prediction [34],
feature clusters [7], or even a previous prediction [26].
Through redefining the labels over time, the model can pro-
gressively learn better representations. Both rely on the ob-
servation that pseudo-labels in a well-structured space (i.e.,
similar entities already lie close to each other) can provide
a valuable learning signal. This is particularly relevant for
learning due to the observation that CNNs, even when ran-
domly initialized, are good feature extractors [42, 51].

We evaluate our approach on two indoor scene datasets:
ScanNet [13] and 3D Match [60]. Despite the simplicity
of our approach, it outperforms hand-crafted features as
well as several supervised baselines, while being compet-
itive with current state-of-the-art supervised approaches.

In summary, we propose a self-supervised approach that
uses sampled correspondences from randomly-initialized
feature encoders to learn point-wise features for point cloud
registration (Sec. 3.1). We further demonstrate how vi-
sual correspondences can further improve geometric feature
learning (Sec. 3.2). We demonstrate the efficacy of this ap-
proach on point cloud registration (Sec. 4.1) and correspon-
dence estimation (Sec. 4.2).

2. Related Work
3D Feature Descriptors. Early work on feature point
extraction can be traced back to using corners for stereo
matching [38]. The core intuition of extracting features
based on histograms of gradients was later extended to 3D
features [29, 30, 44, 45, 49]. More recently, the focus has

shifted towards leveraging supervised learning for 3D fea-
ture learning [3, 12, 14–16, 22, 32, 35, 55, 57, 64]. The
common approach is to sample positive and negative pairs
between two views and then use them in triplet [12, 32, 35,
57] or contrastive [3, 12, 15, 56] losses. Other approaches
propose applying unsupervised learning on reconstructed
scenes [14, 56, 64]. While those approaches do not explic-
itly use ground-truth pose, they rely on reconstructed scenes
which are generated using ground-truth pose. Unlike prior
work, our approach learns directly from RGB-D scans with-
out relying on ground-truth pose, and focuses on point cloud
registration as an end task.

Point Cloud Registration. Early work on point cloud
registration assumed perfect correspondence between the
point clouds [2, 36]. This assumption was later relaxed
by ICP by assuming that the closest point is the corre-
spondence [4, 9, 61]. While this assumption holds for
several applications (e.g., registering scans from a high
frame-rate scanner or fine-tuning alignment), it is chal-
lenged by large transformations and partially overlapping
point clouds. Later work focused on designing feature
descriptors for establishing correspondence and using ro-
bust estimators such as RANSAC to handle noise and out-
liers [50, 62]. For a review, see [39]. This has been ex-
tended further by incorporating learning into the registra-
tion process [5, 6, 10, 19, 21, 28, 40, 58]. Finally, recent
work has proposed self-supervised approaches for regis-
tering objects [1, 27, 28, 54, 55, 58, 59] or reconstructed
scenes [14, 32, 64]. Those approaches operate on dense
point clouds that are constructed from aligned partial views.
Hence, while the method might be self-supervised, the over-
all approach still requires ground-truth annotation. We are
inspired by this line of work and extend it by learning di-
rectly from RGB-D scans instead of reconstructed scenes.

Self-supervised learning. Self-supervised learning refers
to approaches that apply supervised learning to tasks where
the data itself serves as the supervision. This idea has
been very popular for 2D representation learning with the
goal of learning representations that generalize to down-
stream tasks [8, 17, 18, 20, 24, 26, 48]. Recently, Point-
Contrast [56] and DepthContrast [63] demonstrated how to
extend this formulation to 3D representation learning. We
are inspired by this line of work but differ from it in several
ways. First, our goal is to learn good features for registra-
tion, not for different downstream tasks. Second, we learn
from RGB-D videos, not reconstructed scenes like [56].
Also, we learn point-level representations, not scene-level
representations like [63]. Finally, while prior work has
focused on using contrastive learning, we show that non-
contrastive learning [8, 26] can be very effective for 3D fea-
ture learning despite being far simpler.

6434



Figure 2. BYOC. Our model takes as input two RGB-D images of a scene. First, we extract visual features from the images and geometric
features from the point clouds. This results in two point clouds where each point has a 3D location, visual feature, and geometric feature.
We then extract correspondences from the visual and geometric features. Those correspondences are used to estimate a transformation and
compute a registration loss. We also apply a feature similarity loss on geometric features sampled using the visual correspondences.

