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Abstract

Batch normalization (BN) has been widely used in mod-
ern deep neural networks (DNNs) due to improved conver-
gence. BN is observed to increase the model accuracy while
at the cost of adversarial robustness. There is an increasing
interest in the ML community to understand the impact of
BN on DNNs, especially related to the model robustness.
This work attempts to understand the impact of BN on DNNs
from a non-robust feature perspective. Straightforwardly,
the improved accuracy can be attributed to the better uti-
lization of useful features. It remains unclear whether BN
mainly favors learning robust features (RFs) or non-robust
features (NRFs). Our work presents empirical evidence that
supports that BN shifts a model towards being more depen-
dent on NRFs. To facilitate the analysis of such a feature
robustness shift, we propose a framework for disentangling
robust usefulness into robustness and usefulness. Extensive
analysis under the proposed framework yields valuable in-
sight on the DNN behavior regarding robustness, e.g. DNNs
first mainly learn RFs and then NRFs. The insight that RFs
transfer better than NRFs, further inspires simple techniques
to strengthen transfer-based black-box attacks.

1. Introduction

Batch normalization (BN) [18] has been considered as a
milestone technique in the development of deep neural net-
works (DNNs) pushing the frontier in computer vision due to
improved convergence. Numerous works have attempted to
understand the impact of BN on DNNs from various perspec-
tives. In contrast to previous works, investigating why (or
how) BN helps the optimization [31, 1], our work focuses on
the consequence of such enhanced optimization, especially
on the model robustness. Our work is not the first one to
study BN and robustness together. Most of the previous
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Figure 1. Schematic of disentangling F usefulness and robustness
with ball color representing robust usefulness, i.e. the darker, the
more robustly useful. Ball size indicates usefulness while the red
line divides RFs and NRFs.

works are focusing on the covariate shift [3, 33, 43, 42]. For
example, [3] adapts the BN statistics to improve the model
robustness against common corruptions. On the contrary,
our work studies BN by focusing on its impact on adversarial
robustness from the non-robust feature perspective.

We evaluate the behavior of models with and w/o BN
on multiple datasets in Table 1. As expected, BN improves
the clean accuracy, i.e. accuracy on clean images. How-
ever, this comes at the cost of lower robust accuracy, i.e.
accuracy on adversarial images [35]. Straightforwardly, the
DNN can be seen as a set of useful features, consisting of
robust features (RFs) and non-robust features (NRFs) [17],
and the improved accuracy can be roughly interpreted as
BN facilitating utilization of more useful features. Yet, it
remains unclear whether BN mainly favors learning RFs or
NRFs. Our empirical investigation shows that BN and other
normalization variants all increase adversarial vulnerability
in standard training, suggesting BN shifts the model to rely
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more on NRFs than RFs for classification. Our claim is
further corroborated by the analysis of corruption robustness
and feature transferability.

With the above empirical evidence supporting our main
claim that BN shifts the model towards being more depen-
dent on NRFs, it is still necessary yet non-trivial to define
and measure such a feature robustness shift. Inspired by [17],
with a classifier DNN defined as a feature set F , we propose
a framework, as shown in Figure 1, for disentangling F
robust usefulness into F robustness and F usefulness. Fol-
lowing [17], F usefulness and F robust usefulness can be
measured by clean accuracy and robust accuracy, respec-
tively. F usefulness can be seen as the amount of total useful
features, indicated by the ball size and F robustness indi-
cates the ratio of RFs to NRFs (see Figure 1). Conceptually,
F robustness is orthogonal to F usefulness. The core differ-
ence between our feature analysis framework and that in [17]
lies in the disentangled F robustness which can be utilized
to measure how much BN shifts the model towards NRFs.
In practice, however, it is very difficult to directly measure
F robustness. Inspired by [26, 28] demonstrating a positive
correlation between robustness and local linearity, we pro-
pose a metric termed Local Input Gradient Similarity (LIGS)
(see Sec. 4), measuring the local linearity of a DNN as an in-
dication for F robustness. Admittedly, comparing the clean
accuracy and robust accuracy also sheds some light on the
F robustness, however, they are heavily influenced by the
dimension of usefulness. Measuring LIGS provides direct
evidence on how BN influences the robustness of learned F ,
which facilitates analysis under the above framework.

