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Abstract

We present a novel solution to the garment animation
problem through deep learning. Our contribution allows
animating any template outfit with arbitrary topology and
geometric complexity. Recent works develop models for
garment edition, resizing and animation at the same time by
leveraging the support body model (encoding garments as
body homotopies). This leads to complex engineering solu-
tions that suffer from scalability, applicability and compati-
bility. By limiting our scope to garment animation only, we
are able to propose a simple model that can animate any
outfit, independently of its topology, vertex order or con-
nectivity. Our proposed architecture maps outfits to ani-
mated 3D models into the standard format for 3D anima-
tion (blend weights and blend shapes matrices), automati-
cally providing of compatibility with any graphics engine.
We also propose a methodology to complement supervised
learning with an unsupervised physically based learning
that implicitly solves collisions and enhances cloth quality.

1. Introduction

Virtual dressed human animation has been a topic of
interest for decades due to its numerous applications in
entertainment and videogame industries, and recently, in
virtual and augmented reality. Depending on the appli-
cation we find two main classical computer graphics ap-
proaches. On the one hand, Physically Based Simulation
(PBS) [6, 17, 23, 24, 29, 30, 33] approaches are able to
obtain highly realistic cloth dynamics at the expense of a
huge computational cost. On the other hand, Linear Blend
Skinning (LBS) [12, 13, 15, 20, 31, 32] and Pose Space
Deformation (PSD) [3, 4, 16, 18] models are suitable for
environments with limited computational resources or real-
time performance demand. To do so, realism is highly com-
promised. Then, computer graphics approaches present a
trade-off between realism and computational performance.

Figure 1: We present a novel approach for outfit animation.
Our methodology allows generalization to unseen outfits. It
can handle multiple layers of cloth, arbitrary topology and
complex geometric details without retraining.

Deep learning has already proven successful in complex
3D tasks [5, 10, 19, 21, 25, 26, 28]. Due to the interest
in the topic and the recently available 3D datasets on gar-
ments, we see the scientific community pushing this re-
search line [1, 2, 7, 8, 9, 14, 22, 27]. Most proposals are
built as non-linear PSD models learnt through deep learn-
ing. These methods yield models describing one or few
garment types and, therefore, they lack on generalization
capabilities. To overcome this, recent works propose encod-
ing garment types as a subset of body vertices [7, 22]. This
allows generalizing to more garments, yet bounds its rep-
resentation capacity to body homotopies only. Thus, these
approaches need to model each garment individually and
cannot handle details such as pockets nor multiple layers of
cloth, heavily hurting their scalability and applicability in
real life scenarios.

We propose learning a mapping from the space of tem-
plate outfits to the space of animated 3D models. We will
show how this allows generalization to completely unseen
garments with arbitrary topology and vertex connectivity.
We can achieve this by identifying edition/resizing and an-
imation as separate tasks, and focusing on the latter. Our
method works with whole outfits (instead of single gar-
ments), multiple layers of cloth and resolutions, while also
allowing complex geometric details (see Fig. 1 for some

5471



examples). Furthermore, we achieve this with a simple and
small-sized neural network. The list of our contributions is
as follows:
• Outfit Generalization. To the best of our knowledge,

our proposal is the only work able to animate com-
pletely unseen outfits without additional training. This
greatly increases applicability in scenarios with ever-
growing number of outfits, such as virtual try-ons and
videogames, where customization is key.
• Compatibility. Our methodology does not predict gar-

ment vertex locations, but blend weights and blend
shapes matrices. This is the standard on 3D animation,
and it is therefore compatible with all graphics engines.
Also, it benefits from the exhaustive optimization on
animation pipelines. Pose Space Deformations are a
specific case of blend shapes that are combined con-
sistently with object pose.
• Physical Consistency. Related works require a fi-

nal post-processing step for collision solving. Al-
ternatively, works that train with a collision-solving
loss need to find a compromise between physical con-
straints and vertex error. Thus, predictions still show
collisions. We propose to train an independent model
branch such that physical consistency losses and su-
pervised losses do not hinder each other. This yields
quasi-collision free and cloth-consistent predictions
while leveraging the data as much as possible.
• Explainability. Mapping outfits to animated 3D mod-

els yields a more intuitive work pipeline for CGI
artists. Recent works try to address garment resiz-
ing/edition along animation by encoding styles into
parametric representations [7, 22]. Thus, expert
knowledge is required to obtain the desired results by
tuning style parameters.