3. Approach
The goal of this work is to learn geometric point cloud

registration from RGB-D video without relying on pose
or correspondence supervision. Our approach, shown in
Fig. 2, has three major components: visual registration, ge-
ometric registration, and correspondence transfer. The first
two components are based on the traditional registration
pipeline of feature extraction, correspondence estimation,
and geometric fitting. The only difference between them
is whether the features are extracted using a visual encoder
from the image or a geometric encoder from the point cloud.
The third component is based on SimSiam [8] and applies a
feature similarity loss on pairs of geometric features that are
sampled using visual correspondences. Our key insight is
that randomly initialized CNNs produce features that allow
for coarse correspondence estimation and registration. This
allows us to bootstrap the learning of both visual and ge-
ometric encoders by using estimated correspondences with
registration and feature similarity losses.

3.1. Point Cloud Registration

Given two point clouds, P0 and P1, point cloud registra-
tion is the task of finding the transformation T ∈ SE(3) that
aligns them. Registration approaches commonly consist of
three stages: feature extraction, correspondence estimation,
and geometric fitting. In our approach, we register the point
cloud pair using either visual or geometric features. Below
we discuss each of these steps in detail.

Geometric Feature Extraction. The geometric encoder
extracts features based on the geometry of the point cloud.
We first generate a point cloud for each view using the in-
put depth and known camera intrinsic matrix. We then en-
code each point cloud using a sparse 3D convolutional net-
work [11, 25]. We use this network due to its success as a
back-end for supervised registration approaches [10, 12, 21]

and 3D representation learning [56, 63]. This network ap-
plies sparse convolution to a voxelized point cloud; allow-
ing it to extract features based on local geometry while
maintaining a quick run-time. Similar to prior work [12,
56, 63], we find that a voxel size of 2.5 cm works well
for indoor scenes. This step maps our input RGB-D im-
age, I0, I1 ∈ R4×H×W to P0,P1 ∈ RN×(3+F ) where each
point cloud has N points, and each point p is represented by
a 3D coordinate xp and a F -dimensional geometric feature
vector gp.2 We use a feature dimension of 32.

Visual Feature Extraction. The visual encoder extracts
features based on the image. We use a ResNet encoder with
two residual blocks as our image encoder and map each
pixel to a feature vector of size 32. We use the projected 3D
coordinates of the voxelized point cloud from the geomet-
ric encoder to index into the 2D feature map. This allows
us to generate a point cloud for each input RGB-D image,
where each point p ∈ P has a 3D coordinate xp, a visual
feature vp, and a geometric feature gp. Since each point
can be represented by a visual or a geometric feature, we
can easily transfer the correspondences between the differ-
ent feature modalities as shown in Sec. 3.2. We note that we
only use the visual encoder during training to bootstrap the
geometric feature learning. At test time, we register point
clouds using only the geometric encoder.

Correspondence estimation. We estimate the correspon-
dences between the two input views for each feature modal-
ity to output two sets of correspondences: Cvis and Cgeo. We
first generate a list of correspondences by finding the near-
est neighbor to each point in the appropriate feature space.
Since each point cloud has N points, we end up with 2N
candidate correspondences for each modality.

2Voxelization will result in point clouds of varying dimension. We use
heterogeneous batching to handle this in our implementation, but assume
that point clouds have the same size in our discussion for clarity.
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The candidate correspondences will likely contain a lot
of false positives due to poor matching, repetitive features,
and occluded or non-overlapping portions of the image. The
common approach is to filter the correspondences based
on some criteria of uniqueness or correctness. Recent ap-
proaches propose learning networks that estimate a weight
for each correspondence [10, 21, 40]. In this work, we lever-
age the method proposed by [19] of using a weight based on
Lowe’s ratio [37]. Given two point clouds, P0 and P1, we
find the correspondences of point p ∈ P0 by finding the two
nearest neighbors qp and qp,nn2

to p in P1 in feature space.
We can calculate the Lowe’s ratio weight as follows:

wp,qp = 1−
D(fp, fqp)

D(fp, fqp,nn2
)

(1)

where D is cosine distance, and fp is either the visual or
the geometric feature descriptor depending on the feature
modality used. It is worth noting that this formulation is
similar to the triplet loss often used in contrastive learn-
ing, where qp is the positive sample and qp,nn2

is the hard-
est negative sample. We use the resulting weights to rank
the correspondences and only include the top k correspon-
dences. We use k = 400 in our experiments. Each element
of our correspondence set C consists of the two correspond-
ing points and their weight (p, q, wp,q).