Such analysis yields insight on the DNN behavior regard-
ing robustness. On a normal dataset, introducing BN (or
IN/LN/GN) into the DNN consistently reduces F robustness,
which naturally explains their induced lower robust accuracy.
We investigate and compare the behaviour of models trained
on a dataset that mainly has either RFs or NRFs, which
shows that NRFs are difficult to learn w/o BN, suggesting
that BN is essential for learning NRFs. Further investigation
on the dataset with RFs and NRFs cued for conflicting labels
reveals that the model learns first RFs and then NRFs, and
the previous learned RFs can be partially forgotten while the
model learns NRFs in the later stage. The proposed frame-
work is not limited for analyzing the impact of BN, and
we also analyze other network structures and optimization
factors. Interestingly, we find that most of them have no
significant influence on F robustness indicated by the LIGS
metric, leaving BN (and other normalization variants) among
our investigated factors as the only one that have significant
influence on the shift towards more NRFs. One practical use
case of our key findings is to boost transferable attacks. We
demonstrate that a substitute model w/o BN outperforms its
counterpart with BN and that early-stopping the training of
the substitute model can also boost transferable attacks.

Table 1. Comparison of models with and w/o BN on accuracy and
robustness. [11] reports a similar phenomenon.

Network Acc PGD l2 PGD l∞ CW l2 CW l∞
0.25 1/255 0.25 1/255

Im
ag

eN
et

VGG16 (None) 71.59 15.55 1.79 16.66 0.23
VGG16 (BN) 73.37 6.04 0.55 6.82 0.02

VGG19 (None) 72.38 16.52 2.18 17.46 0.30
VGG19 (BN) 74.24 6.94 0.69 7.66 0.03

ResNet18 (None) 66.51 30.44 1.24 30.43 0.93
ResNet18 (BN) 70.50 16.79 0.14 17.40 0.07

ResNet50 (None) 71.60 28.00 2.17 28.26 0.88
ResNet50 (BN) 76.54 19.50 0.53 20.19 0.19

SV
H

N

VGG11 (None) 95.42 63.91 83.20 64.64 83.24
VGG11 (BN) 96.27 51.22 77.50 51.13 77.61

VGG16 (None) 95.76 62.24 82.76 62.97 82.92
VGG16 (BN) 96.43 52.90 80.24 52.88 79.93

C
IF

A
R

10

VGG11 (None) 90.06 51.30 70.47 51.75 70.40
VGG11 (BN) 92.48 39.31 63.87 39.04 63.85

VGG16 (None) 91.89 34.01 63.18 34.37 63.46
VGG16 (BN) 93.7 28.61 56.05 24.01 54.58

ResNet50 (None) 92.15 29.24 49.33 17.09 49.24
ResNet50 (BN) 95.6 9.15 36.37 8.72 36.64

2. Related Work
Adversarial Vulnerability and Transferability. Adver-

sarial examples [35, 15] have attracted significant attention
in machine learning, which raises concern for improving
the model robustness [5]. The cause of adversarial vulner-
ability has been explored from different perspectives, such
as local linearity [15], input high-dimension [14, 34, 25],
limited sample [32, 36], boundary tilting [36], test error in
noise [10, 13, 6], etc. The cause of adversarial vulnerability
has recently been attributed to highly predictive yet brittle
NRFs [17]. [17] proposes a feature analysis framework
that discusses feature usefulness and robust usefulness that
can be measured by (clean) accuracy and robust accuracy,
respectively. Despite efforts to bridge their gap [48], it is
widely recognized that there is a trade-off between them [38].
Our framework proposes another dimension of feature ro-
bustness that is orthogonal to feature usefulness. On the
other hand, one intriguing property of adversarial examples
are their transferability, i.e. adversarial examples generated
on a substitute model is also often effective in attacking
an unknown target model [21]. Complementary to existing
techniques [8, 44, 9], our finding from the NRF perspective
results in simple techniques that boost transferability.

Batch normalization and beyond. Since the advent of
BN [18], numerous works have investigated it from vari-
ous perspectives. BN performs normalization along batch
dimension to reduce covariate shift, resulting in improved
convergence [18]. The stochasticity of the batch statistics
also serves as a regularizer and improves generalization [23].
However, the property of batch dependence limits the ap-
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Table 2. Influence of various normalization techniques on accuracy (left/) and robustness (/right).

