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Abstract

Recently, several frameworks for self-supervised learn-
ing of 3D scene flow on point clouds have emerged. Scene
flow inherently separates every scene into multiple moving
agents and a large class of points following a single rigid
sensor motion. However, existing methods do not lever-
age this property of the data in their self-supervised train-
ing routines which could improve and stabilize flow predic-
tions. Based on the discrepancy between a robust rigid ego-
motion estimate and a raw flow prediction, we generate a
self-supervised motion segmentation signal. The predicted
motion segmentation, in turn, is used by our algorithm to
attend to stationary points for aggregation of motion infor-
mation in static parts of the scene. We learn our model
end-to-end by backpropagating gradients through Kabsch’s
algorithm and demonstrate that this leads to accurate ego-
motion which in turn improves the scene flow estimate. Us-
ing our method, we show state-of-the-art results across mul-
tiple scene flow metrics for different real-world datasets,
showcasing the robustness and generalizability of this ap-
proach. We further analyze the performance gain when per-
forming joint motion segmentation and scene flow in an ab-
lation study. We also present a novel network architecture
for 3D LiDAR scene flow which is capable of handling an
order of magnitude more points during training than previ-
ously possible.

1. Introduction
Reasoning about the motion of dynamic objects in a

scene is crucial for robotic applications such as autonomous
driving. One representation for such motion is scene flow,
a set of displacement vectors between two consecutive time
frames, forming a 3D vector field Ft→t+1. Its application
allows to transform points Pt recorded in the first frame

∗ Joint first authors with equal contribution.

Figure 1: Scene Flow Prediction by SLIM. Flow vectors
are colored by their direction and magnitude as illustrated
with the color wheel. Our method correctly annotates the
background as static and produces consistent results for the
two vehicles, matching the ground truth scene flow.

into the second frame via p
(t+1)
i = p

(t)
i + fi. Another rep-

resentation is the binary classification of points into either
moving or stationary, known as motion segmentation.

This paper tackles the problem of simultaneous LiDAR
scene flow estimation and motion segmentation using a
deep network. Existing works treat these two problems in-
dependently. Most of them rely on large amounts of labeled
data to obtain state-of-the-art results (see Section 2.2). Self-
supervised learning attempts to alleviate this problem, but
existing scene flow networks using weak or self-supervision
have critical drawbacks: Currently, all of them require
downsampling of point clouds from around 128,000 points
for typical LiDAR frames to no more than 8,192 points dur-
ing training or they train and evaluate on datasets with 1-to-
1 point correspondences, see Section 2.4.

Our approach trains well even on datasets with no 1-
to-1 correspondences and can handle one to two orders of
magnitude more points per point cloud than previous ap-
proaches for self-supervised scene flow. We build on top of
RAFT [39], the state-of-the-art for optical flow, and extend
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the network to perform iterative scene flow estimation and
motion segmentation on PointPillar-based Bird’s-Eye-View
(BEV) feature representations of point clouds [20]. This
architecture realizes an excellent trade-off between gener-
alizability, accuracy, and computational efforts. Using the
consistency of motion for the stationary background, we
are able to extract training targets for self-supervised mo-
tion segmentation. No additional data or labels besides raw,
consecutively recorded point clouds are required for train-
ing, the cues for self-supervised classification come from
the typical motion profiles of these classes alone.
Our main contributions are:

• Our method is the first point-cloud-based scene flow
estimation method that can classify points as ”moving”
and ”stationary” based on self-supervised training.

• Our method significantly outperforms previous meth-
ods in point-cloud-based scene flow estimation, espe-
cially in terms of generalization to previously unseen
data, which we demonstrate on multiple datasets, in
both the self-supervised and fully supervised setting.

• Our novel network architecture can handle signif-
icantly more points than current weakly or self-
supervised approaches.

2. Related Work

The term scene flow was first introduced by Vedula et
al. [47]. Traditionally, it is estimated using stereo cameras
[14, 25, 44, 16, 29, 6, 30, 51, 25], and has successfully been
applied to other domains such as RGB-D sensors [36].

