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Abstract

In a real-world scenario, human actions are typically
out of the distribution from training data, which requires
a model to both recognize the known actions and reject
the unknown. Different from image data, video actions are
more challenging to be recognized in an open-set setting
due to the uncertain temporal dynamics and static bias of
human actions. In this paper, we propose a Deep Evidential
Action Recognition (DEAR) method to recognize actions
in an open testing set. Specifically, we formulate the ac-
tion recognition problem from the evidential deep learning
(EDL) perspective and propose a novel model calibration
method to regularize the EDL training. Besides, to miti-
gate the static bias of video representation, we propose a
plug-and-play module to debias the learned representation
through contrastive learning. Experimental results show
that our DEAR method achieves consistent performance
gain on multiple mainstream action recognition models and
benchmarks. Code and pre-trained models are available at
https://www.rit.edu/actionlab/dear.

1. Introduction
Video action recognition aims to classify a video that

contains a human action into one of the pre-defined action
categories (closed set). However, in a real-world scenario, it
is essentially an open set problem [52], which requires the
classifier to simultaneously recognize actions from known
classes and identify actions from unknown ones [46, 17].
In practice, open set recognition (OSR) is more challenging
than closed set recognition, while it is important for appli-
cations such as face recognition [36], e-commerce product
classification [60], autonomous driving [45], and so on.

OSR was originally formalized in [46] and many exist-
ing approaches have been proposed using image datasets
such as MNIST [32] and CIFAR-10 [30]. However, unlike
OSR, limited progress has been achieved for open set action
recognition (OSAR) which is increasingly valuable in prac-
tice. In fact, novel challenges arise in OSAR from the fol-
lowing key aspects. First, the temporal nature of videos may
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Figure 1: Open Set Action Recognition Performance. HMDB-
51 [31] and MiT-v2 [39] are separately used as small- and large-
scale unknown data for models trained on the closed set UCF-
101 [54]. Our DEAR method (⋆) significantly outperforms exist-
ing approaches on multiple action recognition models.

lead to a high diversity of human action patterns. Hence, an
OSAR model needs to capture the temporal regularities of
closed set actions but also be aware of what it does not know
when presented with unknown actions from an open set sce-
nario. Second, the visual appearance of natural videos typ-
ically contain static biased cues [34, 11] (e.g., “surfing wa-
ter” in totally different scenes as shown in Fig. 2). With-
out addressing the temporal dynamics of human actions,
the static bias could seriously hamper the capability of an
OSAR model to recognize unknown actions from an un-
biased open set. Due to these challenges, existing effort
on OSAR is quite limited with few exceptions [52, 27, 62].
They simply regard each video as a standalone sample and
primarily rely on image-based OSR approaches. As a re-
sult, they fall short in addressing the inherent video-specific
challenges in the open set context as outlined above.

In this paper, we propose a Deep Evidential Action
Recognition (DEAR) method for the open set action recog-
nition task. To enable the model to “know unknown” in
an OSAR task, our method formulates it as an uncertainty
estimation problem by leveraging evidential deep learning
(EDL) [49, 65, 51, 1, 48]. EDL utilizes deep neural net-
works to predict a Dirichlet distribution of class probabili-
ties, which can be regarded as an evidence collection pro-
cess. The learned evidence is informative to quantify the
predictive uncertainty of diverse human actions so that un-
known actions would incur high uncertainty, i.e., the model
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knows the unknown. Furthermore, to overcome the poten-
tial over-fitting risk of EDL in a closed set, we propose a
novel model calibration method to regularize the evidential
learning process. Besides, to mitigate the static bias prob-
lem for video actions, we propose a plug-and-play mod-
ule to debias the learned representation through contrastive
learning. Benefiting from the evidential theory, our DEAR
method is practically flexible to implement and provides a
principled way to quantify the uncertainty for identifying
the unknown actions. Experimental results show that the
DEAR method boosts the performance of existing powerful
action recognition models with both small and large-scale
unknown videos (see Fig. 1), while still maintains a high
performance in traditional closed set recognition setting.

Distinct from existing OSR methods [52, 27], the pro-
posed DEAR is the first evidential learning model for large-
scale video action recognition. DEAR is superior to exist-
ing Bayesian uncertainty-based methods [27] in that model
uncertainty can be directly inferred through evidence pre-
diction that avoids inexact posterior approximation or time-
consuming Monte Carlo sampling [1]. Moreover, our pro-
posed model calibration method ensures DEAR to be confi-
dent in accurate predictions while being uncertain about in-
accurate ones. Compared to [52] that incrementally learns a
classifier for unknown classes, our method is more flexible
in training without the access to unknown actions. More-
over, our proposed debiasing module could reduce the detri-
mental static bias of video actions so that the model is robust
to out-of-context actions in the open set setting.