Data Network None BN IN LN GN

SVHN VGG11 95.42/63.91 96.27/51.22 95.89/45.82 96.29/56.77 96.30/56.37
VGG16 95.76/62.24 96.43/52.90 96.64/47.43 96.18/59.55 96.21/59.50

CIFAR10
VGG11 90.06/51.30 92.48/39.31 88.42/31.38 90.54/42.41 90.68/39.43
VGG16 91.89/34.02 93.70/28.61 90.73/13.44 92.51/28.92 92.83/26.73

ResNet50 92.15/29.24 95.60/9.15 93.40/10.80 90.37/7.24 92.61/6.43

ImageNet ResNet18 66.51/30.44 70.50/16.79 63.14/14.29 68.36/19.72 69.02/19.76
ResNet50 71.60/28.00 76.54/19.50 67.97/13.65 71.08/17.38 74.69/20.34

plicability of BN when large batch size is impractical [2],
or there is a domain change [29]. To avoid such an issue
related to the batch dimension, several alternative normaliza-
tion techniques have been proposed to exploit the channel
dimension, such as layer normalization (LN) [2] in trans-
formers and Instance normalization (IN) [39] in style transfer.
LN and IN can be seen as two special cases of Group nor-
malization (GN) in [41]. Complementary to [11] showing
BN increases adversarial vulnerability, our work finds that
LN/IN/GN mirrors the same trend. Recently, Xie et al. show
that BN might prevent the model from obtaining strong ro-
bustness when clean examples are included in adversarial
training due to the two-domain hypothesis [43] and that the
usage of an auxiliary batch norm for adversarial examples
can improve image recognition [42]. A similar approach
has been adopted in [19] for adversarial contrastive learning.
Recently [3, 33] show that covariate shift adaptation at the
inference stage can enhance the robustness against common
corruptions.

3. RFs vs. NRFs: Which Side does BN Favor?

3.1. Background and Motivation

Reason vs Effect. BN [18] is widely adopted due to its
improved convergence and the community has attempted to
understand how BN helps the optimization. BN was first
motivated to reduce the internal covariate shift (ICS) [18],
while [31] claims that reducing ICS does not help optimiza-
tion, instead, the improved optimization is mainly attributed
to BN smoothing the optimization landscape. One recent
work [1] revisits ICS and refutes the claim in [31] and sug-
gests that reducing the ICS is actually the reason. Overall,
the mechanism of why BN improves the optimization re-
mains unclear and probably no clear consensus will be found
in the near future. In contrast to previous works [31, 1] inves-
tigating the reason of the improved optimization, our work
focuses on the effect, more specifically, on the adversarial
robustness. Given that a DNN learns a set of features [17],
the improved optimization is expected to lead to a model
with more useful features, consequently improving the ac-
curacy, as expected. Its side effect of increasing adversarial
vulnerability is worth an investigation. Inspired by [17], our

work focuses on the NRF perspective.
RFs vs. NRFs. Feature is one key concept in computer

vision and the past few years have witnessed a shift from
hand-crafted features [22, 7] to DNNs intrinsically extract-
ing features [20, 16]. Despite different interpretations of
how DNN works, there is a belief that a classification DNN
can be perceived as a function utilizing useful features [17].
Specifically, [17] defines a feature to be a function mapping
from the input space X to real numbers, i.e. f : X → IR.
A feature f is ρ-useful (ρ > 0) if it is correlated with the
true label in expectation, i.e. IE(x,y)∼D[y · f(x)] ≥ ρ. Given
a ρ-useful feature f , robust features (RFs) and non-robust
features (NRFs) are formally defined as follows:

• RF: a feature f is robust if there exists a γ > 0 for it to
be γ-robustly useful under some specified set of valid
perturbations ∆, i.e. IE(x,y)∼D[ inf

δ∈∆(x)
y ·f(x+δ)] ≥ γ.

• NRF: a feature f is non-robust if γ > 0 does not exist.

Conjecture. With the above definition [17] to di-
chotomize features, we conjecture that BN shifts the model
to rely more on NRFs instead of RFs.

3.2. Empirical evidence

The observation in Table 1 constitutes evidence for our
conjecture, which can be corroborated as follows. First,
BN simply normalizes the DNN intermediate feature layers;
thus if our conjecture is correct, other normalization tech-
niques (such as LN, IN, and GN) are also likely to mirror the
same behavior. Second, with the link between adversarial
robustness and corruption robustness [13], our claim can be
more convincing if the corruption robustness analysis also
supports it.