2. State of the art
Computer Graphics. Obtaining realistic cloth be-

haviour is possible through PBS (Physically Based Sim-
ulation), commonly through the well known mass-spring
model. Literature on the topic is extensive, focused on im-
proving the efficiency and stability of the simulation by sim-
plifying and/or specializing on specific setups [6, 23, 24,
30], or proposing new energy-based algorithms to enhance
robustness, realism and generalization to other soft bodies
[17]. Other works propose leveraging the parallel compu-
tational capabilities of modern GPUs [29, 33]. These ap-
proaches achieve high realism at the expense of a great
computational cost. Thus, PBS is not an appropriate so-
lution when real-time performance is required or compu-
tational capacity is limited (e.g. in portable devices). On
the other hand, for applications that prioritize performance,
LBS (Linear Blend Skinning) is the standard approach on
computer graphics for animation of 3D models. Each ver-

tex of the object to animate is attached to a skeleton through
a set of blend weights that are used to linearly combine joint
transformations. In garment domain, outfits are attached to
the skeleton driving body motion. This approach has also
been widely studied [12, 13, 15, 20, 31, 32]. While it is
possible to achieve real-time performance, cloth dynamics
are highly non-linear, which results in a significant loss of
realism when applied to garments.

Learning-Based. Due to the drawbacks found in the
classical LBS approach, PSD (Pose Space Deformation)
models appeared [16]. To avoid artifacts due to skinning,
corrective deformations are applied to the mesh in rest pose.
Additionally, PSD handles pose-dependant high frequency
details of 3D objects. While hand-crafted PSD is possible,
in practice, it is learnt from data. We find applications of
this technique for body models [3, 4, 18], where deforma-
tion bases are computed through linear decomposition of
registered body scans. Similarly, in garment domain, Guan
et al. [9] apply the same techniques for a few template
garments on data obtained through simulation. Lähner et
al. [14] also propose linearly learnt PSD for garments, but
conditioned on temporal features processed by an RNN to
achieve a non-linear mapping. Later, Santesteban et al. [27]
propose an explicit non-linear mapping for PSD through an
MLP for a single template garment. The main drawback of
these approaches is that PSD must be learnt for each tem-
plate garment, which in turns requires new simulations to
obtain the corresponding data. To address this issue, many
researchers propose an extension of a human body model
(SMPL [18]), encoding garments as additional displace-
ments and topology as subsets of vertices [1, 2, 7, 8, 22].
Alldieck et al. [1, 2] propose a single model for body and
clothes, first as vertex displacements and later as texture dis-
placement maps, to infer 3D shape from single RGB im-
ages. Similarly, Bhatnagar et al. [8] also learn a space for
body deformations to encode outfits, plus an additional seg-
mentation to separate body and clothes, also to infer 3D
garments from RGB. Jiang et al. [11] propose 3D outfit re-
trieval from images and predicting the corresponding blend
weights w.r.t. SMPL skeleton using, as labels, the weights
of the nearest skin vertices. Patel et al. [22] encode a few
different garment types as subsets of body vertices and pro-
pose a strategy to explicitly deal with high frequency pose-
dependant cloth details for different body shapes and gar-
ment styles. Bertiche et al. [7] encode thousands of gar-
ments on top of the human body by masking its vertices.
They learn a continuous space for garment types, on which
later they condition, along with the pose, the vertex defor-
mations. Using a body model to represent garments allows
handling multiple types with a single model. Nonetheless,
it is still limited to single garments, as it cannot work with
multiple layers of cloth. For the same reason, they cannot
handle complex garment details. This reduces their appli-
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cability in real scenarios. Our proposed methodology al-
lows working with arbitrary topologies, number of layers
and complex details. Additionally, output format is highly
efficient and allows easy integration into graphics engines,
increasing compatibility and applicability.