2.1. Motion Segmentation

While there exists a group of methods layering optical
flow into consistent groups, they cannot be easily trans-
ferred to point clouds as they make heavy use of color infor-
mation and brightness constancy assumptions [38, 54, 37].
Research for scene flow and motion segmentation on range
images started with hand-crafted features and matching, see
[28]. In this work, however, we focus on scene flow estima-
tion in the point cloud domain, which provides its own chal-
lenges such as sparse data as well as the absence of well-
established representations. Within recent years, the focus
shifted towards learning-based methods, as discussed next.

2.2. Supervised Point-Cloud-Based Scene Flow

For many years, research in the area of point-cloud-
based scene flow estimation focused on supervised learn-
ing methods. Most approaches relied on synthetic datasets
[12, 21, 22, 50, 52, 33, 45] or non-public datasets [46] for
training. Behl et al. [2] started to use the real-world Kitti
Tracking dataset, but it is only densely annotated in the
camera field of view (FoV). Gojcic et al.[11] lessened the
requirement on annotated data by using weak supervision

through odometry and foreground-background segmenta-
tion to train their network for simultaneous motion segmen-
tation and scene flow estimation, enabling them to use the
SemanticKitti [3] dataset to train their approach.

2.3. Self-Supervised Learning

The dependence on costly annotated data can be over-
come by self-supervised learning. It has been success-
fully applied to train networks on images to predict op-
tical flow, stereo flow, depth (or a combination thereof)
[48, 1, 15, 56, 58, 19, 7, 10, 34, 49, 23], and motion segmen-
tation [43, 4] using geometric and temporal/cyclic consis-
tency losses. Self-supervised learning on point clouds, how-
ever, is a young field where in most cases self-supervision
has also been used to pre-train a network on a proxy-task
and to reuse or finetune the weights for the actual task using
supervision [13, 35, 55, 32, 40, 57].

2.4. Self-Supervised Scene Flow on Point Clouds

Recently, there has been some research into self-
supervised scene flow estimation on point clouds, but all
of these works have various shortcomings.

Point Cloud Size: Many architectures are based on
graphs [42, 31], PointNet/FlowNet3D [27] or layouts with
coarse global all-to-all correlations combined with finer
local correlations [18]. In order to cope with exploding
memory requirements during training, they rely on random
downsampling of their input point clouds, in many cases
also during inference. Mittal et al. [27] subsample to 2,048
points, others [53, 18, 31, 42] downsample to 8,192 points.
These methods perform well on point cloud data gathered
from stereo cameras or RGB-D data sources with little spar-
sity, such as KITTI Stereo Flow (KITTI-SF) [26] or Fly-
ingThings3D (FT3D) [24]. In comparison, LiDAR sensors
cover much larger areas than stereo rigs but at a much lower
point density. Regular LiDAR sensors measure upwards of
100k 3D points in each frame. We are able to process much
more points than previous works. This gives our architec-
ture an advantage over existing methods, as it can leverage
arbitrary point densities during both training and inference.

Correspondence Assumption: Another serious drawback
in current methods was discovered by Zuanazzi et al. [59]:
They note that [53] and [27] train (and evaluate) on point
clouds with a 1-to-1 correspondence p(t+1)

i = p
(t)
i + fi, the

KITTI-SF and FT3D dataset. Furthermore, they show in ex-
periments heavily degrading performance when points are
shuffled and sampled in an effort to destroy the correspon-
dences prior to training/inference. Real-world measure-
ments from LiDARs do not abide by the correspondence
assumption, as the scene is sampled for each timestep, and
a bijective mapping between point clouds does not exist.

Robustness to Outliers: Since flow vectors on static points
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all derive from the same sensor motion, Tishchenko et al.
[42] introduced a two-stage-network: The first stage, a pose
regression network, estimates ego-motion and transforms
the source point cloud. The second stage subsequently esti-
mates flow. Although realistic data recordings contain much
more static than moving points, which should lead to good
performance, they suffer from high outlier rates on real data
- even on static points. We demonstrate in our experiments
a much better outlier resistance predicting dense scene flow
for all points by regressing the sensor’s ego-motion using
the fully differentiable Kabsch algorithm [17].

2.5. Self-Supervised Motion Seg. on Point Clouds

To the best of our knowledge, there exists only one pre-
vious network that learns motion segmentation on point
clouds using self-supervision: Thomas et al. [41] use multi-
ple recordings of the same environment to train a network to
identify permanently static, slow, and fast-moving objects.
Our method does not require multiple recording passes and
can train on pairs of point clouds directly.