Adversarial robustness. Table 2 shows that the phe-
nomenon of increased adversarial vulnerability is not limited
to BN but also occurs for IN, LN, and GN. Overall, except
for the result of ResNet50 on CIFAR10, IN consistently
achieves the lowest robust accuracy. We suspect that this can
be attributed to the prior finding [39, 27] that IN excludes
style information by performing instance-wise normalization.
The style information is likely RFs (note that changing style,
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Figure 2. Corruption robustness of VGG16 with standard training
(top) and adversarial training (bottom).

e.g. color, normally requires large pixel intensity change),
thus IN discarding style can result in the least robust model.

Ford et al. [13] revealed that adversarial training
(and Gaussian data augmentation) significantly improve
the robustness against noise corruptions, i.e. Gaus-
sian/Speckle/Shot, while decreasing the robustness against
contrast and fog, which is confirmed in Figure 2. Follow-
ing [17], a standard model is perceived to learn a sufficient
amount of NRFs, while a robust model (robustified through
adversarial training) mainly has RFs. Perceiving from the
feature perspective, the following explanation arises: noise
corruptions mainly corrupt the NRFs while contrast and fog
mainly corrupt the RFs. Our explanation from the feature
perspective echoes with prior explanation from a frequency
perspective [45]. We discuss their link in the supplementary.

Corruption robustness. The model without normaliza-
tion are more robust to noise corruptions than their counter-
parts with normalization while a reverse trend is observed
for fog and contrast. Given our explanation, this contrast-
ing behavior suggests that the models with normalization
learn more NRFs instead of RFs. Another observation from
Figure 2 is that IN leads to extra high-robustness against
contrast corruption, suggesting less IN is the least dependent
on RFs in this context. This aligns well with the previous
result that the model with IN is generally the least robust.

4. Framework for disentangling usefulness and
robustness

Following [17], we define a DNN classifier as a set of
features, i.e. F = {f}. The definitions of f usefulness and
robust usefulness in Sec. 3.1 can be readily extended to F .

• F usefulness: F is ρ-useful (ρ > 0) if it is correlated
with the true label in expectation, i.e. IE(x,y)∼D[y ·

F (x)] ≥ ρ;

• F robust usefulness: F is γ-robustly useful if there
exists a γ > 0 under some specified set of valid pertur-
bations ∆, i.e. IE(x,y)∼D[ inf

δ∈∆(x)
y · F (x+ δ)] ≥ γ.

For being orthogonal to usefulness, we can not trivially de-
fine F robustness by measuring its correlation with the true
label in expectation. With a locally quadratic approximation,
prior work [26] provided theoretical evidence of a strong re-
lationship between robustness and local linearity. Thus, with
∇l(x, y) denoting the partial gradient of the CE loss l with
respect to the x input, we define F robustness as follows.

• F robustness: A feature set F is β-robust if the
local linearity is larger than β (β > 0), i.e.
IE(x,y)∼D,ν∼∆ [sim(∇l(x, y),∇l(x+ ν, y))] ≥ β.

The local linearity indicated by the similarity (sim) between
∇(l(x, y) and ∇l(x+ ν, y) can be represented in different
forms, such as calculating the norm of their difference [26].
We adopt the cosine similarity [46] to quantify this similarity
as:

E(x,y)∼D,ν∼∆

[
∇l(x, y) · ∇l(x+ ν, y)

∥∇l(x, y)∥ · ∥∇l(x+ ν, y)∥

]
. (1)

The adopted metric indicates similarity (or linearity) be-
tween the original and locally perturbed input gradient and
is thus termed Local Input Gradient Similarity (LIGS). For
additional justification for adopting this metric, refer to the
supplementary. Nonetheless, metrics other than LIGS might
also be appropriate.

Perturbation choice of LIGS. We investigate the influ-
ence of perturbation type by setting ν to Gaussian noise,
uniform noise, FGSM perturbation, and PGD perturbation.
Among all the chosen types of perturbation, we observe a
general trend that the LIGS decreases with training, and
consistently the LIGS w/o BN is higher than that with BN.
Unless specified, we sample the ν from a Gaussian distribu-
tion to measure the LIGS in this work. Additional details
and results can be found in the supplementary.