3. Predicting Animated 3D Models
Computer graphics 3D animated models are constructed

using skinning and/or blend shapes. In the former, given a
3D mesh withN vertices as T ∈ RN×3 and a skeleton with
K joints as J ∈ RK×3, each mesh vertex is attached to
each joint with a blend weights matrix W ∈ RN×K . Then,
animating the 3D mesh can be achieved by posing skele-
ton J through linear transformation matrices (rotation, scal-
ing and translation). Vertex transformation matrices are ob-
tained as a weighted average of joint transformations as de-
scribed by blend weights. For realistic human and garment
animation, only rotations are applied to the joints, and thus,
an axis-angle representation is used for pose as θ ∈ RK×3.
For the latter, given T as defined above, a blend shapes ma-
trix as D ∈ RM×N×3 encodes M different deformations
(shapes) Di ∈ RN×3 for T. To animate the mesh, M shape
keys are required. These keys are used to linearly combine
blend shapes to obtain a final deformation for T. Temporal
evolution of shape keys animates the mesh. More complex
3D models use a combination of both techniques. First, T
is linearly deformed through blend shapes and later posed
along skeleton J according to blend weights. Whenever
shape keys are defined as a function of skeleton pose, we
have Pose Space Deformations driven by pose keys. More
formally, in human and garment animation domain:

Vθ = W (T +

M∑
i

f(θ)iDi,J, θ,W) (1)

Where W (·) is the skinning function that poses mesh ver-
tices as described by J and θ, Vθ is the posed vertices, f(·)
is a function that maps pose θ toM pose keys andDi are the
shapes within blend shapes matrix D. These techniques are
the standard for 3D animation. All current graphics engines
are compatible with these methods.

An example for this is SMPL [18] (human body model).
SMPL consists of a template mesh with vertices T ∈
R6890×3, an skeleton J ∈ R24×3, a blend weights ma-
trix W ∈ R6890×24 and two blend shapes matrices, one
to represent different body shapes, Dshape ∈ R10×6890×3,
and another for Pose Space Deformations, DPSD ∈
R207×6890×3. Body shape is defined by shape keys β ∈ R10

and Pose Space Deformations by pose keys as flattened ro-
tation matrices (removing global orientation) R ∈ R207.
Because of its formulation SMPL is compatible with cur-
rent graphics engines. Through this paper, we use SMPL as
support body model for animating outfits.

In this work we present a novel approach for garment
animation. While recent works are already leveraging skin-
ning blend weights w.r.t. body skeleton to drive garment
motion, authors usually rely on complex formulations for
Pose Space Deformations, hindering their compatibility
with graphics engines and reducing significantly their appli-
cability in real scenarios. We propose learning a mapping
from template outfit (canonical pose) meshes to their corre-
sponding blend weights and blend shapes matrices through
deep learning. That is, learning a neural networkM as:

M : {T,F} → {W,DPSD}, (2)

Where T are outfit template vertices and F is mesh faces,
W and DPSD are the blend weights and blend shapes ma-
trices as defined above. Note that in deployment, a template
outfit is processed by the network only once into its standard
animated 3D model format. Once blend weights and blend
matrices are obtained, the outfit is used as any other 3D an-
imated model. This makes predictions automatically com-
patible with all graphics engines, and furthermore, due to
the exhaustive optimization of rendering pipelines for such
models, it is an extremely computationally efficient repre-
sentation. This further extends its applicability to portable
devices and low-computing environments. It represents an
advantage against other related works that predict vertex lo-
cations directly with neural networks (and often through
large, complex models). Such approaches require major
engineering efforts to adapt to real applications. Further-
more, due to memory footprint and computational cost of
neural networks, these solutions might be impossible to use
in low-computing devices. Finally, we also show how this
approach allows generalization to unseen template outfits
without retraining, which greatly enhances scalability.

4. Methodology
Given PBS data for outfits on top of human bodies

(SMPL) in different action sequences, we define samples
S = {X,Y } as X = {T,F, θ, β, g} and Y = {VPBS},
where T is the template outfit vertices (canonical pose), F
is outfit mesh faces, θ is body skeleton pose, β is body shape
parameters, g is body gender and VPBS is the outfit vertex
locations in the simulated data. Our goal is to train M as
defined in Eq. 2 such that W and DPSD yield VPBS after
applying Eq. 1 (Note that for SMPL, skeleton is a function
of shape β and gender).