3. Method
3D scene flow estimation uses two consecutive input

point clouds Pt ∈ RN×3, Pt+1 ∈ RM×3 to predict for
each point in the first point cloud a 3D displacement vec-
tor, representing the motion of each point w.r.t. the sensor
frame.

3.1. Network Architecture

We make use of an efficient network, specialized on
LiDAR data from the perspective of an autonomous vehi-
cle (AV), sacrificing the ability to generalize to more freely
moving scenes and objects as seen in FT3D for exam-
ple. Our network consists of three components, detailed
in Fig. 2: A point cloud encoder, a flow backbone, and an
output decoder explained below. We also introduce the used
loss functions and their purposes.

Point Cloud Encoder: The input point clouds Pt,Pt+1 are
separately encoded into a BEV pseudo-image using the Pil-
lar Feature Net (PFN) introduced in [20] (shared weights),
the resulting values It, It+1 ∈ RH×W×C are then pro-
cessed by the backbone. To ensure comparability with other
methods [53, 42, 21, 52, 12, 11], we use for all datasets the
same BEV extent covering the square from −35m ≤ x, y ≤
35m around the ego vehicle, with x, y being the horizontal
axes. We use a resolution of H = W = 640 which corre-
sponds to a pillar size of roughly 11cm.

Flow Backbone: Our backbone is heavily inspired by
RAFT [39] which was developed to predict dense opti-
cal flow on images. Its core component is an update block
acting recursively on a hidden state and a flow predic-
tion, producing a more refined and accurate flow with ev-

ery iteration. Therefor, a correlation volume is constructed
from independently encoded input images, using the previ-
ous flow prediction to look up correlation values and thus
guide the flow to a more accurately matching pixel region.
Even though RAFT was designed for dense optical flow, we
show that it is also very suitable and generalizes well in the
sparsely populated BEV domain, which consists of more
scattered and smaller regions and very independent motion
patterns (moving traffic participants) than regular images.

We adapt RAFT [39] to handle flow prediction and itera-
tively update two additional logits, as shown in Fig. 2. The
first logit map Lcls is used as an output signal to classify the
points as stationary or moving w.r.t. the world frame. The
accuracy of predicted flow can vary greatly in a scene, as
featureless surfaces are not suitable for flow estimation. The
second logit Lwgt is used to overcome this problem, allow-
ing the network to signal its confidence in a flow estimate.
Both logits are used by the output decoder to aggregate and
improve accuracy on static and dynamic scene elements.

Lcls is handled similarly to the flow stream, but the task
of confidence weighting is more closely tied to the flow pre-
diction and thus the data streams are therefore coupled dur-
ing the processing of information. Except for this minor
change we retain the general framework of RAFT, includ-
ing zeroing the gradient not only on the input flow but also
on the input logits of each update block.

Output Decoder: Our backbone produces a 2D BEV
flow map F ∈ RH×W×2 together with two logit maps,
Lcls,Lwgt. Additionally, our model keeps track of a global
classification threshold pstat through moving averages, dis-
cussed in more detail in Section 3.2.

Firstly, the output decoder uses these BEV maps to an-
notate each point of the input point cloud Pt with a flow
vector fi and two logits lcls,i, lwgt,i according to the values
of its corresponding pillar cell. By doing this we assume
that all points in a pillar behave very similar. We believe
this to be true for almost all LiDAR point clouds measured
outdoors, as all moving traffic participants need to occupy
some ground. Additionally, most LiDAR systems are built
in a way that their beams are not upward-facing. Note that
although our network architecture is specialized in this way,
our loss framework is suited for any 3D scene flow predic-
tion and does not require the assumption of a 2D flow. In
order to regularize and improve the flow prediction on the
static scene, the output decoder aggregates the points clas-
sified as still into a single coherent rigid-motion odometry
transform Tr ∈ R4×4. This aggregated transform should be
minimizing the squared error when comparing its resulting
flow with the flow prediction from the network:

Tr = argmin
T∈R4×4

∑
pi∈Pt

wi ∥(T − I4)pi − fi∥2 (1)

Defining the odometry transform Ot→t+1 = E
(t+1)
Et ∈
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Figure 2: Overview of our network architecture. The Convolutional Gated Recurrent Unit (ConvGRU) iteratively predicts
updates for the flow and logits, using correlation lookups guided by the predicted flow.