In summary, the contribution of this paper is three-fold:

• Our Deep Evidential Action Recognition (DEAR)
method performs novel evidential learning to support
open set action recognition with principled and effi-
cient uncertainty evaluation.

• The proposed Evidential Uncertainty Calibration
(EUC) and Contrastive Evidential Debiasing (CED)
modules effectively mitigate over-confident predic-
tions and static bias problems, respectively.

• The DEAR method is extensively validated and consis-
tently boosts the performance of state-of-the-art action
recognition models on challenging benchmarks.

2. Related Work
Open Set Recognition. OSR problem originates from

face recognition scenario [33] and it is firstly formalized
by Scheirer et al. [46]. In [46], to reject the unknown
classes, a binary support vector machine (SVM) was in-
troduced by adding an extra hyper-plane for each new
class. Based on this work, the Weibull-calibrated SVM
(W-SVM) [47] and PI -SVM [21] are further proposed to

(a) Kinetics [7] (b) Mimetics [58]

Figure 2: An Example of Static Bias. To recognize the human
action (i.e., “Surfing Water”), the recognition model which is bi-
ased to the background of water and sky in the closed set (Kinet-
ics) would be unable to recognize the same action with the indoor
scene in open set (Mimetics as unknown).

calibrate the class confidence scores by leveraging the sta-
tistical extreme value theory (EVT). With the recent suc-
cess of deep learning, deep neural networks (DNN) are
widely used in OSR problem. To overcome the drawbacks
of softmax in DNN, Bendale et al. [5] proposed OpenMax
to bound the open space risk for DNN models. Based on
this work, G-OpenMax [16] adopted generative method to
synthesize unknown samples in the training of DNNs. Sim-
ilarly, recent deep generative adversarial networks (GANs)
were used to generate samples of unknown class for OSR
task [42, 13]. To reject the unknown, variational auto-
encoder (VAE) was recently used to learn the reconstruc-
tion error in OSR task [43, 63, 56]. Different from these
methods, our method is the first work to introduce the evi-
dential deep learning (EDL) for the OSR task and show the
advantage over existing approaches.

For open set action recognition (OSAR) problem, it is
much more challenging than OSR problem while only a few
existing literature explored it. Shu et al. [52] proposed ODN
by incrementally adding new classes to the action recogni-
tion head. To capture the uncertainty of unknown classes,
Bayesian deep learning is recently introduced to identify the
unknown actions in [27, 55, 28]. Busto et al. [6] proposed
an open set domain adaptation method. However, existing
methods ignore the importance of uncertainty calibration
and static bias of human actions in video data. In a broader
context, uncertainty-based OSR is also closely related to
out-of-distribution (OOD) [57]. Other less related topics
such as anomaly detection [44], generalized zero-shot learn-
ing [38], and open world learning [4] are out of the scope in
this paper and comprehensively reviewed in [17].

Deep Learning Uncertainty. To distinguish between
the unknown and the known samples, an appropriate OOD
scoring function is important. A recent line of research
works [27, 37, 9, 51, 48] show that the predictive uncer-
tainty learned by deep neural networks (DNN) can be a
promising scoring function to identify OOD samples. It is
assumed that OOD samples should be highly uncertain dur-
ing inference. Bayesian neural networks (BNN) has been
introduced to model the epistemic and aleatoric uncertainty
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Figure 3: The proposed DEAR method. We use 3-class (K = 3)
action recognition (AR) for illustration. On top of the AR back-
bone, the Evidential Neural Network (ENN) head predicts the ev-
idence e to build the Dirichlet distribution of class probability p.
The evidential uncertainty (u) from the Dirichlet is used for reject-
ing the unknown in open set testing.

for multiple computer vision tasks [23, 26, 3]. However,
BNN is limited by the intractability of exact posterior infer-
ence, the difficulty of choosing suitable weight priors, and
the expensive sampling for uncertainty quantification [1].
Recently, evidential deep learning (EDL) is developed by
incorporating the evidential theory into deep neural net-
works with promising results in both classification [49] and
regression [1] tasks. In this paper, to the best of our knowl-
edge, we are the first to incorporate evidential learning for
large-scale and uncertainty-aware action recognition.