Geometric Fitting. For each set of correspondences, we
estimate the transformation, T∗ ∈ SE(3) that would min-
imize the mean-squared error between the aligned corre-
spondences:

E(C,T) =
∑

(p,qp,w)∈C

w∑
C w

||xqp −T(xp)|| (2)

This problem can be reformulated as a weighted Procrustes
problem [23, 31, 47, 52] allowing for weights to be inte-
grated into the operation to improve the optimization pro-
cess while maintaining differentiability with respect to the
weights [10]. We adopt this formulation due to its relative
simplicity and ease of incorporation within an end-to-end
trainable system.

Despite having filtered the correspondences, the corre-
spondence set might still include some outliers that would
result in an incorrect geometric fitting. We adopt the ran-
domized optimization used in [19], and similarly find that
we get the best performance by only using it at test time.

Registration Loss. Our registration loss is defined with
respect to our correspondence set and the estimated trans-
formation as follows:

Lreg(C) = argmin
T∈SE(3)

E(C,T) (3)

There are a few interesting things about this loss. First,
the gradients are back-propagated to the feature encoder

Figure 3. Randomly-initialized CNNs are good feature extrac-
tors. We can estimate good correspondences from random visual
features, but not random geometric features. We leverage this ob-
servation to bootstrap the learning of geometric features using vi-
sual correspondences.

through both the weights, w, and the transformation,
T. Hence, the loss can be formulated without using the
weights. We find that using the weight improved the
performance of visual registration while deteriorating the
performance of geometric registration. Therefore, in our
model, we only apply the weighting to the visual registra-
tion branch while removing it from the geometric branch.

Second, the loss operates as a weighted sum over the
residuals. Specifically, the loss is minimized if the corre-
spondence with the lowest residual error has the highest
weight. Since the weights are L1 normalized, the relative
weighing of the correspondences matters. Removing the
normalization results in an obvious degeneracy since the
loss can be minimized by driving the weights to 0, which
can be achieved by mode collapse. Finally, the weighted
loss closely resembles a triplet loss since we estimate both a
positive (first nearest neighbor) and a hardest negative (sec-
ond nearest neighbor) sample. However, unlike the com-
monly used margin triplet loss, this formulation does not
require defining a margin as it operates on the ratio of dis-
tances rather than their absolute value.
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3.2. Visual → Geometric

The approach outlined in Sec. 3.1 works well with visual
features, but it is less effective with geometric features. The
reason for this becomes apparent once we consider the reg-
istration performance using features from randomly initial-
ized encoders. As shown in Fig. 3, we observe that the fea-
tures extracted from a randomly initialized visual encoder
provide some distinctive output, while a random geomet-
ric encoder’s outputs are more random. This has a strong
impact on registration as shown in Tab. 2.

Ideally, we would leverage the good visual correspon-
dence to further bootstrap the geometric feature learning.
We observe that geometric feature learning approaches typ-
ically define metric learning losses using sampled corre-
spondences [3, 12, 22, 35, 57]. We adapt this approach to
the unsupervised setting by sampling feature pairs using vi-
sual correspondences. This is simple in our approach since
each point has both a visual feature and a geometric feature,
so transferring correspondences is simply indexing into an-
other tensor. Since the correspondences act as indices, the
loss is only back-propagated to the geometric encoder.

Current 3D feature learning approaches rely on both pos-
itive and negative pairs to define triplet [12, 32, 35, 57]
or contrastive [3, 12, 56] losses. However, as noted in
the literature, those losses can be difficult to apply due to
their susceptibility to mode collapse and sensitivity to hy-
perparameter choices and negative sampling strategy [12,
56, 63]. Those issues are amplified in our setting since
the visual correspondences only provide us with estimated,
not ground-truth, positive samples. Instead of the typi-
cal contrastive setup, we adapt the recently proposed non-
contrastive self-supervised learning approaches [8, 26] to
the point cloud setting. We use SimSiam [8] due to its sim-
plicity and strong performance: it does not require negative
sampling or a momentum encoder.