4.1. PBS Data and Physical Consistency

The mapping from pose-space to outfit-space is a multi-
valued function. Different simulators, initial conditions, ac-
tion speeds, timesteps and integrators, among other factors,
will generate different valid outfit vertex locations for the
same body pose and shape and outfit. Training on PBS data
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falsely assumes that this mapping is single-valued. Sam-
ples with similar X but significantly different Y will hinder
network performance during training and most likely con-
verge to average vertex location under a supervised loss.
Moreover, a final user does not know the ground truth and
therefore cannot perceive the accuracy of the model, but
the user can assess the physical consistency of the pre-
dictions (collision-free and cloth consistency). Because of
this, while resorting to PBS data for supervision is help-
ful for training networks, minimizing Euclidean error w.r.t.
ground truth does not guarantee physical consistency, and
therefore, the applicability of the predictions in real life is
limited. Recent works [22, 27] propose post-processing to
solve body penetrations. This partially defeats the purpose
of using deep-learning and further compromises method
compatibility and performance. We propose combining su-
pervised training with unsupervised physically based train-
ing to alleviate the need of post-processing.

Physical consistency is a crucial part of proper outfit an-
imation. While other approaches develop complex solu-
tions to better overfit to their PBS data and translate training
wrinkles to predictions, their lack of physical constraints is
detrimental for their usability in real applications. Physi-
cal consistency is not only limited to collisions, but also to
edge distortion and surface quality. Abnormally stretched or
compressed edges (w.r.t. to its template lengths) will create
texture distortions (UV map edges do not change in length,
but mesh edges do). Approaches that represent garments as
a subset of body vertices cannot enforce an edge constraint,
as their template is the body itself (original template is lost
after registration against the body). Our proposal addresses
garment animation independently of edition/resizing, and
therefore, it is possible to leverage the original template out-
fits to enforce the edge constraint during learning.

4.2. Architecture

The chosen architecture needs to be able to: a) handle
unstructured meshes (no fixed vertex order or connectiv-
ity) and b) compute non-linear deformations w.r.t. the pose
θ (as cloth behaviour is highly non-linear). To do so, we
define the following components: Φ : RN×3 → RN×F ,
Ω : RN×F → RN×K , Ψ : RN×F → RP×N×3 and χ :
RN×F → RP×N×3. Component Φ computes per-vertex
high-level F -dimensional descriptors with local and global
information from template outfit mesh (with F = 512),
Ω computes per-vertex blend weights from vertex descrip-
tors, Ψ generates a blend shapes matrix supervisedly (note
that it is equivalent to per-vertex blend shapes matrices as
d ∈ RP×3) and χ generates a blend shapes matrix unsu-
pervisedly that will yield physical consistency. Note that
we define P pose keys for blend shapes matrices, instead of
the dimensionality of pose θ. We pass θ through an MLP
to obtain a high-level embedding of pose as Θ ∈ RP . The

Figure 2: Model overview. The input of the model is a tem-
plate outfit mesh (with no fixed topology, vertex order or
connectivity). We apply graph convolutions to obtain ver-
tex local descriptors. Then, local descriptors are processed
by a fully-connected layer and aggregated through per-outfit
max-pooling. This yields a global outfit descriptor that is
concatenated with each vertex local descriptor. Final ver-
tex descriptors are processed through different MLPs to ob-
tain blend weights W and blend shapes matrices Ddata and
Dphys. Blend shapes matrices are combined into DPSD,
which is used as described in Eq. 1 to obtain final predic-
tions. Pose keys for blend shapes matrix are obtained by
passing θ through an MLP with 4 layers (not shown).

motivation for this is: a) controlling dimensionality P , and
therefore, blend shapes matrix size and capacity and b) to
allow modelling non-linearities from pose-space to vertex-
space.