Video Action Recognition. Video action recognition
has been widely studied in closed set setting [59, 25, 64].
In this paper, we select several representative and powerful
methods, including the 3D convolution method I3D [8], the
2D convolution method TSM [35], the two-stream method
SlowFast [14], and the method focusing on neck structure
of a recognition model TPN [61]. Note that our method can
be easily applied to any existing video action recognition
models to enable them for open set action recognition.

3. Approach

Overview. The proposed DEAR method is illustrated in
Fig. 3. Given a video as input, the Evidential Neural Net-
work (ENN) head on top of an Action Recognition (AR)
backbone1 predicts the class-wise evidence, which formu-
lates a Dirichlet distribution so that the multi-class proba-
bilities and predictive uncertainty of the input can be deter-
mined. For the open set inference, high uncertainty videos
can be regarded as unknown actions while low uncertainty
videos are classified by the learned categorical probabili-
ties. The model is trained by Evidential Deep Learning
(EDL) [49] loss regularized by our proposed Evidential Un-
certainty Calibration (EUC) method. In training, we also
propose a plug-and-play Contrastive Evidence Debiasing
(CED) module to debias the representation of human ac-
tions in videos.

1In our experiments, we use four different action recognition models
which are I3D [8], TSM [35], SlowFast [14], and TPN [61].

3.1. Deep Evidential Action Recognition

Background of Evidential Deep Learning. Existing
deep learning-based models typically use a softmax layer
on top of deep neural networks (DNNs) for classification.
However, these softmax-based DNNs are not able to esti-
mate the predictive uncertainty for a classification problem
because softmax score is essentially a point estimation of a
predictive distribution [15] and the softmax outputs tend to
be over-confident in false prediction [19].

Recent evidential deep learning (EDL) [49, 1] was devel-
oped to overcome the limitations of softmax-based DNNs
by introducing the evidence framework of Dempster-Shafer
Theory (DST) [50] and the subjective logic (SL) [22]. EDL
provides a principled way to jointly formulate the multi-
class classification and uncertainty modeling. In particular,
given a sample x(i) for K-class classification, assuming that
class probability follows a prior Dirichlet distribution, the
cross-entropy loss to be minimized for learning evidence
e(i) ∈ RK

+ eventually reduces to the following form:

L(i)
EDL(y

(i), e(i); θ) =

K∑
k=1

y
(i)
k

(
logS(i) − log(e

(i)
k + 1)

)
(1)

where y(i) is an one-hot K-dimensional label for sample
x(i) and e(i) can be expressed as e(i) = g

(
f(x(i); θ)

)
.

Here, f is the output of a DNN parameterized by θ and g
is the evidence function to keep evidence ek non-negative.
S is the total strength of a Dirichlet distribution Dir(p|α),
which is parameterized by α ∈ RK , and S is defined
as S =

∑K
k=1 αk. Based on DST and SL theory, the

αk is linked to the learned evidence ek by the equality
αk = ek + 1. In the inference, the predicted probability
of the k-th class is p̂k = αk/S and the predictive uncer-
tainty u can be deterministically given as u = K/S. More
detailed derivations could be found in our supplementary.

EDL for Action Recognition. In this paper, we propose
to formulate the action recognition from the EDL perspec-
tive. In the training phase, by applying the EDL objective
in (1) for action dataset, we are essentially trying to col-
lect evidence of each action category for an action video.
In the testing phase, since the action probability p∈RK is
assumed to follow a Dirichlet, i.e., p ∼ Dir(p|α), the cat-
egorical probability and uncertainty of a human action can
be jointly expressed by a (K − 1)-simplex (see the triangu-
lar heat map in Fig. 3). The EDL uncertainty enables the
action recognition model to “know unknown”.

However, due to the deterministic nature of EDL, the po-
tential over-fitting issue would hamper the generalization
capability for achieving good OSAR performance. Besides,
the static bias problem in video data is still not addressed by
EDL. To this end, we propose a model calibration method
and a representation debiasing module below.

13351



(a) AC (b) AU (c) IC (d) IU
Figure 4: Examples of Probability Simplex. We use 3-class clas-
sification as an example and assume the first class as the correct
label. A well calibrated model should give Accurate and Certain
(AC) predictions (Fig. 4a) or Inaccurate and Uncertain (IU) pre-
dictions (Fig. 4d), while the AU (Fig. 4b) and IC (Fig. 4c) cases
need to be reduced.

