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Abstract

The rendering procedure used by neural radiance fields
(NeRF) samples a scene with a single ray per pixel and may
therefore produce renderings that are excessively blurred or
aliased when training or testing images observe scene con-
tent at different resolutions. The straightforward solution of
supersampling by rendering with multiple rays per pixel is
impractical for NeRF, because rendering each ray requires
querying a multilayer perceptron hundreds of times. Our
solution, which we call “mip-NeRF” (à la “mipmap”), ex-
tends NeRF to represent the scene at a continuously-valued
scale. By efficiently rendering anti-aliased conical frustums
instead of rays, mip-NeRF reduces objectionable aliasing
artifacts and significantly improves NeRF’s ability to repre-
sent fine details, while also being 7% faster than NeRF and
half the size. Compared to NeRF, mip-NeRF reduces aver-
age error rates by 17% on the dataset presented with NeRF
and by 60% on a challenging multiscale variant of that
dataset that we present. Mip-NeRF is also able to match
the accuracy of a brute-force supersampled NeRF on our
multiscale dataset while being 22× faster.

1. Introduction

Neural volumetric representations such as neural radi-
ance fields (NeRF) [30] have emerged as a compelling strat-
egy for learning to represent 3D objects and scenes from im-
ages for the purpose of rendering photorealistic novel views.
Although NeRF and its variants have demonstrated impres-
sive results across a range of view synthesis tasks, NeRF’s
rendering model is flawed in a manner that can cause ex-
cessive blurring and aliasing. NeRF replaces traditional dis-
crete sampled geometry with a continuous volumetric func-
tion, parameterized as a multilayer perceptron (MLP) that
maps from an input 5D coordinate (3D position and 2D
viewing direction) to properties of the scene (volume den-
sity and view-dependent emitted radiance) at that location.
To render a pixel’s color, NeRF casts a single ray through
that pixel and out into its volumetric representation, queries

a) NeRF b) Mip-NeRF

Figure 1: NeRF (a) samples points x along rays that are
traced from the camera center of projection through each
pixel, then encodes those points with a positional encoding
(PE) γ to produce a feature γ(x). Mip-NeRF (b) instead
reasons about the 3D conical frustum defined by a camera
pixel. These conical frustums are then featurized with our
integrated positional encoding (IPE), which works by ap-
proximating the frustum with a multivariate Gaussian and
then computing the (closed form) integral E[γ(x)] over the
positional encodings of the coordinates within the Gaussian.

the MLP for scene properties at samples along that ray, and
composites these values into a single color.

While this approach works well when all training and
testing images observe scene content from a roughly con-
stant distance (as done in NeRF and most follow-ups),
NeRF renderings exhibit significant artifacts in less con-
trived scenarios. When the training images observe scene
content at multiple resolutions, renderings from the recov-
ered NeRF appear excessively blurred in close-up views and
contain aliasing artifacts in distant views. A straightfor-
ward solution is to adopt the strategy used in offline raytrac-
ing: supersampling each pixel by marching multiple rays
through its footprint. But this is prohibitively expensive for
neural volumetric representations such as NeRF, which re-
quire hundreds of MLP evaluations to render a single ray
and several hours to reconstruct a single scene.

In this paper, we take inspiration from the mipmapping
approach used to prevent aliasing in computer graphics ren-
dering pipelines. A mipmap represents a signal (typically
an image or a texture map) at a set of different discrete
downsampling scales and selects the appropriate scale to
use for a ray based on the projection of the pixel footprint
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onto the geometry intersected by that ray. This strategy
is known as pre-filtering, since the computational burden
of anti-aliasing is shifted from render time (as in the brute
force supersampling solution) to a precomputation phase—
the mipmap need only be created once for a given texture,
regardless of how many times that texture is rendered.

Our solution, which we call mip-NeRF (multum in parvo
NeRF, as in “mipmap”), extends NeRF to simultaneously
represent the prefiltered radiance field for a continuous
space of scales. The input to mip-NeRF is a 3D Gaus-
sian that represents the region over which the radiance field
should be integrated. As illustrated in Figure 1, we can then
render a prefiltered pixel by querying mip-NeRF at intervals
along a cone, using Gaussians that approximate the conical
frustums corresponding to the pixel. To encode a 3D po-
sition and its surrounding Gaussian region, we propose a
new feature representation: an integrated positional encod-
ing (IPE). This is a generalization of NeRF’s positional en-
coding (PE) that allows a region of space to be compactly
featurized, as opposed to a single point in space.