Fig. 2 shows an overview of the model. To learn Φ,
we use 4 layers of graph convolutions applied to template
mesh. This will yield a local descriptor, with no global in-
formation. Inspired by PointNet [25], we process each local
descriptor through an additional fully-connected layer and
aggregate all vertex descriptors through max-pooling (per
outfit). We concatenate this global descriptor to each vertex
local descriptor. Then, Ω, Ψ and χ are defined as MLPs,
with 4 fully-connected layers each, applied to vertex de-
scriptors (vertices are independent samples). The chosen ar-
chitecture permits processing unstructured meshes with any
vertex number, order and connectivity. This is a significant
advantage against approaches that rely on the body model
for garment representation [7, 22], since it requires an ex-
pensive registration for each sample that introduces error in
the data. Then, Ψ and χ both compute blend shapes ma-
trices: Ddata to minimize supervision loss and Dphys for
physical consistency. Despite being independent branches,
on deployment, both matrices are combined to obtain the
final PSD matrix DPSD = Ddata + Dphys, thus keeping
the aforementioned compatibility with graphics engines. Fi-
nally, the MLP used to obtain the high-level pose embed-
ding Θ consists on 4 fully-connected layers. The output of
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the model during training is Vθ,data for Ddata and Vθ for
DPSD.

4.3. Training

Our model combines both supervised and unsupervised
training. The supervised part of the model corresponds to
Φ, Ω and Ψ. The goal of this submodel is to minimize Eu-
clidean error w.r.t. PBS data. Thus, for its training, we
apply an standard L2 loss on predicted vertex locations:

Ldata =
∑
‖Vθ,data −VPBS‖2, (3)

Then, the unsupervised part of the model corresponds only
to χ. We define unsupervised losses to satisfy prior distri-
butions based on physical constraints. First, to ensure cloth
consistency of predictions, inspired by mass-spring model
(most widely used PBS model for cloth), we define a cloth
loss term as:

Lcloth = LE +λBLB =
∑
e∈E
‖e− eT‖2 +λB∆(n)2, (4)

where LE is the edge term and LB is the bending term.
Then, E is the set of edges of the given outfit mesh, e is
the predicted edge length and eT is the edge length on the
template outfit T. Then, ∆(·) is the Laplace-Beltrami oper-
ator applied to vertex normals n of the predicted outfit and
λB balances both losses. LE enforces the output meshes
to have the same edge lengths as the input template out-
fit, while LB helps yielding locally smooth surfaces, as it
penalizes differences on neighbouring vertex normals. To
avoid excessive flattening, we choose λB = 0.0005. Then,
to handle collisions against the body, we define a loss as:

Lcollision =
∑

(i,j)∈A

min(dj,i · nj − ε, 0)2, (5)

where A is the set of correspondences (i, j) between pre-
dicted outfit and body through nearest neighbour, dj,i is the
vector going from the j-th vertex of the body to the i-th ver-
tex of the outfit, nj is the j-th vertex normal of the body and
ε is a small positive threshold to increase robustness. This
loss is a simplified formulation that assumes cloth is close
to the skin, and penalizes outfit vertices placed inside the
skin. In our experiments, we choose ε = 5mm. Thus, the
unsupervised loss is defined as:

Lphys = Lcloth + λcollisionLcollision (6)

where λcollision is the balancing weight for the collision
term (around 2-10 in our experiments). Note how both
terms Lcloth and Lcollision are defined as priors (based only
on X , not on Y ). We define an additional loss term as an
L2 regularization on deformations due to χ with a balanc-
ing weight λ = 1e − 2. This leads χ to use deformations

as small as possible to solve physical constraints. While the
whole model is differentiable and could be trained end-to-
end, we back-propagate Lphys only through χ. The motiva-
tion for this is:
• Independent Tasks. We empirically observed how su-

pervised and unsupervised terms fight each other, com-
promising one or both tasks. Thus, by training differ-
ent parts of the model independently, we do not need to
find a balance between low Euclidean error and phys-
ical consistency. This allows the supervised submodel
to learn the main deformations leveraging PBS data
and the unsupervised branch to enforce physical con-
sistency without their gradients hindering each other.
• Unsupervised Training. Since Lphys does not rely on
Y , it is possible to train χ with new samples where
θ is replaced in X by any other sample pose. This in-
creases the amount of available data to train, enhancing
generalization of physical consistency.

In practice, it is not helpful to train χ until the supervised
training has converged.