3.2. Evidential Uncertainty Calibration

Though the evidential uncertainty from EDL can be di-
rectly learned without sampling, the uncertainty may not be
well calibrated to handle the unknown samples in OSAR
setting. As pointed out in existing model calibration litera-
ture [40, 29], a well calibrated model should be confident in
its predictions when being accurate, and be uncertain about
inaccurate ones. Besides, existing DNN models have been
empirically demonstrated that miscalibration is linked to the
over-fitting of the negative log-likelihood (NLL) [19, 41].
Since the EDL objective in (1) is equivalent to minimizing
the NLL [49], the trained model is likely to be over-fitted
with poor generalization for OSAR tasks. To address this
issue, we propose to calibrate the EDL model by consider-
ing the relationship between the accuracy and uncertainty.

To this end, we follow the same goal as [40, 29] to max-
imize the Accuracy versus Uncertainty (AvU) utility func-
tion for calibrating the uncertainty:

AvU =
nAC + nIU

nAC + nAU + nIC + nIU
(2)

where the nAC , nAU , nIC , and nIU represent the num-
bers of samples in four predicted cases, i.e., (1) Accurate
and Certain (AC), (2) Accurate and Uncertain (AU),
(3) Inaccurate and Certain (IC), and (4) Inaccurate and
Uncertain (IU). A well calibrated model could achieve high
AvU utility so that the predictive uncertainty can be consis-
tent with accuracy. Fig. 4 shows a toy example of the four
possible EDL outputs. To calibrate the predictive uncer-
tainty, the EDL model is encouraged to learn a skewed and
sharp Dirichlet simplex for accurate prediction (Fig. 4a),
and to provide an unskewed and flat Dirichlet simplex for
incorrect prediction (Fig. 4d). To this end, we propose to
regularize EDL training by minimize the expectations of
AU and IC cases (Fig. 4b and Fig. 4c) such that the other
two cases can be encouraged. Therefore, if a video is as-
signed with high EDL uncertainty, it is more likely to be
incorrect so that an unknown action is identified.

In particular, we propose an Evidential Uncertainty Cal-
ibration (EUC) method to minimize the following sum of

AU and IC cases by considering the logarithm constraint
between the confidence pi and uncertainty ui:

LEUC = −λt

∑
i∈{ŷi=yi}

pi log(1− ui)

−(1− λt)
∑

i∈{ŷi ̸=yi}

(1− pi) log(ui)
(3)

where pi is the maximum class probability of an input sam-
ple x(i) and ui is the associated evidential uncertainty. The
first term aims to give low uncertainty (ui → 0) when the
model makes accurate prediction (ŷi = yi, pi → 1), while
the second term tries to give high uncertainty (ui→1) when
the model makes inaccurate prediction (ŷi ̸= yi, pi → 0).
Note that the annealing factor λt ∈ [λ0, 1] is defined as
λt = λ0 exp {−(lnλ0/T )t}. Here, λ0 is a small positive
constant, i.e., λ0 ≪ 1, such that λt is monotonically in-
creasing w.r.t. training epoch t, and T is the total number of
training epochs. As the training epoch t increasing to T , the
factor λt will be exponentially increasing from λ0 to 1.0.

The motivation behind the annealing weighting is that
the dominant periods of accurate and inaccurate predictions
in model training are different. In the early training stages,
the inaccurate predictions are the dominant cases so that
the IC loss (second term) should be more penalized, while
in the late training stages, the accurate predictions are the
dominant so that the AU loss (first term) should be more
penalized. Therefore, the annealing weighing factor λt dy-
namically balances the two terms in training.

Discussion. Our EUC method is advantageous over ex-
isting approaches [40] and AvUC [29] in following aspects.
First, compared with [40], our EUC method takes the same
merit of AvUC that it is a fully differentiable regulariza-
tion term. Second, compared with both [40] and AvUC, the
EUC loss does not rely on distribution shifted validation set
during training which is not reasonable for OSAR model
to access the OOD samples. Therefore, our method pro-
vides better flexibility to calibrate deep learning models on
large-scale dataset, such as the real-world videos of human
actions addressed in this paper. Our experimental results
(Table 3) show that the model calibration performance of
EUC method is more significant for open set recognition
than on closed set recognition.

3.3. Contrastive Evidence Debiasing

For OSAR task, static bias (see example in Fig. 2) in a
video dataset is one of the most challenging problems that
limit the generalization capability of a model in an open
set setting. According to [34], static bias can be catego-
rized into scene bias, object bias, and human bias. Existing
research work [11, 34, 24, 2] has empirically shown that
debiasing the model by input data or learned representa-
tion can significantly improve the action recognition per-
formance. As pointed out in [34], it is intrinsically nothing
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Figure 5: Contrastive Evidence Debiasing (CED) Module. The
module consists of three branches with similar structure. In con-
trast to the middle branch, the top and bottom ones aim to learn a
biased evidence by temporally shuffled feature input and 2D con-
volution (Conv2D), respectively. The generated feature f is con-
trastively pushed to be independent of biased feature h.

wrong about the bias if it can be “over-fitted” by an action
recognition model for achieving a “good” performance in
traditional closed-set setting. However, in an open set set-
ting, the static bias could result in a vulnerable model that
falsely recognizes an action video containing similar static
features but totally out-of-contextual temporal dynamics.