R4×4 as the ego vehicle position at time t + 1 measured in
the ego vehicle frame from time step t, we know that all sta-
tionary points should have a flow of (O−1

t→t+1 − I4)pi. We
therefore expect the computed transform T−1

r ≈ Ot→t+1 to
be a good approximation for the odometry of the vehicle.

We use Kabsch’s algorithm [17] to compute Tr using
singular value decomposition which is differentiable. The
weights wi for each point determine how much influence
each flow vector prediction has on the final result Tr. We
first apply a sigmoid activation to the confidence logits and
then mask them based on the classification logits. After-
wards, we normalize all weights to sum to 1 to ensure nu-
merical stability. See the supplementary material for details
on the fused computation.

wi =
σ(lwgt,i)[σ(lcls,i) ≥ pstat]∑
j σ(lwgt,j)[σ(lcls,j) ≥ pstat]

(2)

The confidence logits only receive gradient updates through
the computation of Tr and are therefore trained end-to-end
without further supervision.

For the purpose of inference, the final aggregated flow
map of our network is

fagg,i =

{
(Tr − I4)pi if lcls,i ≥ pstat

fi if lcls,i < pstat
(3)

or in words: Points predicted to be stationary use the flow
from the aggregated rigid ego-motion transform, all other
points use the raw flow prediction from the network. How-
ever, we make use of the aggregated transform Tr and the
classification logits Lcls in the loss. Especially Lcls does
not have any gradients yet through the aggregated flow or
transform and is only trained through special loss terms in-
troduced in the next section.

3.2. Loss

We have different self-supervised components based on
the two input point clouds, and the network’s predicted flow,
logits, and the aggregated transform.

k-NN Loss: First and foremost we use a k-NN loss as a
self-supervision signal for our flow estimation as is done
by earlier works for self-supervised scene flow [27, 53, 42].
Given a pointwise flow fi and a nearest neighbor function
NNPt+1(pi) = argmin pj∈Pt+1

|pj−pi| we find for every
flow-corrected point in Pt an NN-based error distance:

ei = |NNPt+1(pi + fi)− (pi + fi)| (4)
As we work with noisy data and especially non-bijective
point clouds there are greater errors observed in distant
points. To mitigate this, we define an outlier percentage
pout << 1 and ignore all errors lying in this top-percentile.
Additionally, we apply this loss not to the aggregated flow
Fagg but to the raw flow prediction F and the rigid flow
fr,i = (Tr − I4)pi separately, resulting in a total NN loss

Lnn =
1

|Pt|
∑
i

ei(fi) + ei(fr,i) . (5)

We found that this stabilizes the training in the early phases
and does not hurt the performance. Applying the loss only
to the aggregated flow has the problem that early during
the training the smooth and small rigid flow is more accu-
rate and thus dominates over the raw flow leading the net-
work into a local optimum where the classification predicts
only stationary points. This then leads to the raw flow get-
ting masked out from the aggregated flow, consequently re-
ceiving no gradient updates, and thus performing badly. Of
course, depending on training settings and network initial-
ization, this behavior could also occur in reverse. Thus we
train both flow fields every time at every point.

Rigid cycle consistency: Inspired by recent successful ap-
plications of cycle consistency losses [42, 27] we apply our
network not only on the input point clouds (Pt,Pt+1) but
also on the reversed order (Pt+1,Pt), giving us access to
the prediction of the inverse rigid motion T ′

r. For accurate
predictions, these two rigid transforms are the exact inverses
to each other. In order to measure the error, we apply them
to the input point cloud as a way of weighting the different

13129



error aspects of the transforms.

Lrcc =
1

|Pt|
∑

pi∈Pt

|(T ′
rTr − I4)pi| (6)

Artificial Labels: The classification logits Lcls are trained
using a self-supervised loss based on the NN errors ei. Ad-
ditionally, we compute these errors not only for the raw flow
prediction fi but also for the rigid counterpart fr,i in order to
compare those er,i to the errors for the raw flow. We use the
standard binary cross-entropy loss based on artificial labels
depending on which NN error is smaller.