5. Experiments
From the public datasets on garments, only CLOTH3D

[7] contains enough outfit variability to implement this ap-
proach and achieve proper generalization. It contains ∼
7.5k sequences, each with a different template outfit in rest
pose plus up to 300 frames. The outfits are simulated on top
of an animated 3D human (SMPL), each with a different
body shape. Likewise, we use SMPL skeleton in Eq. 1, so
it drives the motion of the outfit, and its body mesh in Eq.
5. For the ablation study, we subsample 50k training frames
and 5k test frames from CLOTH3D in a stratified manner
w.r.t. sequences without outfit overlapping between both
sets. Each model is trained for 10 epochs. We addition-
ally present proof-of-concept computer vision applications
as well as a performance analysis in the supplementary ma-
terial.

5.1. Ablation study

We first evaluate the supervised part of the model (Φ, Ω
and Ψ) by using the average vertex Euclidean error per out-
fit. In Tab. 1 we show the results to justify the design of the
network. First, we propose a baseline model. In this base-
line, global descriptor is not computed and Ψ predicts ver-
tex deformations instead of blend shapes matrices by con-
catenating pose to vertex descriptors. The following mod-
els are modifications of the baseline (predict deformations).
The second row shows the result obtained by using global
descriptors. It improves the accuracy of the predictions.
The third row corresponds to a model with a lower descrip-
tor dimensionality (F = 128), and we observe an slight
increase in error. In the next experiment, we implement
Ω and Ψ as graph convolutions instead of fully-connected
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Figure 3: Qualitative results obtained by enforcing physical consistency. For each sample we show the results of each
experiment in Tab. 3 in the same order from left to right.

Euclidean error (mm)
Baseline 29.98
+Global 28.04
+GlobalLite 28.59
+Global+GCN 28.76
+Global with MLP 28.43
DeePSD 25.13
-without pose embedding 30.93

Table 1: Architecture ablation study. First, as a baseline,
we train Ω and Ψ to predict vertex deformations instead of
blend shapes matrices. Subsequent rows are baselines ex-
tensions (deformation prediction) with a global descriptor.
DeePSD row corresponds to the architecture shown in Fig.
2. As it can be seen, predicting blend shapes matrices is the
best performing approach.

Euclidean error (mm)
DeePSD 25.13
+ SMPL shape/gender 25.15
+ Fabric 24.76
+ Tightness + Fabric 24.66
+ SMPL + Tightness + Fabric 25.01

Table 2: Conditioning to metadata available in CLOTH3D
[7] for each sample. We concatenate metadata to each ver-
tex descriptor: SMPL shape and gender, per-garment fabric
and per-outfit tightness. As shown, body metadata hinders
performance, while outfit metadata enhances it.

layers. This worsens results at the cost of extra computa-
tional cost, thus we discard the use of graph convolutions
after Φ. Note that this behaviour is expected, as global de-
scriptor is broadcasted through vertices, and therefore, con-
volutions perform redundant information passes that hinder
the learning. The next row corresponds to a model where
global descriptor is obtained by replacing the single fully-
connected layer in Φ with a MLP. Performance does not im-
prove. DeePSD row corresponds to the architecture shown

Error Edge Bend Collision
No phys. 24.66 1.27 0.031 11.59%
Phys. 33.75 1.13 0.029 1.29%
+poses 34.45 1.12 0.029 1.02%

Table 3: Unsupervised training. We measure cloth qual-
ity with average edge elongation/compression and bending
angle between neighbouring vertex normals. For body col-
lision, we show the ratio of vertices placed within the body.

Euclidean error (mm)
Tshirt 25.77
Top 17.33
Trousers 14.50
Jumpsuit 17.23
Skirt 41.15
Dress 35.94
Total 23.95

Table 4: Final quantitative results per garment. Note how
tighter garment types have a significantly lower error than
others.

in Fig. 2. As one can observe, predicting blend shapes
matrices instead of vertex deformations not only increases
model compatibility with graphics engines, but it also im-
proves performance. The final row corresponds to the same
architecture as DeePSD, but using pose θ as pose keys in-
stead of a high-level pose embedding. We see that predic-
tions are less accurate, thus pose embedding Θ is beneficial.