In this paper, we propose a Contrastive Evidence Debi-
asing (CED) module to mitigate the static bias problem. As
shown in Fig. 5, the CED consists of three branches. The
middle branch is a commonly-used 3D convolutional struc-
ture (Conv3D) to predict unbiased evidence (e) while the
top and and bottom branches predict biased evidences (ẽ
and ē). In particular, the top branch keeps the same network
structure as the middle one but takes temporally shuffled
features (x̃) as input. The bottom branch keeps the same
input feature (x) as the middle one but replaces the Conv3D
with 2D convolutional structure (Conv2D). Finally, with the
HSIC-based minmax optimization, the feature f for predict-
ing unbiased evidence is encouraged to be contrastive to the
features h and h̃ for predicting biased evidence.

In particular, motivated by the recent method ReBias [2],
the minmax optimization is defined by using the Hilbert-
Schmidt Independence Criterion (HSIC). The HSIC func-
tion measures the degree of independence between two con-
tinuous random variables. With radial basis function (RBF)
kernel k1 and k2, HSICk1,k2(f ,h)=0 if and only if f ⊥⊥ h.
The detailed mathematical form of HSIC can be found
in [18, 53] (or see the Section 1.3 of the supplementary).
For the middle branch, the goal is to learn a discriminative
and unbiased feature f by minimizing

L(θf , ϕf ) = LEDL(y, e; θf , ϕf ) + λ
∑
h∈Ω

HSIC(f ,h; θf ),

(4)
where θf and ϕf are parameters of neural networks to pro-
duce unbiased feature f and to predict evidence e. y is the
multi-class label. The second term encourages feature f
to be independent of the biased feature h from the set of
features generated by top branch h3D(x̃) and the bottom

branch h2D(x), i.e., Ω={h3D(x̃), h2D(x)}.
For the top and bottom branches, the goal is to learn the

above two types of biased feature h by

L(θh, ϕh) =
∑
h∈Ω

{LEDL(y, eh; θh, ϕh)− λHSIC(f ,h; θh)}

(5)
where θh denotes the network parameters of h3D(x̃) and
h2D(x) to generate biased features h, and the ϕh denotes
the parameters of neural networks to predict corresponding
evidence eh ∈ {ê, ē}. The first term in (5) aims to avoid
the biased feature h to predict arbitrary evidence, while the
second term guarantees that h is similar enough to f so that
f has to be pushed faraway from h by (4).

The two objectives in (4) and (5) are alternatively opti-
mized so that feature h is learned to be biased to guide the
debiasing of feature f . In practice, we also implemented
a joint training strategy which aims to optimize the objec-
tive of (4) and (5) jointly and we empirically found it can
achieve a better performance.

Discussion. Compared with recent work [11] that lever-
ages adversarial learning to remove scene bias, our method
does not rely on object bounding boxes and pseudo scene la-
bels as auxiliary training input. The representation bias ad-
dressed in our paper implicitly encompasses all sources of
biases, not just the scene bias. Compared with ReBias [2],
our CED module shares the similar idea of removing bias
with bias. However, the HSIC in our CED module consid-
ers not only the bias-characterising model (i.e., h2D(x)) as
in [2], but also the biased feature input by temporal shuf-
fling. This consideration will further encourage the back-
bone to focus more on temporal dynamics. Besides, our
CED is a plug-and-play module and can be flexibly inserted
into any state-of-the-art deep learning-based action recog-
nition models with little coding effort.

4. Experiments
Dataset. We evaluate the proposed DEAR method on

three commonly used real-world video action datasets, in-
cluding UCF-101 [54], HMDB-51 [31], and MiT-v2 [39].
All models are trained on UCF-101 training split. MiT-v2
has 305 classes and its testing split contains 30,500 video
samples, which are about 20 times larger than the HMDB-
51 testing set. In testing, we use the UCF-101 testing set
as known samples, and the testing splits of HMDB-51 and
MiT-v2 datasets as two sources of unknown. Note that there
could be a few overlapping classes between UCF-101 and
the other two datasets, but for standardizing the evaluation
and reproducibility, we do not manually clean the data.