Lal = −
∑

pi∈Pt

[ei < er,i] log σ(lcls,i)

+ [ei ≥ er,i] log(1− σ(lcls,i)) (7)

Supervised loss: On datasets where ground truth flow la-
bels Fgt and vehicle odometry Ot→t+1 are available, it is
possible to train the network using supervised losses:

Lflow =
1

|Pt|
∑

pi∈Pt

|fgt,i − fi| (8)

Additionally, we supervise the classification logits by spec-
ifying a ground truth rigid class target through a threshold
mthresh to the non-rigid flow part

ri =
[
|fgt,i − (O−1

t→t+1 − I4)pi| ≤ mthresh

]
. (9)

The resulting cross-entropy-based classification loss is

Lcls = − 1

|Pt|
∑

pi∈Pt

ri log σ(lcls,i)

+ (1− ri) log(1− σ(lcls,i)). (10)
The last supervised loss is used to increase the performance
of the rigid transform mostly by providing a signal to the
confidence weights used by the computation of the trans-
form.

Lr =
1

|Pt|
∑

pi∈Pt

|(Tr −O−1
t→t+1)pi| (11)

Classification Threshold: We observe in our experiments
that our scores and metrics depend on a well-calibrated
threshold pstat for switching between the case of moving
or stationary points. As our training pipeline already re-
quires this threshold for the weights in the computation of
Tr we require an online mechanism to adjust this threshold,
instead of chosing it during post-processing. Therefore, we
track moving averages of the metric m(p) we want to opti-
mize for a fixed set of possible thresholds {p0, p1, ..., pN}.
We can then define the threshold pstat = pi with

i = argmin
i=0,...,N

m(pi) (12)

as the point where our metric is currently optimal. It is im-
portant to note, that in the case of self-supervised trainings
we only make use of the k-NN errors ei and er,i which do
not require any ground truth labels but also only approx-

imate the metric we want to optimize. In the supervised
setting, on the other hand, we use the ground truth flow to
compute the moving averages of the metric as accurately as
possible. For all our experiments we optimize the thresh-
old according to the AEE 50-50 metric which we introduce
in the following section. Please refer to the supplementary
material for more details.

4. Evaluation
To verify our claims, we first report results for different

experimental setups and compare our method against two
other baselines using in total 4 different datasets. In a final
set of experiments, we highlight the importance of the dif-
ferent components of our method through an ablation study.

4.1. Experimental Setup

We applied only minor modifications to the PointPillars
(PP) PFN encoder and the RAFT backbone (called RAFT-
S in [39]). Details on our architecture can be found in the
supplementary. We trained all our experiments for 100k it-
erations with a batch size of 1 and a learning rate of 10−4

using the RMSProp optimizer. In order to stay consistent
with previous evaluation protocols [27, 42, 53] we also re-
move all points up to 30cm above the ground from the point
cloud prior to training and inference.

When training self-supervised we set the weights of the
supervised losses to 0 and weighted the rest of the losses
with λnn = 2, λrcc = 1, λal = 0.1. In the case of su-
pervised trainings we only used the supervised losses with
λflow = 10, λcls = 1, λr = 10.

Evaluation Metrics: To evaluate the performance, we use
the established metrics and an extra outlier metric:

AEE average endpoint error (EE) across all points
AccS point ratio where EE < 0.05 or relative error < 0.05
AccR point ratio where EE < 0.1 or relative error < 0.1
Outl point ratio where EE > 0.3 or relative error > 0.1
ROutl point ratio where EE > 0.3 and relative error > 0.3

To ensure comparability with previous works we report
Outl as a metric on KITTI-SF, however, we found it has sev-
eral drawbacks, the most notable being that often the sum
of Outl and AccR is larger than 100%, which is counter-
intuitive for an outlier metric. On the other datasets, we
exclusively report the robust variant ROutl defined above.
A more detailed discussion and direct comparison of these
two metrics can be found in the supplementary material.

As the other datasets we investigate contain a larger im-
balance of moving scene parts w.r.t. stationary ones, we re-
port scores separately for those two classes. Ground truth
odometry is used to compute the non-rigid flow component
fnr,gt,i = fgt,i − (O−1

t→t+1 − I4)pi. Points with a non-rigid
flow larger than mthresh = 5cm (corresponds to 1.8 km

h )
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Figure 3: Qualitative comparison of methods on a KITTI-SF scene. Accurately estimated flow according to AccR is colored
blue, inaccurate predictions red. From left to right: PointPWCNet (PPWC), PoseFlowNet (PF), Ours

are labeled as dynamic, the rest as stationary. We introduce
AEE 50-50 as the average between the AEE measured sep-
arately on stationary and on moving points.