Mip-NeRF substantially improves upon the accuracy of
NeRF, and this benefit is even greater in situations where
scene content is observed at different resolutions (i.e. se-
tups where the camera moves closer and farther from the
scene). On a challenging multiresolution benchmark we
present, mip-NeRF is able to reduce error rates relative to
NeRF by 60% on average (see Figure 2 for visualisations).
Mip-NeRF’s scale-aware structure also allows us to merge
the separate “coarse” and “fine” MLPs used by NeRF for
hierarchical sampling [30] into a single MLP. As a conse-
quence, mip-NeRF is slightly faster than NeRF (∼ 7%), and
has half as many parameters.

2. Related Work
Our work directly extends NeRF [30], a highly influen-

tial technique for learning a 3D scene representation from
observed images in order to synthesize novel photorealis-
tic views. Here we review the 3D representations used by
computer graphics and view synthesis, including recently-
introduced continuous neural representations such as NeRF,
with a focus on sampling and aliasing.
Anti-aliasing in Rendering Sampling and aliasing are
fundamental issues that have been extensively studied
throughout the development of rendering algorithms in
computer graphics. Reducing aliasing artifacts (“anti-
aliasing”) is typically done via either supersampling or pre-
filtering. Supersampling-based techniques [46] cast multi-
ple rays per pixel while rendering in order to sample closer
to the Nyquist frequency. This is an effective strategy to
reduce aliasing, but it is expensive, as runtime generally
scales linearly with the supersampling rate. Supersampling
is therefore typically used only in offline rendering contexts.
Instead of sampling more rays to match the Nyquist fre-
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Figure 2: (a, top) A NeRF trained on full-resolution im-
ages is capable of producing photorealistic renderings at
new view locations, but only at the resolution or scale of
the training images. (a, bottom) Pulling the camera back
and zooming in (or similarly, adjusting the camera intrin-
sics to reduce image resolution, as is done here) results in
renderings that exhibit severe aliasing. (b) Training a NeRF
on multi-resolution images ameliorates this issue slightly
but results in poor quality renderings across scales: blur at
full resolution, and “jaggies” at low resolutions. (c) Mip-
NeRF, also trained on multi-resolution images, is capable of
producing photorealistic renderings across different scales.
SSIMs for each image relative to the ground-truth (d) are
inset, with the highest SSIM for both scales shown in red.

quency, prefiltering-based techniques use lowpass-filtered
versions of scene content to decrease the Nyquist frequency
required to render the scene without aliasing. Prefiltering
techniques [18, 20, 32, 49] are better suited for realtime
rendering, because filtered versions of scene content can be
precomputed ahead of time, and the correct “scale” can be
used at render time depending on the target sampling rate.
In the context of rendering, prefiltering can be thought of as
tracing a cone instead of a ray through each pixel [1, 16]:
wherever the cone intersects scene content, a precomputed
multiscale representation of the scene content (such as a
sparse voxel octree [15, 21] or a mipmap [47]) is queried
at the scale corresponding to the cone’s footprint.

Our work takes inspiration from this line of work in
graphics and presents a multiscale scene representation for
NeRF. Our strategy differs from multiscale representations
used in traditional graphics pipelines in two crucial ways.
First, we cannot precompute the multiscale representation
because the scene’s geometry is not known ahead of time
in our problem setting — we are recovering a model of
the scene using computer vision, not rendering a predefined
CGI asset. Mip-NeRF therefore must learn a prefiltered rep-
resentation of the scene during training. Second, our notion
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of scale is continuous instead of discrete. Instead of repre-
senting the scene using multiple copies at a fixed number of
scales (like in a mipmap), mip-NeRF learns a single neural
scene model that can be queried at arbitrary scales.
Scene Representations for View Synthesis Various scene
representations have been proposed for the task of view
synthesis: using observed images of a scene to recover a
representation that supports rendering novel photorealistic
images of the scene from unobserved camera viewpoints.
When images of the scene are captured densely, light field
interpolation techniques [9, 14, 22] can be used to render
novel views without reconstructing an intermediate repre-
sentation of the scene. Issues related to sampling and alias-
ing have been thoroughly studied within this setting [7].

Methods that synthesize novel views from sparsely-
captured images typically reconstruct explicit representa-
tions of the scene’s 3D geometry and appearance. Many
classic view synthesis algorithms use mesh-based represen-
tations along with either diffuse [28] or view-dependent [6,
10, 48] textures. Mesh-based representations can be stored
efficiently and are naturally compatible with existing graph-
ics rendering pipelines. However, using gradient-based
methods to optimize mesh geometry and topology is typ-
ically difficult due to discontinuities and local minima.
Volumetric representations have therefore become increas-
ingly popular for view synthesis. Early approaches directly
color voxel grids using observed images [37], and more re-
cent volumetric approaches use gradient-based learning to
train deep networks to predict voxel grid representations of
scenes [12, 25, 29, 38, 41, 53]. Discrete voxel-based repre-
sentations are effective for view synthesis, but they do not
scale well to scenes at higher resolutions.