Evaluation Protocol. To evaluate the classification per-
formance on both closed and open set settings, we sepa-
rately report the Closed Set Accuracy for K-class classifica-
tion and the Open Set area under ROC curve (AUC) for dis-
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Table 1: Comparison with state-of-the-art methods. Models are trained on the closed set UCF-101 [54] and tested on two different open
sets where the samples of unknown class are from HMDB-51 [31] and MiT-v2 [39], respectively. For Open maF1 scores, both the mean
and standard deviation of 10 random trials of unknown class selection are reported. Closed set accuracy is for reference only.

Models OSAR Methods
UCF-101 [54] + HMDB-51 [31] UCF-101 [54] + MiT-v2 [39] Closed Set Accuracy (%)

(For reference only)Open maF1 (%) Open Set AUC (%) Open maF1 (%) Open Set AUC (%)

I3D [8]

OpenMax [5] 67.85 ± 0.12 74.34 66.22 ± 0.16 77.76 56.60
MC Dropout 71.13 ± 0.15 75.07 68.11 ± 0.20 79.14 94.11
BNN SVI [27] 71.57 ± 0.17 74.66 68.65 ± 0.21 79.50 93.89
SoftMax 73.19 ± 0.17 75.68 68.84 ± 0.23 79.94 94.11
RPL [10] 71.48 ± 0.15 75.20 68.11 ± 0.20 79.16 94.26
DEAR (ours) 77.24 ± 0.18 77.08 69.98 ± 0.23 81.54 93.89

TSM [35]

OpenMax [5] 74.17 ± 0.17 77.07 71.81 ± 0.20 83.05 65.48
MC Dropout 71.52 ± 0.18 73.85 65.32 ± 0.25 78.35 95.06
BNN SVI [27] 69.11 ± 0.16 73.42 64.28 ± 0.23 77.39 94.71
SoftMax 78.27 ± 0.20 77.99 71.68 ± 0.27 82.38 95.03
RPL [10] 69.34 ± 0.17 73.62 63.92 ± 0.25 77.28 95.59
DEAR (ours) 84.69 ± 0.20 78.65 70.15 ± 0.30 83.92 94.48

SlowFast [14]

OpenMax [5] 73.57 ± 0.10 78.76 72.48 ± 0.12 80.62 62.09
MC Dropout 70.55 ± 0.14 75.41 67.53 ± 0.17 78.49 96.75
BNN SVI [27] 69.19 ± 0.13 74.78 65.22 ± 0.21 77.39 96.43
SoftMax 78.04 ± 0.16 79.16 74.42 ± 0.22 82.88 96.70
RPL [10] 68.32 ± 0.13 74.23 66.33 ± 0.17 77.42 96.93
DEAR (ours) 85.48 ± 0.19 82.94 77.28 ± 0.26 86.99 96.48

TPN [61]

OpenMax [5] 65.27 ± 0.09 74.12 64.80 ± 0.10 76.26 53.24
MC Dropout 68.45 ± 0.12 74.13 65.77 ± 0.17 77.76 95.43
BNN SVI [27] 63.81 ± 0.11 72.68 61.40 ± 0.15 75.32 94.61
SoftMax 76.23 ± 0.14 77.97 70.82 ± 0.21 81.35 95.51
RPL [10] 70.31 ± 0.13 75.32 66.21 ± 0.21 78.21 95.48
DEAR (ours) 81.79 ± 0.15 79.23 71.18 ± 0.23 81.80 96.30

tinguishing known and unknown (2 classes). Furthermore,
to comprehensively evaluate the (K+1)-class classification
performance, i.e., the unknown as the (K + 1)-th class, we
plot the curve of macro-F1 scores by gradually increasing
the openness similar to existing literature [52, 63, 56]. For
each openness point, i new classes are randomly selected
from HMDB-51 (where i≤ 51) or MiT-v2 (where i≤ 305)
test set and we compute the macro-F1 score for each of 10
randomized selections. Since there is no existing quantita-
tive metric to summarize the performance of the F1 curve,
in this paper we propose an Open maF1 score:

Open maF1 =

∑
i ω

(i)
O · F (i)

1∑
i ω

(i)
O

(6)

where ω
(i)
O denotes the openness when i new classes are

introduced and it is defined as ω
(i)
O = 1−

√
2K/(2K + i)

according to [46]. F
(i)
1 is the macro-F1 score by consid-

ering the samples from all new classes as unknown. The
basic idea of weighting F1 by ωO is that the result is essen-
tially the normalized area under the curve of macro-F1 vs.

openness. The Open maF1 quantitatively evaluates the per-
formance of (K+1)-class classification in open set setting.