We adapt SimSiam by applying it to the geometric fea-
tures of visually corresponding points instead of different
augmentations of the same image. Given a correspondence
(p, q) ∈ Cvis, we first project the features using a two-layer
MLP projection head and apply a stop-gradient operator on
the features:

zp = project(gp). (4)

gp = stopgradient(gp). (5)

We then compute the loss based on the cosine distance be-
tween each geometric feature and the projection of its cor-
respondence:

LV→G(Cvis) =
1

|Cvis|
∑

(p,q)∈Cvis

D(gp, zq) +D(zp,gq) (6)

where D is the cosine distance function and Cvis is the set
of visual correspondences.

4. Experiments

We evaluate our approach on point cloud registration of
indoor scenes. We train our model on ScanNet, a large
dataset of indoor scenes, and evaluate it on ScanNet and
the 3D Match registration benchmark. Our experiments aim
to answer two questions: (1) can we learn accurate point
cloud registration from bootstrapped correspondences?; (2)
can we leverage RGB-D video at training time to train better
geometric encoders?

BYOC variants. We consider two variants of our model:
BYOC-Geo and BYOC. BYOC-Geo is trained only on
depth pairs using the geometric registration loss. This vari-
ant applies the bootstrapping idea without leveraging the vi-
sual correspondence. BYOC, shown in Fig. 2, is trained us-
ing RGB-D pairs, but only uses the geometric encoder for
registration at test time. Since BYOC uses visual correspon-
dences to train the geometric features, we use data augmen-
tation to further improve the geometric feature learning. We
sample random rotations and apply them to the point cloud
before the geometric encoder. This is a common augmen-
tation in 3D feature learning [12, 56] and is intended to im-
prove the learned feature’s rotational equivariance. We note
that training BYOC-Geo with rotation augmentation greatly
deteriorates its performance.

Datasets. We evaluate our approach on two datasets of in-
door scenes: ScanNet [13] and 3D Match [60]. While both
datasets provide RGB-D video annotated with ground-truth
camera poses, 3D Match provides an additional geomet-
ric registration benchmark that is more challenging due to
the larger viewpoint changes. ScanNet provides pose an-
notated RGB-D video for 1513 scenes, while 3D Match’s
RGB-D video dataset only spans 101 scenes. We empha-
size that we only use RGB-D video and camera intrinsics
for training our model. We use the official train/valid/test
scene split for both datasets, and generate view pairs by
sampling image pairs that are 20 frames apart. This re-
sults in 1594k/12.6k/26k RGB-D pairs for ScanNet and
122k/1.5k/1.5k RGB-D pairs for 3D Match.

Training Details. We train our model with the Adam [33]
optimizer using a learning rate of 10−4 and momentum pa-
rameters of (0.9, 0.99). We train each model for 200K it-
erations with a batch size of 8. We implement our mod-
els in PyTorch [41], with extensive use of PyTorch3D [41],
Open3D [65], and Minkowski Engine [11]. The code is
available at https://github.com/mbanani/byoc.

4.1. Point Cloud Registration

We first evaluate our approach on point cloud registra-
tion on ScanNet and report our results in Tab. 1. Given two
point clouds, we estimate the transformation T ∈ SE(3)
that would align the point clouds. We emphasize that we
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Rotation Translation Chamfer
Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓

Train Set Pose Sup. 5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

ICP (Point-to-Point) - 31.7 55.6 99.6 10.4 8.8 7.5 19.4 74.6 22.4 20.0 8.4 24.7 40.5 32.9 14.1
ICP (Point-to-Plane) - 54.4 68.0 98.6 8.6 3.6 30.0 36.7 70.4 23.6 18.0 31.6 43.1 53.5 229.5 8.2
FPFH [44] + Weighted Procrustes - 22.2 48.2 84.9 27.8 10.4 7.4 19.6 56.3 54.1 25.3 17.5 46.8 61.2 26.5 5.8
FPFH [44] + RANSAC - 34.1 64.0 90.3 20.6 7.2 8.8 26.7 66.8 42.6 18.6 27.0 60.8 73.3 23.3 2.9

