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Abstract

In this paper, we tackle the detection of out-of-distribution
(OOD) objects in semantic segmentation. By analyzing the
literature, we found that current methods are either accu-
rate or fast but not both which limits their usability in real
world applications. To get the best of both aspects, we pro-
pose to mitigate the common shortcomings by following four
design principles: decoupling the OOD detection from the
segmentation task, observing the entire segmentation net-
work instead of just its output, generating training data for
the OOD detector by leveraging blind spots in the segmenta-
tion network and focusing the generated data on localized
regions in the image to simulate OOD objects. Our main con-
tribution is a new OOD detection architecture called ObsNet
associated with a dedicated training scheme based on Local
Adversarial Attacks (LAA). We validate the soundness of our
approach across numerous ablation studies. We also show it
obtains top performances both in speed and accuracy when
compared to ten recent methods of the literature on three
different datasets.

1. Introduction

For real-world decision systems such as autonomous ve-
hicles, accuracy is not the only performance requirement
and it often comes second to reliability, robustness, and
safety concerns [40], as any failure carries serious conse-
quences. Component modules of such systems frequently
rely on Deep Neural Networks (DNNs) which have emerged
as a dominating approach across numerous tasks and bench-
marks [59, 21, 20]. Yet, a major source of concern is related
to the data-driven nature of DNNs as they do not always
generalize to objects unseen in the training data. Simple
uncertainty estimation techniques, e.g., entropy of softmax
predictions [11], are less effective since modern DNNs are
consistently overconfident on both in-domain [19] and out-
of-distribution (OOD) data samples [46, 25, 23]. This hin-
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Figure 1: Evaluation of precision vs. test-time computational
cost on CamVid OOD. Existing methods for OOD detection in
semantic segmentation are either accurate but slow (e.g., MC
Dropout [17], Deep Ensemble [30]) or fast but inaccurate (e.g.,
Maximum Class Prediction [25]). In contrast, our method Ob-
sNet+LAA is both accurate and fast. Additional baselines and
evaluation datasets are available in §4.3.

ders further the performance of downstream components
relying on their predictions. Dealing successfully with the
“unknown unknown”, e.g., by launching an alert or failing
gracefully, is crucial.

In this work we address OOD detection for semantic
segmentation, an essential and common task for visual
perception in autonomous vehicles. We consider “Out-of-
distribution”, pixels from a region that has no training la-
bels associated with. This encompasses unseen objects, but
also noise or image alterations. The most effective methods
for OOD detection task stem from two major categories of
approaches: ensembles and auxiliary error prediction mod-
ules. DeepEnsemble (DE) [30] is a prominent and simple
ensemble method that exposes potentially unreliable pre-
dictions by measuring the disagreement between individual
DNNs. In spite of the outstanding performance, DE is com-
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putationally demanding for both training and testing and
prohibitive for real-time on-vehicle usage. For the latter cat-
egory, given a trained main task network, a simple model is
trained in a second stage to detect its errors or estimate its
confidence [10, 22, 4]. Such approaches are computationally
lighter, yet, in the context of DNNs, an unexpected draw-
back is related to the lack of sufficient negative samples, i.e.,
failures, to properly train the error detector [10]. This is due
to an accumulation of causes: reduced size of the training
set for this module (essentially a mini validation set to with-
hold a sufficient amount for training the main predictor), few
mistakes made by the main DNNs, hence few negatives.

In this work, we propose to revisit the two-stage approach
with modern deep learning tools in a semantic segmentation
context. Given the application context, i.e., limited hardware
and high performance requirements, we aim for reliable
OOD detection (see Figure 1) without compromising on
predictive accuracy and computational time. To that end
we introduce four design principles aimed at mitigating the
most common pitfalls and covering two main aspects, (i)
architecture and (ii) training:

(i.a) The pitfall of trading accuracy in the downstream
segmentation task for robustness to OOD can be alleviated
by decoupling OOD detection from segmentation.

(i.b) Since the processing performed by the segmentation
network aims to recognize known objects and is not adapted
to OOD objects, the accuracy of the OOD detection can be
improved significantly by observing the entire segmentation
network instead of just its output.

(ii.a) Training an OOD detector requires additional
data that can be generated by leveraging blind spots in the
segmentation network.

(ii.b) Generated data should focus on localized regions in
the image to mimic unknown objects that are OOD.