Implementation Details. Our method is implemented
with the PyTorch codebase MMAction2 [12]. The adopted
action models are experimented with ResNet-50 backbone
pre-trained on Kinetics-400 [7] dataset and fine-tuned on
UCF-101 training set. Our proposed EDL loss LEDL is
used to replace the original cross-entropy loss, and our pro-
posed CED module is inserted into the layer before the clas-
sification heads of recognition models. During training, we
use base learning rate 0.001 and it is step-wisely decayed for
every 20 epochs with totally 50 epochs. We set batch size as
8 during training. The rest of hyperparameters are kept the
same as the default configuration provided by MMAction2.
During inference, our CED module is removed. Other im-
plementation details are provided in the supplementary.

4.1. Comparison with State-of-the-art

The proposed DEAR method is compared with base-
lines as shown in the second column of Table 1. The open
set performances are also summarized in Fig. 1. For these
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Figure 6: Open macro-F1 scores against varying Openness.
The maximum openness is determined by the number of unknown
classes, i.e., in ω

(i)
O , i=51 for HMDB-51 and i=305 for MiT-v2.

baselines, SoftMax, OpenMax, and MC Dropout share the
same trained model since they are only different in testing
phase. For the MC Dropout and BNN SVI which incorpo-
rate stochastic sampling in testing, we set the 10 forward
passes through the model and adopt the BALD [20] method
to quantify the model uncertainty as suggested by [27]. Fol-
lowing [56], the threshold of scoring function is determined
by ensuring 95% training data to be recognized as known.

Open Set Action Recognition. In Table 1, we report
the results of both closed set and open set performance.
It shows that with different action recognition models, our
method consistently and significantly outperforms baselines
on Open maF1 score for (K+1)-class classification and
Open Set AUC score for rejecting the unknowns, while only
sacrifices less than 1% performance decrease on Closed
Set Accuracy. When equipped with SlowFast model, our
method could improve the MC Dropout method almost 8%
of open set AUC and 15% of Open maF1 score. Open-
Max and RPL are the recent state-of-the-art OSR methods,
however we find that their performances are far behind our
DEAR method on the OSAR task. Note that the closed
set accuracy of OpenMax is dramatically lower than other
baselines, this is because OpenMax directly modifies the
activation layer before softmax and appends the unknown
class as output, which could destroy the accurate predictions
of known samples. Besides, we also note that with TSM
model, the Open maF1 score of DEAR method is slightly
inferior to OpenMax on MiT-v2 dataset. This indicates that
for large-scale unknown testing data such as MiT-v2, the 2D
convolution-based TSM is not a good choice for the DEAR
method as compared to those 3D convolution-based archi-
tectures such as I3D, SlowFast, and TPN.

Based on I3D model, as depicted in Fig. 6, we plot the
average Open maF1 scores against varying openness by in-
crementally introducing HMDB-51 and MiT-v2 testing sets
as unknown. It clearly shows that the proposed DEAR
method achieves the best performance. Note that for the
large scale MiT-v2 dataset, as the openness increasing, the
performances of different methods converge to be closed
to each other. This is because the macro-F1 is sensitive to
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Figure 7: Out-of-distribution Detection by Uncertainty. The
DEAR (vanilla) is the variant of DEAR (full) that only LEDL is
used for model training. We use MiT-v2 as unknown and I3D as
the recognition model. Uncertainty values are normalized to [0,1]
within each distribution.

class imbalance and it will be gradually dominated by the
increasing unknown classes from totally 305 categories in
MiT-v2. Nevertheless, our method DEAR still keeps better
than all other baselines.

Out-of-distribution Detection. This task aims to dis-
tinguish between the in-distribution samples (known) and
out-of-distribution (OOD) samples (unknown). Similar to
the baseline MC Dropout and BNN SVI [27], which are us-
ing uncertainty as scoring function to identify the unknown,
the OOD detection performance can be evaluated by show-
ing the Open Set AUC in Table 1 and the histogram statis-
tics in Fig. 7. The AUC numbers and figures clearly show
that our DEAR method with EDL uncertainty can better de-
tect the OOD samples. Compared with the vanilla DEAR
which only uses LEDL for model training, the estimated
uncertainties of OOD samples skews closer to 1.0. More
results can be found in our supplementary materials.