Baselines: We selected two methods as baselines which
provide recent state-of-the-art results for self- as well as
supervised training of scene flow: The first baseline we
compare ourselves against, the PointPWCNet (PPWC) [53],
uses a backbone similar to RAFT [39] in that it also relies
on correlation volumes inside its architecture. The second
baseline is taken from [42] and learns to predict the ego-
motion component of the flow separately from the non-rigid
flow, similar to our approach in the way that we also con-
sider the ego-motion as a special case in our architecture.
We refer to this method as PoseFlowNet (PF) in the follow-
ing.

Datasets: To obtain representative results, we use three
very different outdoor traffic scene datasets which only have
in common that they observe the scene through a LiDAR
from the position of an (autonomous) vehicle taking part in
the traffic. Additionally, we use FT3D [24] for the baselines
as training data.

FlyingThings3D: Both baseline methods make extensive
use of the FT3D [24] dataset, consisting of randomly fly-
ing objects. The point clouds and the flow are 1-to-1 cor-
responding and have significantly more points than their
counterparts from the other datasets. This dataset is not
suited for our method as we make the assumptions that the
flow is mainly in the horizontal x, y-plane and that points in-
side the same pillar have a similar movement pattern. Both
of these assumptions do not hold for this dataset, therefore
we do not use it to train our method.

nuScenes: nuScenes [5] is an autonomous driving (AD)
dataset recorded using a Velodyne VLP32 LiDAR sensor,
featuring densely annotated object boxes in space and time,
as well as a pointwise semantic annotation. We annotated
the point clouds with ground truth information using the
recorded vehicle odometry for static points and the tracking
information (bounding boxes) of moving objects.

CARLA: Using the CARLA Simulator [8], we collected an
artificial dataset with 142k consecutive point clouds with
ground truth flow annotation. Town07 is used exclusively
for evaluation, where we recorded 1,900 different scenes.
KITTI: The KITTI-SF [26] training dataset is used by
many works as the main benchmark for 3D scene flow
[21, 53, 42, 18]. For these 142 samples, stereo ground truth
and flow annotations are given, allowing conversion of the
dataset to a point cloud representation with scene flow la-
bels. In contrast to the nuScenes and CARLA dataset, it
consists of pairs of 1-to-1 corresponding point clouds and
flow, which differs from real-world point clouds measured
at different time steps. We also compare our method against
the baselines on this dataset. For training, we use the whole
collection of unlabeled raw LiDAR point clouds published
with the KITTI [9] dataset (abbreviated with KITTI-RL).

4.2. Impact of Point Cloud Density

Our network architecture is able to process a full scene
from KITTI-RL as input, comprising roughly 64,000 points.
While in theory the baselines can run inference on a similar
size, during training it is infeasible to run them with more
than the proposed 8,192 points as the memory requirements
and the training time increase dramatically.

Therefore, increased point cloud density does not only
provide more information but also represents a domain shift
for the networks during inference. Our first set of experi-
ments shows which type of evaluation produces better re-
sults for the baselines and our method and determines the
evaluation mode we use in the following experiments.

Table 1 shows the results of these experiments. We train
the baselines in a self-supervised fashion on FT3D, as it
gives them the best scores when evaluating on KITTI-SF.
For our network, we train self-supervised on KITTI-RL, as
it, in turn, produces the best result on KITTI-SF.

We conclude that both baselines suffer from the domain
shift due to different point densities, and do not benefit
from the increased resolution. Therefore, we evaluate the
baselines always on the downsampled point clouds and our
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Table 1: Influence of point cloud density. Our method (*) is
trained on KITTI-RL.