A recent trend within computer vision and graphics
research is to replace these discrete representations with
coordinate-based neural representations, which represent
3D scenes as continuous functions parameterized by MLPs
that map from a 3D coordinate to properties of the scene
at that location. Some recent methods use coordinate-
based neural representations to model scenes as implicit
surfaces [31, 50], but the majority of recent view synthe-
sis methods are based on the volumetric NeRF representa-
tion [30]. NeRF has inspired many subsequent works that
extend its continuous neural volumetric representation for
generative modeling [8, 36], dynamic scenes [23, 33], non-
rigidly deforming objects [13, 34], phototourism settings
with changing illumination and occluders [26, 43], and re-
flectance modeling for relighting [2, 3, 40].

Relatively little attention has been paid to the issues of
sampling and aliasing within the context of view synthe-
sis using coordinate-based neural representations. Discrete
representations used for view synthesis, such as polygon
meshes and voxel grids, can be efficiently rendered without
aliasing using traditional multiscale prefiltering approaches

such as mipmaps and octrees. However, coordinate-based
neural representations for view synthesis can currently only
be anti-aliased using supersampling, which exacerbates
their already slow rendering procedure. Recent work by
Takikawa et al. [42] proposes a multiscale representation
based on sparse voxel octrees for continuous neural repre-
sentations of implicit surfaces, but their approach requires
that the scene geometry be known a priori, as opposed to our
view synthesis setting where the only inputs are observed
images. Mip-NeRF addresses this open problem, enabling
the efficient rendering of anti-aliased images during both
training and testing as well as the use of multiscale images
during training.

2.1. Preliminaries: NeRF
NeRF uses the weights of a multilayer perceptron (MLP)

to represent a scene as a continuous volumetric field of par-
ticles that block and emit light. NeRF renders each pixel
of a camera as follows: A ray r(t) = o + td is emitted
from the camera’s center of projection o along the direction
d such that it passes through the pixel. A sampling strat-
egy (discussed later) is used to determine a vector of sorted
distances t between the camera’s predefined near and far
planes tn and tf . For each distance tk ∈ t, we compute its
corresponding 3D position along the ray x = r(tk), then
transform each position using a positional encoding:

γ(x)=
[
sin(x), cos(x), . . . , sin

(
2L−1x

)
, cos

(
2L−1x

)]T
. (1)

This is simply the concatenation of the sines and cosines
of each dimension of the 3D position x scaled by powers
of 2 from 1 to 2L−1, where L is a hyperparameter. The
fidelity of NeRF depends critically on the use of positional
encoding, as it allows the MLP parameterizing the scene to
behave as an interpolation function, where L determines the
bandwidth of the interpolation kernel (see Tancik et al. [44]
for details). The positional encoding of each ray position
γ(r(tk)) is provided as input to an MLP parameterized by
weights Θ, which outputs a density τ and an RGB color c:

∀tk ∈ t, [τk, ck] = MLP(γ(r(tk)); Θ) . (2)

The MLP also takes the view direction as input, which is
omitted from notation for simplicity. These estimated den-
sities and colors are used to approximate the volume render-
ing integral using numerical quadrature, as per Max [27]:

C(r; Θ, t) =
∑
k

Tk(1− exp(−τk(tk+1 − tk)))ck ,

with Tk = exp

(
−
∑
k′<k

τk′(tk′+1 − tk′)

)
, (3)

where C(r; Θ, t) is the final predicted color of the pixel.
With this procedure for rendering a NeRF parameterized

by Θ, training a NeRF is straightforward: using a set of

5857



observed images with known camera poses, we minimize
the sum of squared differences between all input pixel val-
ues and all predicted pixel values using gradient descent. To
improve sample efficiency, NeRF trains two separate MLPs,
one “coarse” and one “fine”, with parameters Θc and Θf :

min
Θc,Θf

∑
r∈R

(∥∥C∗(r)−C(r; Θc, tc)
∥∥2
2

(4)

+
∥∥C∗(r)−C(r; Θf , sort(tc ∪ tf ))

∥∥2
2

)
,

where C∗(r) is the observed pixel color taken from the in-
put image, and R is the set of all pixels/rays across all im-
ages. Mildenhall et al. construct tc by sampling 64 evenly-
spaced random t values with stratified sampling. The com-
positing weights wk = Tk (1− exp(−τk(tk+1 − tk))) pro-
duced by the “coarse” model are then taken as a piecewise
constant PDF describing the distribution of visible scene
content, and 128 new t values are drawn from that PDF us-
ing inverse transform sampling to produce tf . The union of
these 192 t values are then sorted and passed to the “fine”
MLP to produce a final predicted pixel color.