4.2. Ablation Study

Contribution of Each Component. In Table 2, it shows
the OSAR performance of each DEAR variant. The exper-
iments are conducted with TPN model and evaluated us-
ing HMDB-51 testing set as unknown. The results demon-
strate that all the proposed components could contribute to
the OSAR performance gain. In particular, the h2D(x) of
our CED module contributes the most. Besides, the joint
training of CED module shows slightly better than the al-
ternative training. Therefore, by default the joint training is
adopted throughout other experiments.

Model Calibration. Though the proposed EUC module
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Table 2: Ablation studies. Based on TPN [61] model, HMDB-
51 [31] is used as the unknown. Best results are shown in bold.

LEUC CED Joint Train Open maF1 (%) OS-AUC (%)

✗ ✗ ✓ 74.95 ± 0.18 77.12

✓ ✗ ✓ 75.88 ± 0.16 77.49

✓ ✓ ✗ 81.18 ± 0.15 79.02

✓ ✓ ✓ 81.79 ± 0.15 79.23

Table 3: Expected Calibration Error (ECE) results. Small ECE
indicates the model is better calibrated. The numbers in brackets
indicate the number of classes involved in evaluation.

Model variants Open Set (K+1) Open Set (2) Closed Set (K)
DEAR (w/o LEUC ) 0.284 0.256 0.030
DEAR (full) 0.268 0.239 0.029

Table 4: Accuracy (%) on Biased and Unbiased dataset.

Methods
Biased (Kinetics) Unbiased (Mimetics)
top-1 top-5 top-1 top-5

DEAR (w/o CED) 91.18 99.30 26.56 69.53
DEAR (full) 91.18 99.54 34.38 75.00

can improve the performance on OSAR task (as shown in
Table 2), we further dig into the question that if the perfor-
mance gain of EUC results from better calibrating a classi-
fication model. To this end, we adopt the widely used Ex-
pected Calibration Error (ECE) [19] to evaluate the model
calibration performance of our full method DEAR (full) and
its variant without EUC loss LEUC . Quantitative results
are reported in Table 3. It shows that LEUC can reduce the
ECE values with both open set and closed set recognition
settings. In particular, the calibration capability is more sig-
nificant in open set setting than in closed set setting. This
validates our claim that the proposed LEUC could calibrate
an OSAR model.

Representation Debiasing. To further validate if the
performance gain of our CED module is rooted in the repre-
sentation debiasing, we use Kinetics [7] as a biased dataset
and Mimetics [58] as an unbiased dataset. Similar to [2],
we select 10 human action categories from Kinetics for
training and biased testing, and select the same categories
from Mimetics for unbiased testing. Without the pre-trained
model from Kinetics dataset, we apply our DEAR method
with and without CED on TSM model. The top-1 and top-
5 accuracy results are reported in Table 4. It shows that
models trained on biased dataset (Kinetics) are vulnerable
on unbiased dataset (Mimetics). However, when equipped
with the proposed CED module, the performance on the un-
biased dataset can be significantly improved while perfor-
mance on the biased dataset still keeps minor changes.

What Types of Unknown are Mis-classified? As
shown in Fig. 8, the confusion matrix is visualized by con-
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Figure 8: Confusion Matrix for Known and Unknown. The x-
axis shows the ground truth classes of both UCF-101 (known) and
HMD-51 (unknown), and y-axis represents the predicted classes
defined by UCF-101. This figure highlights the top-5 unknown
classes (blue text) that are mis-classified as the known (red text).

sidering both the known classes from UCF-101 and un-
known classes from HMDB-51 datasets. It shows that in
spite of high closed set accuracy (the diagonal line), the ac-
tions from unknown classes could be easily classified as
known categories. For example, shoot ball is the top-1
mis-classified unknown class in HMDB-51, which is the
most frequently mis-classified as the known class Archery
in UCF-101. It is convincing that the mis-classification is
caused by their similar background scene, i.e., large area of
grass land, which is static bias as addressed in this paper.

5. Conclusion

In this paper, we proposed a Deep Evidential Action
Recognition (DEAR) method for the open set action recog-
nition (OSAR) problem. OSAR is more challenging than
image OSR problem due to the uncertain nature of temporal
action dynamics and the static bias of background scenes.
To this end, we conduct Evidential Deep Learning (EDL) to
learn a discriminative action classifier with quantified pre-
dictive uncertainty, where the uncertainty is used to distin-
guish between the known and unknown samples. As novel
extensions of EDL, an Evidential Uncertainty Calibration
(EUC) method and a contrastive evidential debiasing (CED)
module are proposed to address the unique challenges in
OSAR. Extensive experimental results demonstrate that our
DEAR method works for most existing action recognition
models in open set setting.
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