FCGF [12] + Weighted Procrustes 3D Match ✓ 54.1 73.3 92.2 15.3 4.3 30.8 46.2 73.0 35.0 11.6 45.6 67.4 76.4 21.5 1.4
FCGF [12] + RANSAC 3D Match ✓ 75.3 87.7 95.6 9.7 2.5 39.7 64.9 86.5 20.8 6.4 62.5 83.1 88.2 13.0 0.6
FCGF [12] + DGR [10] 3D Match ✓ 83.6 90.5 95.2 9.0 1.7 57.6 78.8 91.3 17.1 4.2 76.5 89.4 91.8 10.7 0.3
FCGF [12] + 3D MV Reg [21] 3D Match ✓ 87.7 93.2 97.0 6.0 1.2 69.0 83.1 91.8 11.7 2.9 78.9 89.2 91.8 10.2 0.2

BYOC 3D Match 66.5 85.2 97.8 7.4 3.3 30.7 57.6 88.9 16.0 8.2 54.1 82.8 89.5 9.5 0.9
BYOC-Geo ScanNet 80.3 92.8 98.8 4.8 2.3 46.5 74.6 94.6 10.6 5.4 71.9 91.1 94.5 7.2 0.5
BYOC + RANSAC ScanNet 81.3 92.8 98.4 5.6 2.4 37.8 69.7 92.1 13.3 6.4 67.7 89.8 93.5 7.7 0.5
BYOC ScanNet 86.5 95.2 99.1 3.8 1.7 56.4 80.6 96.3 8.7 4.3 78.1 93.9 96.4 5.6 0.3

Table 1. Pairwise Registration on ScanNet. We outperform existing registration pipelines that use traditional or learned geometric feature
descriptors with a RANSAC or Weighted Procrustes estimator. Furthermore, we perform on-par with supervised approaches that were
trained on 3D Match, demonstrating the utility of unsupervised training in this domain. Pose Sup. indicates pose supervision.

discard the visual encoder at the test time and only use the
geometric encoder on the point cloud input.

Baselines. We compare our approach to both classical
hand-crafted and supervised learning approaches. We first
compare our approach against two variants of ICP [43]. ICP
is an important baseline since it is both an inspiration of
this work and a classical point cloud registration algorithm.
We also compare against a RANSAC-based aligner using
FPFH [44] or FCGF [12] 3D feature descriptors. FPFH [44]
is a hand-crafted 3D feature descriptor that represents a
point by a histogram of the spatial relationships to its near-
est neighbors. FPFH is one of the best non-learned 3D
feature descriptors and is representative of the performance
of hand-crafted 3D features. FCGF [12] is a recently pro-
posed learned 3D feature descriptor that combines sparse
3D convolutional networks with contrastive losses trained
on ground-truth correspondences to achieve state-of-the-art
performance on several registration benchmarks.

We also compare against Deep Global Registration [10]
and 3D Multiview Registration3 [22]: two supervised ap-
proaches that learn to estimate correspondences on top of
FCGF features. Those approaches use supervision for both
feature learning and correspondence estimation, while our
approach is unsupervised for both.

Evaluation Metrics. We evaluate the pairwise registration
by calculating the rotation and translation error between the
predicted and ground-truth transformation as follows:

Erotation = arccos(
Tr(RprR

⊤
gt)− 1

2
), (7)

Etranslation = ||tpr − tgt||2. (8)
3It is worth noting that 3D Multi-view Registration [21] proposes both

a method for pairwise registration and synchronizing multiple views at the
same time. We only compare against their pairwise registration module.

We report the translation error in centimeters and the ro-
tation errors in degrees. We also report the chamfer dis-
tance between the predicted and ground-truth alignments of
the scene. For each metric, we report the mean and median
errors as well as the accuracy at different thresholds.

Results. We first note that ICP approaches fail on this
task. ICP assumes that the point clouds are prealigned and
can be very effective at fine-tuning such alignment by min-
imizing a chamfer distance. However, our view pairs have
a relatively large camera motion with the mean transforma-
tion between two views being 11.4 degrees and 19.4 cm.
As a result, ICP struggles with the large transformations
and partial overlap between the point cloud pairs. Similarly,
FPFH also fails on this task as its output descriptors are not
distinctive enough, resulting in many false correspondences
which greatly deteriorates the registration performance.