Relation to prior works. The primary motivation of
adopting LIGS in this work is to define and quantify the
F robustness. Directly maximizing the local linearity as
a new regularizer has been shown to improve adversarial
robustness on par with adversarial training [26]. A similar
finding has also been shown in [28]. Note that “adversar-
ial robustness” mostly refers to “robust usefulness” instead
of solely “robustness”. To avoid confusion, we highlight
that F robustness is orthogonal to usefulness. Contrary to
prior works [26, 28], which improve “adversarial robustness”
by investigating (and establishing) the link between robust
usefulness with local linearity, we adopt the local linearity
as a measure of “robustness”. By definition, local linearity

7821



does not imply usefulness because it is not related to the
correlation with the true label. Nonetheless, their observa-
tion that maximizing local linearity can help improve robust
usefulness (measured by robust accuracy), can be seen as a
natural consequence of increasing F robustness.

Interpretation and relationship. Informally but intu-
itively, the usefulness of F can be perceived as the number
of features if we assume that each feature is equally useful
for classification; and the robustness of F can be seen as the
ratio of RFs to NRFs in F . This is illustrated schematically
in Figure 1, where a DNN located in the top right region has
high robust usefulness, i.e. high robust accuracy, indicating
the model learns sufficient features and among them, a high
percentage belongs to RFs. A low robust accuracy can be
caused by either low F usefulness or low F robustness. Fig-
ure 1 also shows the difference between standard training
(green) and adversarial training (blue). Both start from the
state of high F robustness and low F usefulness; compared
with standard training, adversarial training eventually leads
to a model of higher F robustness and lower F usefulness.
For standard training, removing BN also increases F ro-
bustness. By definition, F robustness, F usefulness, and F
robust usefulness can be measured by LIGS, clean accuracy,
and robust accuracy, respectively. The schematic illustration
in Figure 1 aligns well with the results in Figure 3.

5. Disentangling usefulness and robustness of
model features

With the above evidence to corroborate that BN shifts
the model to rely more on NRFs, it would be desirable to
have a metric to measure “pure” robustness independent of
usefulness. Given both RFs/NRFs are useful and their core
difference lies in robustness, such a metric is crucial for pro-
viding direct evidence on the shift towards NRFs by showing
a lower “pure” robustness. Moreover, the LIGS trend during
the training stage also sheds light on the learned order of
features, i.e. from RFs to NRFs or vice versa. Evaluating
adversarial robustness by robust accuracy demonstrates how
robustly useful the model features are. Thus, disentangling
robust usefulness into usefulness and robustness provides a
better understanding of adversarial robustness.

The overall trend in Figure 3 shows that robust accuracy
is influenced by both clean accuracy and LIGS. For example,
for adversarial (adv.) training, the LIGS stays close to 1
during the entire training stage, and the robust accuracy is
highly influenced by the clean accuracy. For standard (std.)
training, however, the LIGS is much lower, leading to a
much smaller robust accuracy despite slightly higher clean
accuracy. The influence of BN is mainly observed on LIGS.
During the entire training stage, BN leads to a significantly
lower LIGS, consequently lower robust accuracy.

As (standard) training evolves, the LIGS value decreases,
i.e. the feature robustness decreases, suggesting the model

relies more on NRFs as training evolves. The influence of
BN in adv. training, however, is limited. Here, only BN
on CIFAR10 is reported. We provide more results with
IN/LN/GN and results on ImageNet in the supplementary.
The results mirror the trend in Figure 3.

Figure 3. Trend of clean accuracy, robust accuracy, LIGS with
ResNet18 on CIFAR10.

On the role of BN in adversarial training. With stan-
dard training, we find that BN increases adversarial vulnera-
bility. To improve robustness, adversarial training is one of
the most widely used methods. The authors of [43] showed
that BN might prevent networks from obtaining strong ro-
bustness in adversarial training. However, this is only true
when clean images are utilized in the training and the reason
is attributed to the two-domain hypothesis. For standard
adversarial training [24] with only adversarial images, as
shown in Figure 3, BN is found to have no influence on
LIGS as well as robust accuracy. This is reasonable because
adversarial training explicitly discards NRFs.