We consider the effect of including additional metadata
present in CLOTH3D. That is, SMPL body shape and gen-
der, garment-wise fabric labels and outfit-wise tightness
values. We combine these metadata by concatenating them
to each vertex descriptor. Tab. 2 shows the quantitative re-
sults. The first row corresponds to the best model of Tab. 1.
Each next row is named after the metadata used. As it can
be observed, outfit metadata reduces Euclidean error while
body metadata appears to be detrimental.
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To evaluate the unsupervised model, we design suitable
metrics for assessing cloth quality and physical constraints:
• Edge Length. Length difference between predicted

and rest outfit edges, expressed in millimeters.
• Bend Angle. Cosine distance for pairs of neighbour-

ing vertex normals.
• Collision. Ratio of collided vertices.

Edge metric summarizes cloth integrity. Cloth needs to
compress or stretch to fit its environment in real life and
PBS, thus, a zero-valued edge error might be impossible
(even undesirable). Nonetheless, an abnormally high value
suggests distorted predictions. Similarly, bend angle cannot
be zero, otherwise we have a completely flat surface. Again,
high values for this metric show poor cloth quality. Finally,
for collisions, a zero-valued metric means physically con-
sistent predictions. In practice, the training data contains
invalid combinations of pose and shape (bodies with self-
collisions), and therefore, a 0% of collided vertices is im-
possible. Tab. 3 shows the results for the ablation study of
the physical consistency. First, we evaluate the predictions
obtained with supervised loss only (best model of Tab. 2).
Second row shows the results obtained with χ trained with-
out pose augmentation. The third row shows the results af-
ter training each sample with randomly chosen poses. We
can observe that while Euclidean error increases, physical
related metrics improve, specially collision. The model is
learning to predict outfits farther from ground truth PBS
data, but with higher physical consistency. As explained
in Sec. 4.1, physical consistency cannot be summarized
in one or few quantitative metrics. Results must be evalu-
ated qualitatively. Fig. 3 shows a qualitative comparison of
these experiments. As it can be seen, without physical con-
straints, although predictions have lower error by a large
margin, qualitatively they are much worse. Also, we see
that training unsupervisedly with randomly sampled poses
further improves generalization.

We report final supervised results after fine-tuning with
all data on Tab. 4. We decompose the error per garment.
Note that T-shirt includes open shirts as well. We observe
a worse performance for skirts and dresses. We also find
a high error on T-shirt, likely due to open shirts. This is
an expected behaviour, since modelling garments statically
through skinning assumes the cloth will follow the body
motion. Loose garments show a much more complex dy-
namics, and thus, static approaches will fail to model such
garments. Fig. 1 shows qualitative results. We can see how
the model can generalize to unseen complex outfits without
retraining. Additionally, while cloth-to-cloth interaction is
not explicitly addressed, the model is able to deal with mul-
tiple layers of cloth. It shows it can also handle complex ge-
ometric details (chest flower). As stated, it maintains cloth
consistency, thus no artifacts appear on texturing. Finally,
due to the unsupervised blend weights learning, skirts are

Euclidean error (mm)
CLOTH3D [7] 29.0
DeePSD 23.78

Table 5: Comparison against CLOTH3D baseline. As
CLOTH3D [7], we report the error garment-wise.

Figure 4: Qualitative comparison against CLOTH3D [7]
baseline. Upper row: CLOTH3D. Lower row: DeePSD.

robust against skinning artifacts due to leg motion (see sup-
plementary material for more details on blend weights).

5.2. Comparison with related works

CLOTH3D. We compare DeePSD with CLOTH3D
baseline quantitatively in Tab. 5 and qualitatively in Fig.
4. As it can be seen, our method outperforms CLOTH3D
baseline. On the one hand, CLOTH3D baseline shows noisy
boundaries and even broken suspenders. Furthermore, we
observe the body geometry is present in the CLOTH3D re-
constructed garment due to the use of SMPL body for gar-
ment representation. On the other hand, since DeePSD uses
the original templates, boundaries are smooth and there is
no bias to body geometry. Additionally, in spite of not deal-
ing directly with cloth-to-cloth collisions, it appears that
DeePSD is more robust in this aspect.