On the other hand, learned approaches show a clear ad-
vantage in this domain as they are able to learn features that
are well-tuned for the task and data domain. Our model is
able to outperform FCGF despite FCGF being trained with
ground-truth correspondences on an indoor scene dataset.
This is true regardless of whether our model is trained us-
ing RGB-D or depth pairs. While we find that our model
trained on 3D Match performs worse than FCGF, this is ex-
pected since 3DMatch is a much smaller dataset making it
less suitable for a self-supervised approach.

Finally, our approach is competitive with approaches that
use supervision for both feature learning and correspon-
dence estimation [10, 21]. This comparison represents the
difference between full supervision on a small dataset vs.
self-supervision on a large dataset. Our competitive perfor-
mance demonstrates the promise of self-supervision in this
space and our model’s ability to learn from a very simple
learning signal: consistency between video frames.
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Rotation (deg) Translation (cm) Chamfer

Mean Median Mean Median Mean Median

Random Visual 6.4 2.7 14.9 7.0 9.8 0.6
Random Geometric 21.3 13.0 46.5 28.5 26.0 8.6

BYOC (Visual) 2.7 0.9 6.4 2.6 3.3 0.1
BYOC-Geo 4.8 2.3 10.6 5.4 7.2 0.5
BYOC 3.8 1.7 8.7 4.3 5.6 0.3

Table 2. Random Visual Features are surprisingly good for
registration. Random visual are better than geometric features
for registration. This discrepancy persists after training.

What is the impact of the transformation estimator?
While we observe that RANSAC improves the performance
of FPFH and FCGF compared to the Weighted Procrustes,
we see the opposite pattern with our approach. This is due
to the fact that our model is trained specifically with a regis-
tration loss on filtered correspondence. As a result, Lowe’s
ratio becomes a very effective method of filtering our corre-
spondences while being less effective for other approaches.

How good are random features? We find that random vi-
sual features can serve as a strong baseline for point cloud
registration on ScanNet, as shown in Fig. 3 and Tab. 2. This
is surprising since random visual features perform on-par
with FCGF. This explains why our method is capable of
achieving this performance without any supervision. We
also find that after training, our visual features achieve the
highest registration performance. Those results suggest that
visual features are better descriptors for registration, but it
is unclear if this a fundamental advantage or if the perfor-
mance gap can be be resolved through better architectures
or training schemes for geometric feature learning.

4.2. Correspondence Estimation

We now examine the quality of the correspondences es-
timated by our method. We evaluate our approach on the
3D Match geometric registration benchmark and follow the
evaluation protocol proposed by Deng et al. [15] of evalu-
ating the correspondence recall. Intuitively, feature-match
recall measures the percentage of point cloud pairs that
would be registered accurately using a RANSAC estimator
by guaranteeing a minimum percentage of inliers.

Baselines. We compare our approach against three sets of
baselines. The first set is hand-crafted features based on the
local geometry around each point [44, 45, 49]. The second
set is supervised approaches that use known pose to sam-
ple ground-truth correspondences and apply a metric learn-
ing loss to learn features for geometric registration. Finally,
the third set is unsupervised approaches trained on recon-
structed scenes. While those approaches do not directly use
ground-truth pose during training, their training data (re-
constructed scenes) is generated by aligning 50 depth maps

Training Data FMR
Dataset Data Format Recall St. Dev.

SHOT [45] - - 0.238 0.109
USC [49] - - 0.400 0.125
FPFH [44] - - 0.481 0.150
FPFH [44] (corr) - - 0.462 0.198

3D Match [60] 3D Match Depth + Pose 0.596 0.088
PPFNet [15] 3D Match Depth + Pose 0.623 0.108
PerfectMatch [22] 3D Match Depth + Pose 0.947 0.027
FCGF [12] 3D Match Depth + Pose 0.952 0.066
FCGF [12] (corr) 3D Match Depth + Pose 0.932 0.104

CGF [40] SceneNN Scenes 0.582 0.142
PPF-FoldNet [14] 3D Match Scenes 0.718 0.105
3D PointCapsNet [64] 3D Match Scenes 0.787 0.062

BYOC (no filtering) ScanNet RGB-D 0.662 0.225
BYOC 3D Match RGB-D 0.690 0.172
BYOC ScanNet RGB-D 0.766 0.181
BYOC-Geo ScanNet Depth 0.786 0.195

Table 3. Feature-Match Recall on 3D Match. Our approach
achieves better recall than hand-crafted and scene-supervised ap-
proaches while being competitive with supervised approaches.

into a single point cloud. Hence, while those approaches
do not use pose supervision explicitly, pose information is
needed to generate their data. We refer to those approaches
as scene-supervised.