Following these principles, we propose a new OOD de-
tection architecture called ObsNet and its associated training
scheme based on Local Adversarial Attacks (LAA). We ex-
perimentally show that our ObsNet+LAA method achieves
top performance in OOD detection on three semantic seg-
mentation datasets (CamVid [9], StreetHazards [24] and
BDD-Anomaly [24]), compared to a large set of methods1.
Contributions. To summarize, our contributions are as
follows: We propose a new OOD detection method for se-
mantic segmentation based on four design principles: (i.a)
decoupling OOD detection from the segmentation task; (i.b)
observing the full segmentation network instead of just the
output; (ii.a) generating training data for the OOD detector
using blind spots of the segmentation network; (ii.b) focus-
ing the adversarial attacks in localized region of the image
to simulate unknown objects. We implement these four
principles in a new architecture called ObsNet and its as-

1Code and data available at https://github.com/valeoai/obsnet

sociated training scheme using Local Adversarial Attacks
(LAA). We perform extensive ablation studies on these
principles to validate them empirically. We compare our
method to 10 diverse methods from the literature on three
datasets (CamVid OOD, StreetHazards, BDD Anomaly)
and we show it obtains top performances both in accu-
racy and in speed.

Strength and weakness. The strengths and weaknesses of
our approach are:

3 It can be used with any pre-trained segmentation net-
work without altering their performances and without
fine-tuning them (we train only the auxiliary module).

3 It is fast since only one extra forward pass is required.
3 It is very effective since we show it performs best com-

pared to 10 very diverse methods from the literature on
three different datasets.

7 The pre-trained segmentation network has to allow for
adversarial attacks, which is the case of commonly used
deep neural networks.

7 Our observer network has a memory/computation over-
head equivalent to that of the segmentation network,
which is not ideal for real time applications, but far less
than that of MC Dropout or deep ensemble methods.

In the next section, we position our work with respect to
the existing literature.

2. Related work
The problem of data samples outside the original training

distribution has been long studied for various applications be-
fore the deep learning era, under slightly different names and
angles: outlier [8], novelty [55], anomaly [34] and, more re-
cently, OOD detection [25, 27]. In the context of widespread
DNN adoption this field has seen a fresh wave of approaches
based on input reconstruction [54, 3, 33, 63], predictive
uncertainty [17, 29, 39], ensembles [30, 15], adversarial at-
tacks [32, 31], using a void or background class [51, 35] or
dataset [5, 27, 39], etc., to name just a few. We outline here
only some of the methods directly related to our approach
and group them in a comparative summary in Table 1.

Anomaly detection by reconstruction. In semantic
segmentation, anomalies can be detected by training a
(usually variational) autoencoder [12, 3, 62] or generative
model [54, 33, 63] on in-distribution data. OOD samples are
expected to lead to erroneous and less reliable reconstruc-
tions as they contain unseen patterns during training. On
high resolution and complex urban images, autoencoders
under-perform while more sophisticated generative models
require large amounts of data to reach robust reconstruction
or rich pipelines with re-synthesis and comparison modules.

Bayesian approaches and ensembles. BNNs [45, 7] can
capture predictive uncertainty from distributions learned over
network weights, but don’t scale well [14] and approximate
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Type Example OOD accuracy Fast Inference Memory efficient Training specification
Softmax MCP [25] - X X No
Bayesian Learning MC Dropout [17] X - X Reduces IoU acc.
Reconstruction GAN [63] X X X Unstable training
Ensemble DeepEnsemble [30] X - - Costly Training
Auxiliary Network ConfidNet [10] - X X Imbalanced train set
Test Time attacks ODIN [32] -* - X Extra OOD set
Prior Networks Dirichlet [39] X X X Extra OOD set
Observer ObsNet + LAA X X X No

Table 1: Summary of various OOD detection approaches amenable to semantic segmentation. For real-time safety, key requirements
for an OOD detector are accuracy, speed, easy training and memory efficiency. Our method addresses all requirements. Our LAA is
performed only at train time and mitigates the imbalance in the training data for the observer. *Not accurate for semantic segmentation

solutions are preferred in practice. DE [30] is a highly
effective, yet costly approach, that trains an ensemble of
DNNs with different initialization seeds. Pseudo-ensemble
approaches [16, 37, 15, 41] are a pragmatic alternative to DE
that bypass training of multiple networks and generate pre-
dictions from different random subsets of neurons [16, 58]
or from networks sampled from approximate weight distribu-
tions [37, 15, 41]. However they all require multiple forward
passes and/or storage of additional networks in memory.
Our ObsNet is faster than ensembles as it requires only the
equivalent of two forward passes. Some approaches forego
ensembling and propose deterministic networks that can out-
put predictive distributions [39, 56, 50, 61]. They typically
trade predictive performance over computational efficiency
and results can match MC Dropout [17] for uncertainty esti-
mation.