Regularization of LIGS. The above results show that
the robust accuracy and LIGS are linked. To verify the
link between them, we use LIGS as a regularizer during
training. The results in Figure 4 confirm that increasing
LIGS through regularization improves the robust accuracy
by a large margin despite a small influence on clean accuracy.

Figure 4. Effect of regularizing LIGS.

5.1. Training on a dataset of disentangled RFs and
NRFs

Note, that by default the experiment setup is the same by
only changing the variable of interest (e.g. testing with and
without BN). Training on a dataset of disentangled RFs and
NRFs with BN as the control variable highlights the effect
of BN on them while excluding mutual influence.

Disentangling RFs and NRFs. Following the procedure
of [17] we extract D̂R, D̂NR and D̂rand (Description in the
supplementary). Note that D̂R mainly (if not exclusively)

7822



has RFs, while D̂rand only has NRFs. D̂NR has both RFs
and NRFs (see the supplementary for results on D̂NR). Here,
to demonstrate the effect of BN on either NRFs or NRFs,
we report the results trained on D̂R and D̂rand in Figure 5,
where the clean accuracy and robust accuracy results echo
the findings in [17]. There are two major observations re-
garding the LIGS result. First, the LIGS on D̂R is very high
(more than 0.9), which explains why a model (normally)
trained on D̂R has relatively high robust accuracy, while the
LIGS on D̂rand eventually becomes very low because D̂rand

only has NRFs. Second, w/o BN, the model is found to not
converge on D̂rand, leading to 10% accuracy, i.e. equivalent
to random guess. The model with BN starts to converge
(achieving an accuracy of higher than 10%) after around 25
epochs and the LIGS is observed to increase before the model
starts converging. This suggests that the model is learning
features that are robust yet hardly useful. This “warmup”
phenomenon is not accidental and repeatedly happens with
different random training seeds. After the model starts to
converge, the LIGS quickly plummets to a low value.

Figure 5. Analysis of BN with ResNet18 on datasets of disentangled
features.

Training on a dataset of conflicting RFs and NRFs. In
the original dataset, D, abundant RFs and NRFs co-exist
and the model learns both for classification. It is interesting
to understand the order of the learned features, i.e. from
RFs to NRFs or vice versa, as well their influence on each
other. The decreasing trend of LIGS in Figure 3 suggests
that the model learns mainly RFs first. Here, we provide
another evidence with the metric of clean accuracy. In the
D, RFs and NRFs are cued for the same classification, thus
no insight can be deduced from the clean accuracy. To this
end, we design a dataset D̂Conflict of conflicting RFs and
NRFs. Specifically, we exploit the generated D̂R of target
class t+ 1 as the starting images and generate the NRFs of
the target class t. In other words, in the D̂Conflict RFs are
cued for class t+ 1 while NRFs are cued for class t.

Figure 6 shows that with BN the clean accuracy aligned
with RFs increases significantly in the first few epochs and
peaks around 80% followed by a sharp decrease, while the
accuracy aligned with NRFs slowly increases until satura-
tion. It supports that the model learns from RFs to NRFs.
Eventually, the accuracy aligned with NRFs surpasses that
aligned with RFs, indicating the model forgets most of the
first learned RFs during the later stage. W/o BN, we find

that the model in the whole stage learns RFs while ignor-
ing NRFs. It clearly shows that BN is crucial for learning
NRFs, which naturally explains why BN shifts the models
towards learning more NRFs. We also discuss the results of
D̂det [17] in the supplementary.

Figure 6. Analysis on dataset with Conflicting RFs and NRFs.

5.2. Exploration beyond (batch) normalization

Network structure factors and optimization factors.
Besides normalization, other factors could influence the
DNN behavior, especially concerning its robustness. We
study two categories of factors: (a) structure category in-
cluding network width, network depth, and ReLu variants;
(b) optimization category including weight decay, initial
learning rate, and optimizer. The results are presented in
Figure 7. We find that most studied factors have no signifi-
cant influence on the LIGS. Increasing network width and
depth can increase or decrease the LIGS, respectively, but
by a small margin. No visible difference between ReLU and
Leaky ReLU can be observed, while SeLU leads to a slightly
higher LIGS with lower clean accuracy. Some candidates
from the optimization category are found to influence F ro-
bustness differently in the early and later stages of training.
High weight decay leads to higher LIGS in the early stages
of training and slightly lower in the end. A higher initial
learning rate, such as 0.5, results in higher LIGS in the early
training stage, but eventually leads to lower LIGS. For both
weight decay and initial learning rate, an opposite trend of
lower/higher in the early/later stage is observed with clean
accuracy. SGD optimizer and ADAGrad show similar be-
havior on LIGS, ADAM leads to slightly higher LIGS. Their
influence on clean accuracy is more significant.