3. Method
As discussed, NeRF’s point-sampling makes it vulner-

able to issues related to sampling and aliasing: Though
a pixel’s color is the integration of all incoming radiance
within the pixel’s frustum, NeRF casts a single infinites-
imally narrow ray per pixel, resulting in aliasing. Mip-
NeRF ameliorates this issue by casting a cone from each
pixel. Instead of performing point-sampling along each ray,
we divide the cone being cast into a series of conical frus-
tums (cones cut perpendicular to their axis). And instead
of constructing positional encoding (PE) features from an
infinitesimally small point in space, we construct an inte-
grated positional encoding (IPE) representation of the vol-
ume covered by each conical frustum. These changes allow
the MLP to reason about the size and shape of each conical
frustum, instead of just its centroid. The ambiguity result-
ing from NeRF’s insensitivity to scale and mip-NeRF’s so-
lution to this problem are visualized in Figure 3. This use of
conical frustums and IPE features also allows us to reduce
NeRF’s two separate “coarse” and “fine” MLPs into a sin-
gle multiscale MLP, which increases training and evaluation
speed and reduces model size by 50%.

3.1. Cone Tracing and Positional Encoding

Here we describe mip-NeRF’s rendering and featuriza-
tion procedure, in which we cast a cone and featurize con-
ical frustums along that cone. As in NeRF, images in mip-
NeRF are rendered one pixel at a time, so we can describe
our procedure in terms of an individual pixel of interest be-
ing rendered. For that pixel, we cast a cone from the cam-

Figure 3: NeRF works by extracting point-sampled posi-
tional encoding features (shown here as dots) along each
pixel’s ray. Those point-sampled features ignore the shape
and size of the volume viewed by each ray, so two differ-
ent cameras imaging the same position at different scales
may produce the same ambiguous point-sampled feature,
thereby significantly degrading NeRF’s performance. In
contrast, Mip-NeRF casts cones instead of rays and explic-
itly models the volume of each sampled conical frustum
(shown here as trapezoids), thus resolving this ambiguity.

era’s center of projection o along the direction d that passes
through the pixel’s center. The apex of that cone lies at
o, and the radius of the cone at the image plane o + d
is parameterized as ṙ. We set ṙ to the width of the pixel
in world coordinates scaled by 2/

√
12, which yields a cone

whose section on the image plane has a variance in x and y
that matches the variance of the pixel’s footprint. The set of
positions x that lie within a conical frustum between two t
values [t0, t1] (visualized in Figure 1) is:

F(x,o,d, ṙ, t0, t1) = 1

{(
t0 <

dT(x− o)

∥d∥22
< t1

)

∧

(
dT(x− o)

∥d∥2∥x− o∥2
>

1√
1 + (ṙ/∥d∥2)2

)}
, (5)

where 1{·} is an indicator function: F(x, ·) = 1 iff x is
within the conical frustum defined by (o,d, ṙ, t0, t1).

We must now construct a featurized representation of the
volume inside this conical frustum. Ideally, this featurized
representation should be of a similar form to the positional
encoding features used in NeRF, as Mildenhall et al. show
that this feature representation is critical to NeRF’s suc-
cess [30]. There are many viable approaches for this (see
the supplement for further discussion) but the simplest and
most effective solution we found was to simply compute
the expected positional encoding of all coordinates that lie
within the conical frustum:

γ∗(o,d, ṙ, t0, t1) =

∫
γ(x) F(x,o,d, ṙ, t0, t1) dx∫

F(x,o,d, ṙ, t0, t1) dx
. (6)

However, it is unclear how such a feature could be com-
puted efficiently, as the integral in the numerator has no
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closed form solution. We therefore approximate the coni-
cal frustum with a multivariate Gaussian which allows for
an efficient approximation to the desired feature, which we
will call an “integrated positional encoding” (IPE).

To approximate a conical frustum with a multivariate
Gaussian, we must compute the mean and covariance of
F(x, ·). Because each conical frustum is assumed to be cir-
cular, and because conical frustums are symmetric around
the axis of the cone, such a Gaussian is fully characterized
by three values (in addition to o and d): the mean distance
along the ray µt, the variance along the ray σ2

t , and the vari-
ance perpendicular to the ray σ2

r :

µt = tµ +
2tµt

2
δ

3t2µ + t2δ
, σ2

t =
t2δ
3
−

4t4δ(12t
2
µ − t2δ)

15(3t2µ + t2δ)
2
,

σ2
r = ṙ2

(
t2µ
4

+
5t2δ
12

− 4t4δ
15(3t2µ + t2δ)

)
. (7)

These quantities are parameterized with respect to a mid-
point tµ = (t0 + t1)/2 and a half-width tδ = (t1 − t0)/2,
which is critical for numerical stability. Please refer to the
supplement for a detailed derivation. We can transform this
Gaussian from the coordinate frame of the conical frustum
into world coordinates as follows:

µ = o+ µtd , Σ = σ2
t

(
ddT

)
+ σ2

r

(
I− ddT

∥d∥22

)
, (8)

giving us our final multivariate Gaussian.
Next, we derive the IPE, which is the expectation of

a positionally-encoded coordinate distributed according to
the aforementioned Gaussian. To accomplish this, it is help-
ful to first rewrite the PE in Equation 1 as a Fourier fea-
ture [35, 44]:

P=

1 0 0 2 0 0 2L−1 0 0
0 1 0 0 2 0 · · · 0 2L−1 0
0 0 1 0 0 2 0 0 2L−1

T

, γ(x)=

[
sin(Px)
cos(Px)

]
.