Eval Data #points AEE↓ AccS↑ AccR↑ Outl↓

PP
W

C FT3D 8192 0.1610 0.2035 0.5809 0.7811
65536 0.1654 0.1999 0.5783 0.7876

KITTI-SF 8192 0.3466 0.0820 0.3145 0.8233
all 0.3648 0.0726 0.2974 0.8579

PF

FT3D 8192 0.1726 0.0601 0.2336 0.9832
65536 0.1755 0.0584 0.2126 0.9832

KITTI-SF 8192 0.3009 0.0986 0.2296 0.9738
all 0.3256 0.1104 0.2058 0.9778

O
ur

s* KITTI-SF 8192 0.1207 0.5178 0.7956 0.4024
all 0.0668 0.7695 0.9342 0.2488

Table 2: Self-supervised training with domain shift, evalua-
tion on KITTI-SF

Train Data AEE↓ AccS↑ AccR↑ Outl↓

PP
W

C

FT3D 0.3569 0.0870 0.3202 0.8204
nuScenes 0.7708 0.0897 0.2078 0.9193
CARLA 0.8131 0.0094 0.0663 0.9928
KITTI-RL 0.3712 0.1992 0.4092 0.7406

PF

FT3D 0.3009 0.0986 0.2296 0.9738
nuScenes 0.4628 0.0000 0.1356 1.0000
CARLA 0.3955 0.1586 0.3866 0.9565
KITTI-RL 0.4448 0.0526 0.2310 0.9885

O
ur

s nuScenes 0.1013 0.7156 0.8739 0.3046
CARLA 0.1454 0.5106 0.7899 0.3900
KITTI-RL 0.0668 0.7695 0.9342 0.2488

method on the full point clouds.

4.3. Training Dataset and Domain Shift

The baselines have been evaluated on KITTI-SF with
the networks trained on FT3D. We find that our method
performs quite differently on KITTI-SF based on which
dataset is used during training. Therefore, Table 2 show-
cases the validation performance of self-supervised models
on KITTI-SF for different training datasets.

Our method gives the best results for KITTI-RL. This
makes sense because except for the small camera FoV in
KITTI-SF the geometric properties and their distribution
match. The baselines give better results when trained on
FT3D than on any other dataset. However, out of the
other three LiDAR datasets, KITTI-RL seems to be the best
choice. FT3D working better than KITTI-RL is also not
surprising, as it resembles more the camera FoV as found
in KITTI-SF. Qualitative results are shown in Fig. 3.

Table 3: Self-supervised training & evaluation on nuScenes

Moving Stat. 50-50
AEE↓ AccR↑ ROutl↓ AEE↓ AEE↓

Zero 0.6381 0.1632 0.5783 0.5248 0.5814
PPWC 0.3539 0.2543 0.3848 0.1974 0.2756
PF 0.7399 0.0000 0.9364 0.0570 0.3985
Ours 0.1050 0.7365 0.0240 0.0925 0.0987

Table 4: Self-supervised training & evaluation on CARLA

Moving Stat. 50-50
AEE↓ AccR↑ ROutl↓ AEE↓ AEE↓

Zero 0.4049 0.1805 0.4753 0.4752 0.4401
PPWC 0.3811 0.0948 0.5057 0.2577 0.3194
PF 0.5711 0.0085 0.9153 0.1093 0.3402
Ours 0.0809 0.8351 0.0528 0.0853 0.0831

4.4. Evaluation on LiDAR Data

For an evaluation closer to the real-world we perform
self-supervised experiments on the two annotated datasets
without point correspondences, CARLA, and nuScenes.
Both datasets exhibit a much larger imbalance of mov-
ing points (non-rigid flow > mthresh) compared to static
points. Where in KITTI-SF around 40% of points are mov-
ing, only ≈5% move in nuScenes and CARLA. We, there-
fore, compute the AEE and Acc scores separately and re-
port also the newly introduced AEE 50-50 for easier com-
parison of methods. Table 3 shows the results for the
nuScenes dataset and Table 4 the results for CARLA, where
we trained our method as well as the baselines on the re-
spective datasets.

As one can see, both baseline methods perform much
worse than our method. However, comparing their results
to the ones they achieved on KITTI-SF suggests that the
methods themselves have no real problem with missing cor-
respondences when trained on more realistic data.

4.5. Supervised Flow Prediction

Finally, we present the best results for each method on
the different datasets. All results are achieved using su-
pervised training except in the case of our method and the
KITTI-SF dataset. Here, our method performs best when
trained self-supervised on KITTI-RL compared to super-
vised training on any of the other two annotated datasets,
demonstrating the capabilities of our self-supervised model.

Table 5 and Table 6 show that our method greatly out-
performs the baselines w.r.t. almost all metrics. The domain
gap between KITTI-RL and KITTI-SF is the smallest of all,
thus our network achieves the best result on KITTI-SF using
self-supervision. The other methods are not able to profit
from the small domain gap to the same extent.