6. On the link between why BN favors NRFs
and how BN helps optimization.

As discussed in Sec. 3.1, there are two major conflicting
views on how BN helps optimization: (a) smoothing the
optimization landscape [31] vs. (b) reducing ICS [1]. View
(a) and view (b) hold exactly the opposite claims against
each other. On the other hand, why BN shifts towards NRFs
also remains unclear. The shift towards NRFs is caused by
the improved optimization of BN (note that both views agree
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Figure 7. Influence of other factors on the behavior or DNN.

that BN improves the optimization). Thus, (1) why BN shifts
towards NRFs and (2) how BN improves the optimization are
essentially the same, at least highly correlated, problems. We
suggest future works investigate problem (1) and problem
(2) jointly. Here, we perform a trial attempt in this direction.

Given our observation that the model w/o BN cannot con-
verge on a dataset with only NRFs and the wide belief that
BN stabilizes training, we are wondering about a potential
link between training stability and F robustness. ResNet
shortcut also stabilizes/accelerates training [16], thus we in-
vestigate whether it reduces F robustness. Figure 8 shows
that shortcut has trivial influence on LIGS with ResNet20.
For a much deeper ResNet56, removing the shortcut has a
significant influence on LIGS in the early stage of training,
however, eventually, the influence also becomes marginal.
Fixup initialization (FixupIni) is introduced in [47] to re-
place the BN in ResNets. We compare their influence on the
model and observe that their difference in clean accuracy is
trivial, while BN leads to lower LIGS than FixupIni. Overall,
it shows increasing training stability does not necessarily
lead to lower F robustness. If stabilizing training does not
necessarily result in a shift towards NRFs, it is likely that
view (a) does not hold because it is deduced based on the
observation that BN leads to a more predictive and stable
gradient. Moreover, IN/LN/GN is also found to improve the
optimization as well as a shift towards NRFs. If view (a)
holds, likely, IN/LN/GN will also lead to a more predictive
and stable gradient. Following [31], we visualize the gradi-
ent predictiveness and find that they do not lead to strong
gradient stability as BN (See the supplementary). One com-
mon thing between BN/IN/LN/GN is that they all reduce
ICS and the evidence we find supports view (b). Note that
the authors of this work do not have any interest in conflict
with the above two views and just objectively present the evi-
dence we collect. The authors also have no intention to claim

that view (b) is the final reason and welcome future works
to present with more supportive or contradicting evidence.

Figure 8. Effect of shortcut (top) and FixupIni (bottom) on model.

7. Implications of our findings for improving
adversarial transferability

Recent works [30, 40, 37] show that robust models are
more suitable for downstream tasks for transfer learning,
suggesting models that contain more robust features trans-
fer better across tasks. One natural conjecture is that such
models might also be more suitable for being used as the
substitute model for generating transferable adversarial ex-
amples across models. This conjecture is confirmed by our
preliminary finding that adversarial examples generated on
the adversarially trained models transfer better to normal
models. However, typical adversarial training requires more
computation resources [24, 48]. Our findings regarding the
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Table 3. Influence of BN on the transferability. Results on Ima-
geNet with various baselines: I-FGSM [21], MI-FGSM [8], DI-
FGSM [44] and TI-FGSM [9].

Source BN RN50 DN121 VGG19 RN152 MN-V2 I-V3 Avg

I

VGG19 Y 47.3 49.5 100 32.3 58.8 20.1 51.3
VGG19 N 65.4 65.7 98.0 48.1 77.6 32.1 64.5
RN50 Y 100 80.1 71.6 86.2 73.4 34.2 74.2
RN50 N 98.6 94.3 87.0 95.5 94.4 72.1 90.3

MI

VGG19 Y 60.7 65.3 100 44.3 70.1 36.7 62.9
VGG19 N 73.8 76.4 98.5 58.8 83.7 47.5 73.1
RN50 Y 100 88.8 81.9 92.8 83.0 50.7 82.9
RN50 N 98.9 95.4 88.7 95.5 96.2 78.5 92.2