Evaluation Metrics. Given a set of correspondences C,
FM(C) evaluates whether the percentage of inliers exceeds
τ2, where an inlier correspondence is defined as having a
residual error less than τ1 given the ground-truth transfor-
mation T∗. Feature-match recall is the percentage of point
cloud pairs that have a successful feature matching.

FM(C) =
[ 1

|C|
∑

(p,q)∈C

1
(
||xp−T∗xq|| < τ1

)]
> τ2 (9)

Similar to [12, 14, 15], we calculate feature-match recall
over all view pairs using τ1 = 10 cm and τ2 = 5%. Prior
approaches often generate feature sets without any specified
means of filtering them. As a result, they define the corre-
spondence set as the set of all nearest neighbors. Unlike
prior work, our approach outputs a small set of correspon-
dences after ranking them using Lowe’s ratio test.

Results. BYOC achieves high feature match recall, outper-
forming traditional and scene-supervised approaches, while
being competitive with supervised approaches. This per-
formance is achieved by only training on the raw RGB-D
or depth scans without requiring any additional annotation
or postprocessing of the data. This across dataset gener-
alization is interesting since ScanNet and 3DMatch differ
in two key ways. First, 3D Match point clouds are gen-
erated by integrating 50 depth frames. As a result, they
are denser than single-frame ScanNet point clouds. Sec-
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Figure 4. BYOC’s geometric features allow for accurate registration by mapping corresponding points to similar feature vectors.
Our approach learns informative geometric features of the scene. We visualize our features by mapping them to colors using t-SNE [53].
We find that the learned features appear to delineate objects such as chairs and floor edges. This results in the accurate registrations shown
in the last column. Our approach takes uncolored point clouds as input; images and colored point clouds are presented to aid visualization.

ond, point cloud pairs in 3D Match have larger view point
changes. Despite those differences, our model can still gen-
eralize from ScanNet to 3D Match. This can be attributed to
both the voxelization performed by the geometric encoder
and the augmentation which gives the model some degree
of equivariance with respect to point cloud density and ro-
tation.

We also observe that BYOC-Geo, which is only trained
with geometric correspondence, generalizes better to 3D
Match despite doing worse on ScanNet. One explanation
for this discrepancy is that bootstrapping with visual cor-
respondences biases the model towards representing fea-
tures that are meaningful in both modalities. Such repre-
sentations might be more dataset specific, hindering across-
dataset generalization. This finding opens up the possibility
of using datasets that only have depth video; e.g., lidar.

While our best configuration performs on par with the
best scene-supervised approach, they outperform us if we
do not filter our correspondences. We observe that when
we attempt to filter the correspondences for FPFH or FCGF,
their performance deteriorates. This is consistent with some
of the reported results by [14] where using a larger number
of features improved their performance. Hence, it is unclear
how correspondence filtering would affect the performance
of self-supervised methods. Due to the lack of publicly-
available implementations of those methods and the com-
plexity of their approach, we were unable to run additional
experiments to better understand the impact of the training
data and correspondence filtering on the learning process.

5. Conclusion
We propose BYOC: a self-supervised approach to point

cloud registration. Our key insight is that randomly initial-
ized CNNs provide us with features that are good enough
to bootstrap visual and geometric feature learning through
point cloud registration. Our approach takes advantage of
pseudo-correspondence labels that are obtained from the
initially random encoders to train them using registration
losses. We also show how non-contrastive learning can
leverage the more accurate visual correspondences to learn
better geometric features. At test time, we only use the ge-
ometric encoder to register point clouds without relying on
any color or image information.

Our approach is both simple and fast: we rely on a fast
sparse 3D convolutional encoder to extract features, use
a ratio test to weigh and filter correspondences, and then
align them using SVD. This deviates from current state-of-
the-art approaches that use expensive prepossessing tech-
niques [14, 15, 64], learn separate networks for correspon-
dence estimation [10, 21, 40], and use RANSAC as the
transformation estimation. Furthermore, we only use depth
or RGB-D videos to train our model. This allows us to train
on any dataset of such format, not only ones that can be
accurately registered by traditional SfM pipelines.
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