In case of nuScenes and CARLA , the baselines strug-
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Table 5: Best results on KITTI-SF for all methods. Note
that PPWC and PF are trained using full supervision while
our method uses only self-supervision.

Method Train Data AEE↓ AccS↑ AccR↑ Outl↓
PPWC FT3D 0.2578 0.1803 0.4838 0.7176
PF FT3D 0.1743 0.2716 0.5830 0.8729
Ours KITTI-RL 0.0668 0.7695 0.9342 0.2488

Table 6: Best supervised results

Moving Stat. 50-50
Method AEE↓ AccR↑ ROutl↓ AEE↓ AEE↓

C
A

R
L

A PPWC 0.2205 0.2456 0.4257 0.2120 0.2163
PF 0.8143 0.0000 0.9024 0.1357 0.4750
Ours 0.04311 0.9547 0.0043 0.0466 0.0449

nu
Sc

en
es PPWC 0.2341 0.4949 0.2034 0.0845 0.1593

PF 0.7934 0.0000 1.0000 0.0415 0.4175
Ours 0.0702 0.8921 0.0170 0.0499 0.0600

gle with the imbalance of moving points. Especially PF
achieves promising results for the stationary points even
outperforming our method on nuScenes. However, it com-
pletely ignores the moving objects. In contrast, our method
uses a moving classification threshold and therefore grace-
fully adapts to datasets with changing amounts of moving
points. We conclude that our method robustly handles dif-
ferent datasets with a consistent flow AEE 50-50 of roughly
5cm whereas the baselines perform drastically different and
worse on the more realistic datasets.

4.6. Ablation Study

We now perform a series of experiments to ablate the im-
portance of individual components, starting with our most
basic setup: A PP encoder [20] with a RAFT backbone as
a strong baseline, see Table 7. We first modify the RAFT
backbone to update and track the flow map together with
classification logits, which we use to apply an aggregation
step to the masked ego-motion flow map in order to regu-
larize the motion field for improved accuracy on the static
parts of the scene. Then, another map of logits for pro-
ducing weights used by the aggregation step is introduced,
in theory, allowing the network to select regions with high
flow certainty and resulting in even stronger performance
on static scene elements. For the supervised training we
observe a steady improvement in performance. However,
in the self-supervised case, we observe that the confidence
weights do not yield further improvements compared to
pure aggregation. We attribute this to the fact that during
self-supervised training, the moving thresholds are updated
only through the very noisy kNN residuals. This is insuf-
ficient to guide the moving threshold to an optimal calibra-

Table 7: Ablation study on nuScenes

logit ego conf. Mov. Stat. 50-50
introd. aggr. weights AEE AEE AEE

Self-
Super-
vised

0.1214 0.1889 0.1551
✓ ✓ 0.1050 0.0925 0.0987
✓ ✓ ✓ 0.1413 0.1100 0.1256

Super-
vised

0.1273 0.1530 0.1401
✓ ✓ 0.0933 0.0474 0.0704
✓ ✓ ✓ 0.0702 0.0499 0.0600

tion. For a more detailed analysis, we refer to the supple-
mentary material.

4.7. Motion Segmentation

As demonstrated in Table 7, the motion segmentation
improves scene flow performance. Qualitative analysis of
the logits in Fig. 4 reveals that the network indeed learns
to pick out moving objects from the point clouds. With
self-supervised training on KITTI-RL, our model achieves
a mIoU score of 59.5% with a sensitivity of 73.1% on
KITTI-SF. A more detailed discussion of motion segmen-
tation can be found in the supplementary material.

Figure 4: Left: Ground truth motion segmentation, right:
Predicted dynamicness, higher moving probability brighter

5. Conclusion
We introduced SLIM, a new method for LiDAR scene

flow estimation which improves over the state-of-the-art
through several key contributions: We presented a new net-
work design, allowing us to train and evaluate on larger
point clouds, hence removing the need for downsampling.
Our model classifies stationary and moving parts of the
scene . We demonstrated that the resulting aggregation of
static flow leads to a significant improvement of the rigid
flow field, in turn enabling better self-supervised classifi-
cation into stationary and moving points. In future work,
we plan to explore better regularization strategies and more
self-supervisory signals to further robustify our method.
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