DI

VGG19 Y 65.4 68.0 100 46.3 75.2 28.9 64.0
VGG19 N 77.1 74.6 99.0 56.8 85.5 37.4 71.7
RN50 Y 100 98.1 96.9 97.9 94.4 59.8 91.2
RN50 N 99.4 99.1 95.8 98.1 98.8 90.3 96.9

TI

VGG19 Y 57.9 58.2 100.0 43.5 70.5 30.5 60.1
VGG19 N 71.3 70.9 97.7 53.7 79.0 40.9 68.9
RN50 Y 100 82.4 75.4 88.6 77.1 40.3 77.3
RN50 N 98.7 95.0 87.0 95.7 95.2 77.6 91.5

Table 4. Influence of BN on the transferability. Results on CIFAR10
with various baselines: I-FGSM [21], MI-FGSM [8]. Full results
with DI-FGSM [44] and TI-FGSM [9] are in the supplementary.

Source BN AlexN VGG16 RN50 DN RNext WRN Avg

I

VGG16 Y 28.7 100∗ 85.7 81.7 84.7 83.3 77.4
VGG 16 N 39.5 99.8 99.6 98.0 98.8 98.9 89.1

ResNet18 Y 24.7 73.3 80.7 80.0 83.8 85.7 71.4
ResNet18 N 41.5 99.6 99.7 98.3 99.4 98.9 89.6

MI

VGG16 Y 34.4 100∗ 93.9 91.1 92.2 92.7 84.1
VGG 16 N 44.1 99.7 99.2 97.2 98.0 98.4 89.4

ResNet18 Y 28.7 86.9 90.1 88.3 90.8 92.7 79.6
ResNet18 N 45.1 99.1 99.0 96.6 98.2 97.9 89.3

RFs/NRFs can be utilized in normal training for boosting
the adversarial transferability.

One takeaway from this work is that BN shifts the model
to utilize more NRFs than RFs. A normal model (with BN
by default) is used in the existing approaches [8, 44, 9].
Given RFs transfer better, we experiment with a substitute
model w/o BN on ImageNet (see Table 3) and CIFAR10 (see
Table 4). We observe that on a wide range of DNN archi-
tectures, the substitute models w/o BN transfer significantly
better than their counterparts. The results here also provide
additional evidence that BN indeed shifts the model to rely
more on NRFs. Recently, Normalization-Free networks [4]
have been introduced. We leave an investigation of their
robustness and transferability for future investigations.

Another interesting finding of this is that the DNN mainly
first learns RFs and then learns NRFs. To get a substitute
model with more RFs, a straightforward idea inspired by this
finding is to train the substitute model with an early stop.
By default, existing methods train a substitute model trained
with full epochs. We report the transferability performance
for substitute models at different epochs in Figure 9. We

observe that the transferability performance increases very
sharply in the early epochs, and decreases gradually in the
later epochs. The results demonstrate that early stopping
indeed helps significantly improve transferability.

Transfer-based black-box attack is a vibrant and com-
petitive research field [8, 44, 9, 12], and our proposed two
techniques are expected to be complementary to most of the
existing techniques. More transferability results are shown
in the supplementary and we highlight that our findings have
important implications for understanding adversarial trans-
ferability from the NRF perspective as well as provide direct
insight with simple yet effective techniques for boosting
transferable black-box attacks.

Figure 9. Performance of a substitute ResNet18 measured across
different training epochs on 5 black-box models.

8. Conclusion
BN and other normalization variants increase adversar-

ial vulnerability. We attribute the reason to a shift of the
model to rely more on NRFs, for which we provide empiri-
cal evidence from both adversarial robustness and corruption
robustness analysis. We propose a framework for disentan-
gling the usefulness and robustness of model features. With
the disentangled interpretation, we find that the model learns
first RFs and then NRFs because RFs are essential for train-
ing the model in the early stage, and that BN is crucial for
learning NRFs. The reason why BN shifts the model towards
NRFs and how BN helps the optimization are essentially the
same problem. A joint analysis of the observed phenomena
shows that the current evidence supports the view of reduc-
ing ICS between two conflicting views. Our findings also
provide a new understanding of adversarial transferability
from the NRF perspective as well as inspire two simple yet
effective ideas for boosting transferable attacks.
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