TailorNet. A fair quantitative comparison against the
work of [22] is not possible. On one hand, TailorNet orig-
inal simulations are not public, only the registered ver-
sion against SMPL body. This means: a) original tem-
plates are lost and recovering them for each shape-style pair
is unfeasible and b) their dataset has a fixed vertex order
and connectivity (SMPL body). Since our main contribu-
tion is the generalization to unstructured meshes, compar-
ing our methodology using a dataset with fixed vertex or-
der against a methodology designed specifically for these
data cannot be done fairly. On the the other hand, Tai-
lorNet is an ensemble of around 20 MLPs per each gar-
ment and gender which makes adapting it to CLOTH3D
unfeasible, due to a much higher garment style variability.
Thus, in Fig. 5, we compare TailorNet (left) and DeePSD
(right) qualitatively. For fairness, since our approach uses
no post-processing, we remove TailorNet post-processing.
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Figure 5: Comparison with TailorNet. Left: TailorNet. Right: DeePSD. TailorNet heavily relies in post-processing for valid
predictions and generates noisy surfaces. The third sample (green T-shirt) shows two consecutive frames, note how TailorNet
cannot guarantee temporal consistency.

We gather similar garments and body shapes in TailorNet
data and CLOTH3D and compute the same sequences us-
ing both models. As it can be seen, TailorNet is highly
dependant on its post-processing due to a high amount of
collided vertices. For the green T-shirt, samples correspond
to consecutive frames. TailorNet cannot keep temporal con-
sistency. DeePSD does not suffer from such effect. Simi-
lar to CLOTH3D baseline, we observe how body geometry
is present on TailorNet predictions (leftmost sample chest)
due to the use of SMPL to represent garments.

TailorNet succeeds in generating wrinkles in their pre-
dictions by overfitting an ensemble of MLPs per each gar-
ment type and gender. As stated by its authors: ”Our key
simplifying assumption is that two garments on two differ-
ent people will deform similarly...”. Nonetheless, this has
drawbacks. On one hand, as we have seen, it strongly
compromises physical consistency, and thus, relies on post-
processing. This increases sample generation times by 150-
300ms. Note that applying a post-processing eliminates dif-
ferentiability. Another drawback is the complexity of their
model. Their ensemble of MLPs takes around 2GB per gar-
ment and gender. All of this hurts its applicability, compat-
ibility and performance (and then, portability). On the con-
trary, DeePSD is a single small-sized model (4.4MB) that
allows animating any outfit (not only individual garments
as body homotopies) without retraining. Predictions are
generated as highly computationally efficient models (blend
weights and blend shapes) compatible with any graphics en-
gine. We obtain running times of 3-6ms for individual sam-
ples and around 0.1ms for batched samples (depending on
vertex count). Furthermore, through physically based unsu-
pervised learning, we alleviate the need of post-processing,
thus maintaining differentiability and the aforementioned
computational performance.

6. Conclusions and Future Work
We presented a novel approach for garment animation.

Breaking the trend of previous approaches that try to predict

vertex deformations through deep learning, we proposed
learning a mapping from outfit space to animated 3D model
space. We showed how this allows generalization to un-
seen outfits as well as compatibility with graphics engines.
We observed how recent works need to leverage the body
model for garment representation to allow edition/resizing
along with animation, leading to overly complex models
with scalability, compatibility and applicability issues. We
addressed these issues by identifying garment animation as
an independent task. We prioritized physical consistency in
our predictions, relieving the need of post-processing. In
summary, we developed an efficient approach applicable in
real-scenarios as it is, even portable devices, that allows a
more intuitive workflow for CGI artists that does not require
expert knowledge in deep learning.

We observed limitations in our approach. First, loose
garments, such as skirts and dresses, cannot be properly
modelled with static approaches. To this end, we set as
future work adapting our methodology to work with the
temporal dimension. To keep its compatibility, pose keys
should be computed with a temporal neural network while
the training enforces dynamic learning (whether it is from
data or unsupervisedly through physical consistency). We
also observed how recent works grow on complexity to
model fine geometric details (wrinkles). We believe the
best approach to deal with garment wrinkles is through nor-
mal map generation because: a) it allows using lower vertex
counts without compromising details, b) it is directly com-
patible with all graphics engines and c) it is more robust to
collisions, since graphics engines compute face visibility on
base geometry. Current works on this domain appear to be
promising [14, 34]. We set this as future work.
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