(9)
This reparameterization allows us to derive a closed form
for IPE. Using the fact that the covariance of a linear trans-
formation of a variable is a linear transformation of the vari-
able’s covariance (Cov[Ax,By] = ACov[x,y]BT) we
can identify the mean and covariance of our conical frus-
tum Gaussian after it has been lifted into the PE basis P:

µγ = Pµ , Σγ = PΣPT . (10)

The final step in producing an IPE feature is computing the
expectation over this lifted multivariate Gaussian, modu-
lated by the sine and the cosine of position. These expecta-
tions have simple closed-form expressions:

Ex∼N (µ,σ2)[sin(x)] = sin(µ) exp
(
−(1/2)σ2

)
, (11)

Ex∼N (µ,σ2)[cos(x)] = cos(µ) exp
(
−(1/2)σ2

)
. (12)

We see that this expected sine or cosine is simply the sine or
cosine of the mean attenuated by a Gaussian function of the
variance. With this we can compute our final IPE feature as
the expected sines and cosines of the mean and the diagonal
of the covariance matrix:

γ(µ,Σ) = Ex∼N (µγ ,Σγ)[γ(x)] (13)

=

[
sin(µγ) ◦ exp(−(1/2) diag(Σγ))
cos(µγ) ◦ exp(−(1/2) diag(Σγ))

]
, (14)

where ◦ denotes element-wise multiplication. Because po-
sitional encoding encodes each dimension independently,
this expected encoding relies on only the marginal distribu-
tion of γ(x), and only the diagonal of the covariance matrix
(a vector of per-dimension variances) is needed. Because
Σγ is prohibitively expensive to compute due its relatively
large size, we directly compute the diagonal of Σγ :

diag(Σγ)=
[
diag(Σ), 4 diag(Σ), . . . , 4L−1 diag(Σ)

]T
(15)

This vector depends on just the diagonal of the 3D posi-
tion’s covariance Σ, which can be computed as:

diag(Σ) = σ2
t (d ◦ d) + σ2

r

(
1− d ◦ d

∥d∥22

)
. (16)

If these diagonals are computed directly, IPE features are
roughly as expensive as PE features to construct.

Figure 4 visualizes the difference between IPE and con-
ventional PE features in a toy 1D domain. IPE features be-
have intuitively: If a particular frequency in the positional
encoding has a period that is larger than the width of the
interval being used to construct the IPE feature, then the
encoding at that frequency is unaffected. But if the pe-
riod is smaller than the interval (in which case the PE over
that interval will oscillate repeatedly), then the encoding
at that frequency is scaled down towards zero. In short,
IPE preserves frequencies that are constant over an interval
and softly “removes” frequencies that vary over an interval,
while PE preserves all frequencies up to some manually-
tuned hyperparameter L. By scaling each sine and cosine in
this way, IPE features are effectively anti-aliased positional
encoding features that smoothly encode the size and shape
of a volume of space. IPE also effectively removes L as a
hyperparameter: it can simply be set to an extremely large
value and then never tuned (see supplement).

3.2. Architecture

Aside from cone-tracing and IPE features, mip-NeRF
behaves similarly to NeRF, as described in Section 2.1. For
each pixel being rendered, instead of a ray as in NeRF, a
cone is cast. Instead of sampling n values for tk along the
ray, we sample n + 1 values for tk, computing IPE fea-
tures for the interval spanning each adjacent pair of sam-
pled tk values as previously described. These IPE features
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Figure 4: Toy 1D visualizations of the positional encoding
(PE) used by NeRF (left) and our integrated positional en-
coding (IPE) (right). Because NeRF samples points along
each ray and encodes all frequencies equally, the high-
frequency PE features are aliased, which results in render-
ing artifacts. By integrating PE features over each interval,
the high frequency dimensions of IPE features shrink to-
wards zero when the period of the frequency is small com-
pared to the size of the interval being integrated, resulting
in anti-aliased features that implicitly encode the size (and
in higher dimensions, the shape) of the interval.

are passed as input into an MLP to produce a density τk
and a color ck, as in Equation 2. Rendering in mip-NeRF
follows Equation 3.

Recall that NeRF uses a hierarchical sampling proce-
dure with two distinct MLPs, one “coarse” and one “fine”
(see Equation 4). This was necessary in NeRF because its
PE features meant that its MLPs were only able to learn a
model of the scene for one single scale. But our cone cast-
ing and IPE features allow us to explicitly encode scale into
our input features and thereby enable an MLP to learn a
multiscale representation of the scene. Mip-NeRF therefore
uses a single MLP with parameters Θ, which we repeatedly
query in a hierarchical sampling strategy. This has multiple
benefits: model size is cut in half, renderings are more ac-
curate, sampling is more efficient, and the overall algorithm
becomes simpler. Our optimization problem is:

min
Θ

∑
r∈R

(
λ
∥∥C∗(r)−C(r; Θ, tc)

∥∥2

2
+
∥∥C∗(r)−C(r; Θ, tf )

∥∥2

2

)
(17)

Because we have a single MLP, the “coarse” loss must be
balanced against the “fine” loss, which is accomplished us-
ing a hyperparameter λ (we set λ = 0.1 in all experiments).
As in Mildenhall et al. [30], our coarse samples tc are pro-
duced with stratified sampling, and our fine samples tf are
sampled from the resulting alpha compositing weights w
using inverse transform sampling. Unlike NeRF, in which
the fine MLP is given the sorted union of 64 coarse samples
and 128 fine samples, in mip-NeRF we simply sample 128

samples for the coarse model and 128 samples from the fine
model (yielding the same number of total MLP evaluations
as in NeRF, for fair comparison). Before sampling tf , we
modify the weights w slightly:

w′
k =

1

2
(max(wk−1, wk) + max(wk, wk+1)) + α . (18)

We filter w with a 2-tap max filter followed by a 2-tap
blur filter (a “blurpool” [51]), which produces a wide and
smooth upper envelope on w. A hyperparameter α is added
to that envelope before it is re-normalized to sum to 1,
which ensures that some samples are drawn even in empty
regions of space (we set α = 0.01 in all experiments).

Mip-NeRF is implemented on top of JaxNeRF [11], a
JAX [4] reimplementation of NeRF that achieves better ac-
curacy and trains faster than the original TensorFlow im-
plementation. We follow NeRF’s training procedure: 1
million iterations of Adam [19] with a batch size of 4096
and a learning rate that is annealed logarithmically from
5 · 10−4 to 5 · 10−6. See the supplement for additional de-
tails and some additional differences between JaxNeRF and
mip-NeRF that do not affect performance significantly and
are incidental to our primary contributions: cone-tracing,
IPE, and the use of a single multiscale MLP.

4. Results

We evaluate mip-NeRF on the Blender dataset presented
in the original NeRF paper [30] and also on a simple mul-
tiscale variant of that dataset designed to better probe ac-
curacy on multi-resolution scenes and to highlight NeRF’s
critical vulnerability on such tasks. We report the three error
metrics used by NeRF: PSNR, SSIM [45], and LPIPS [52].
To enable easier comparison, we also present an “average”
error metric that summarizes all three metrics: the geomet-
ric mean of MSE = 10−PSNR/10,

√
1− SSIM (as per [5]),

and LPIPS. We additionally report runtimes (median and
median absolute deviation of wall time) as well as the num-
ber of network parameters for each variant of NeRF and
mip-NeRF. All JaxNeRF and mip-NeRF experiments are
trained on a TPU v2 with 32 cores [17].

We constructed our multiscale Blender benchmark be-
cause the original Blender dataset used by NeRF has a sub-
tle but critical weakness: all cameras have the same focal
length and resolution and are placed at the same distance
from the object. As a result, this Blender task is signif-
icantly easier than most real-world datasets, where cam-
eras may be more close or more distant from the subject
or may zoom in and out. The limitation of this dataset is
complemented by the limitations of NeRF: despite NeRF’s
tendency to produce aliased renderings, it is able to produce
excellent results on the Blender dataset because that dataset
systematically avoids this failure mode.
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Figure 5: Visualizations of the output of mip-NeRF compared to the ground truth, NeRF, and an improved version of NeRF
on test set images from two scenes in our multiscale Blender dataset. We visualize a cropped region of both scenes at 4
different scales, displayed as an image pyramid with the SSIM for each scale shown to its lower right and with the highest
SSIM at each scale highlighted in red. Mip-NeRF outperforms NeRF and its improved version by a significant margin, both
visually and quantitatively. See the supplement for more such visualizations.

PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg. ↓ Time (hours) # Params

NeRF (Jax Impl.) [11, 30] 31.196 30.647 26.252 22.533 0.9498 0.9560 0.9299 0.8709 0.0546 0.0342 0.0428 0.0750 0.0288 3.05 ± 0.04 1,191K
NeRF + Area Loss 27.224 29.578 29.445 25.039 0.9113 0.9394 0.9524 0.9176 0.1041 0.0677 0.0406 0.0469 0.0305 3.03 ± 0.03 1,191K
NeRF + Area, Centered Pixels 29.893 32.118 33.399 29.463 0.9376 0.9590 0.9728 0.9620 0.0747 0.0405 0.0245 0.0398 0.0191 3.02 ± 0.05 1,191K
NeRF + Area, Center, Misc. 29.900 32.127 33.404 29.470 0.9378 0.9592 0.9730 0.9622 0.0743 0.0402 0.0243 0.0394 0.0190 2.94 ± 0.02 1,191K
Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.84 ± 0.01 612K
Mip-NeRF w/o Misc. 32.610 34.333 35.497 35.638 0.9577 0.9703 0.9787 0.9834 0.0470 0.0259 0.0167 0.0120 0.0114 2.82 ± 0.03 612K
Mip-NeRF w/o Single MLP 32.401 34.131 35.462 35.967 0.9566 0.9693 0.9780 0.9834 0.0479 0.0268 0.0169 0.0116 0.0115 3.40 ± 0.01 1,191K
Mip-NeRF w/o Area Loss 33.059 34.280 33.866 30.714 0.9605 0.9704 0.9747 0.9679 0.0427 0.0256 0.0213 0.0308 0.0139 2.82 ± 0.01 612K
Mip-NeRF w/o IPE 29.876 32.160 33.679 29.647 0.9384 0.9602 0.9742 0.9633 0.0742 0.0393 0.0226 0.0378 0.0186 2.79 ± 0.01 612K

Table 1: A quantitative comparison of mip-NeRF and its ablations against NeRF and several NeRF variants on the test set of
our multiscale Blender dataset. See the text for details.

Multiscale Blender Dataset Our multiscale Blender
dataset is a straightforward modification to NeRF’s Blender
dataset, designed to probe aliasing and scale-space reason-
ing. This dataset was constructed by taking each image in
the Blender dataset, box downsampling it a factor of 2, 4,
and 8 (and modifying the camera intrinsics accordingly),
and combining the original images and the three downsam-
pled images into one single dataset. Due to the nature of
projective geometry, this is similar to re-rendering the orig-
inal dataset where the distance to the camera has been in-
creased by scale factors of 2, 4, and 8. When training mip-
NeRF on this dataset, we scale the loss of each pixel by the
area of that pixel’s footprint in the original image (the loss
for pixels from the 1/4 images is scaled by 16, etc) so that
the few low-resolution pixels have comparable influence to
the many high-resolution pixels. The average error metric
for this task uses the arithmetic mean of each error metric
across all four scales.

The performance of mip-NeRF for this multiscale
dataset can be seen in Table 1. Because NeRF is the state of
the art on the Blender dataset (as will be shown in Table 2),
we evaluate against only NeRF and several improved ver-
sions of NeRF: “Area Loss” adds the aforementioned scal-
ing of the loss function by pixel area used by mip-NeRF,

“Centered Pixels” adds a half-pixel offset added to each
ray’s direction such that rays pass through the center of
each pixel (as opposed to the corner of each pixel as was
done in Mildenhall et al.) and “Misc” adds some small
changes that slightly improve the stability of training (see
supplement). We also evaluate against several ablations of
mip-NeRF: “w/o Misc” removes those small changes, “w/o
Single MLP” uses NeRF’s two-MLP training scheme from
Equation 4, “w/o Area Loss” removes the loss scaling by
pixel area, and “w/o IPE” uses PE instead of IPE, which
causes mip-NeRF to use NeRF’s ray-casting (with centered
pixels) instead of our cone-casting.

Mip-NeRF reduces average error by 60% on this task
and outperforms NeRF by a large margin on all metrics
and all scales. “Centering” pixels improves NeRF’s perfor-
mance substantially, but not enough to approach mip-NeRF.
Removing IPE features causes mip-NeRF’s performance to
degrade to the performance of “Centered” NeRF, thereby
demonstrating that cone-casting and IPE features are the
primary factors driving performance (though the area loss
contributes substantially). The “Single MLP” mip-NeRF
ablation performs well but has twice as many parameters
and is nearly 20% slower than mip-NeRF (likely due to this
ablation’s need to sort t values and poor hardware through-
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Figure 6: Even on the less challenging single-scale Blender
dataset of Mildenhall et al. [30], mip-NeRF significantly
outperforms NeRF and our improved version of NeRF, par-
ticularly on small or thin objects such as the holes of the
LEGO truck (top) and the ropes of the ship (bottom).

PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓ Time (hours) # Params
SRN [39] 22.26 0.846 0.170 0.0735 - -
Neural Volumes [25] 26.05 0.893 0.160 0.0507 - -
LLFF [29] 24.88 0.911 0.114 0.0480 ∼0.16 -
NSVF [24] 31.74 0.953 0.047 0.0190 - 3.2M - 16M
NeRF (TF Impl.) [30] 31.01 0.947 0.081 0.0245 >12 1,191K
NeRF (Jax Impl.) [11, 30] 31.74 0.953 0.050 0.0194 3.05± 0.01 1,191K
NeRF + Centered Pixels 32.30 0.957 0.046 0.0178 2.99± 0.06 1,191K
NeRF + Center, Misc. 32.28 0.957 0.046 0.0178 3.06± 0.03 1,191K
Mip-NeRF 33.09 0.961 0.043 0.0161 2.89± 0.00 612K
Mip-NeRF w/o Misc. 33.04 0.960 0.043 0.0162 2.89± 0.01 612K
Mip-NeRF w/o Single MLP 32.71 0.959 0.044 0.0168 3.63± 0.02 1,191K
Mip-NeRF w/o IPE 32.48 0.958 0.045 0.0173 2.84± 0.00 612K

Table 2: A comparison of mip-NeRF and its ablations
against several baseline algorithms and variants of NeRF
on the single-scale Blender dataset of Mildenhall et al. [30].
Training times taken from prior work (when available) are
indicated in gray, as they are not directly comparable.

put due to its changing tensor sizes across its “coarse” and
“fine” scales). Mip-NeRF is also ∼ 7% faster than NeRF.
See Figure 5 and the supplement for visualizations.
Blender Dataset Though the sampling issues that mip-
NeRF was designed to fix are most prominent in the Multi-
scale Blender dataset, mip-NeRF also outperforms NeRF on
the easier single-scale Blender dataset presented in Milden-
hall et al. [30], as shown in Table 2. We evaluate against
the baselines used by NeRF, NSVF [24], and the same
variants and ablations that were used previously (excluding
“Area Loss”, which is not used by mip-NeRF for this task).
Though less striking than the multiscale Blender dataset,
mip-NeRF is able to reduce average error by ∼ 17% com-
pared to NeRF while also being faster. This improvement in
performance is most visually apparent in challenging cases
such as small or thin structures, as shown in Figure 6.
Supersampling As discussed in the introduction, mip-
NeRF is a prefiltering approach for anti-aliasing. An al-
ternative approach is supersampling, which can be accom-
plished in NeRF by casting multiple jittered rays per pixel.
Because our multiscale dataset consists of downsampled

PSNR ↑ Avg. Time
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Mean (sec./MP)

NeRF + Area, Center, Misc. 29.90 32.13 33.40 29.47 31.23 2.61
SS NeRF + Area, Center, Misc. 32.25 34.27 35.99 35.73 34.56 55.52
Mip-NeRF 32.60 34.30 35.41 35.55 34.46 2.48
SS Mip-NeRF 32.60 34.78 36.59 36.16 35.03 52.75

Table 3: A comparison of mip-NeRF and our improved
NeRF variant where both algorithms are supersampled
(“SS”). Mip-NeRF nearly matches the accuracy of “SS
NeRF” while being 22× faster. Adding supersampling
to mip-NeRF improves its accuracy slightly. We report
times for rendering the test set, normalized to seconds-per-
megapixel (training times are the same as Tables 1 and 2).

versions of full-resolution images, we can construct a “su-
persampled NeRF” by training a NeRF (the “NeRF + Area,
Center, Misc.” variant that performed best previously) using
only full-resolution images, and then rendering only full-
resolution images, which we then manually downsample.
This baseline has an unfair advantage: we manually re-
move the low-resolution images in the multiscale dataset,
which would otherwise degrade NeRF’s performance as
previously demonstrated. This strategy is not viable in most
real-world datasets, as it is usually not possible to known
a-priori which images correspond to which scales of im-
age content. Despite this baseline’s advantage, mip-NeRF
matches its accuracy while being ∼22× faster (see Table 3).

5. Conclusion
We have presented mip-NeRF, a multiscale NeRF-like

model that addresses the inherent aliasing of NeRF. NeRF
works by casting rays, encoding the positions of points
along those rays, and training separate neural networks at
distinct scales. In contrast, mip-NeRF casts cones, en-
codes the positions and sizes of conical frustums, and trains
a single neural network that models the scene at multiple
scales. By reasoning explicitly about sampling and scale,
mip-NeRF is able to reduce error rates relative to NeRF by
60% on our own multiscale dataset, and by 17% on NeRF’s
single-scale dataset, while also being 7% faster than NeRF.
Mip-NeRF is also able to match the accuracy of a brute-
force supersampled NeRF variant, while being 22× faster.
We hope that the general techniques presented here will be
valuable to other researchers working to improve the per-
formance of raytracing-based neural rendering models.
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