OOD detection via test-time adversarial attacks. In
ODIN, Liang et al. [32] leverage temperature scaling and
small adversarial perturbations on the input at test-time to
predict in- and out-of-distribution samples. Lee et. al [31]
extend this idea with a confidence score based on class-
conditional Mahalanobis distance over hidden activation
maps. Both approaches work best when train OOD data is
available for tuning, yet this does not ensure generalization
to other ODD datasets [57]. Contrarily to us, ODIN uses
adversarial attack at test time as a method to detect OOD.
However, so far this method has not been shown effective
for structured output tasks where the test cost is likely to
explode, as adversarial perturbations are necessary for each
pixel. In contrast, we propose to use adversarial attacks dur-
ing training as a proxy for OOD training samples, with no
additional test time cost.

Learning to predict errors. Inspired by early approaches
from model calibration literature [49, 66, 67, 43, 44], a num-
ber of methods propose endowing the task network with
an error prediction branch allowing self-assessment of pre-
dictive performance. This branch can be trained jointly
with the main network [13, 64], however better learning

stability and results are achieved with two-stage sequential
training [10, 22, 4, 52] Our ObsNet also uses an auxiliary
network and is trained in two stages allowing it to learn from
the failure modes of the task network. While [10, 22, 4, 52]
focus on in-distribution errors, we address OOD detection
for which there is no available training data. In contrast
with these methods that struggle with the lack of sufficient
negative data to learn from, we devise an effective strategy to
generate failures that further enable generalization to OOD
detection. We redesign both the training procedure and the
architecture of the auxiliary network in order to deal with
OOD examples, by introducing Local Adversarial Attack
(LAA).

Generic approaches. Finally we mention a set of mildly
related approaches that do not address directly OOD detec-
tion, but achieve good performances on this task. In spite of
the overconfidence pathological effect, using the maximum
class probability from the softmax prediction can be used to-
wards OOD detection [25, 48]. Temperature scaling [19, 49]
is a strong post-hoc calibration strategy of the softmax pre-
dictions using a dedicated validation set. If predictions are
calibrated, OOD samples can be detected by thresholding
scores. Pre-training with adversarial attacked images [26]
has also been shown to lead to better calibrated predictions
and good OOD detection for image classification. We con-
sider these simple, yet effective approaches as baselines in
order to validate the utility of our contribution.

3. Proposed Method

Following our analysis of the related work, we base our
OOD semantic segmentation method on two categories of
aspects: (i) Architecture: OOD detection has to be decou-
pled from the segmentation prediction to retain maximal
accuracy in both the segmentation and OOD task (§3.1); (ii)
Training: Training an OOD detector without OOD data is
difficult, but can be done nonetheless by generating training
data with carefully designed adversarial attacks (§3.2).

Both of these aspects require careful design to work effec-
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tively, which we detail in the following. We validate them
experimentally in §4.

3.1. ObsNet: Dedicated OOD detector

Modifying the segmentation network to account for OOD
is expected to impact its accuracy as we show in the experi-
ments. Furthermore, it prevents from using off-the-shelf pre-
trained segmentation networks that have excellent segmen-
tation accuracy. As such, we follow a two-stage approach
where an additional predictor tackles the OOD detection
while the segmentation network remains untouched.

In the literature, two-stage approaches are usually re-
lated to calibration [49, 66, 67, 43, 44] where the outputs of
the segmentation network are mapped to normalized scores.
However this is not well adapted for segmentation since it
does not use the spatial information contained in nearby pre-
dictions. We show in the experiments that using only the
output of the segmentation network is not enough to obtain
accurate OOD detection.

As such, on the architecture side we follow two design
principles in our work:

(i.a) OOD detection should be decoupled from the seg-
mentation prediction to avoid any negative impact on the
accuracy of the segmentation task.

(i.b) The OOD detector should observe the full segmen-
tation network instead of just the output.

We thus design an observer network called ObsNet that
has a similar architecture to that of the segmentation network
and attend the input, the output and intermediate feature
maps of the segmentation network as shown on Figure 2.
We show experimentally that these design choices lead to
increased OOD detection accuracy (see §4.2).

More formally, the observer network (denoted Obs) is
trained to predict the probability that the segmentation net-
work (denoted Seg) output is not aligned with the correct
class y:

Obs(x, Segr(x)) ≈ Pr[Seg(x) 6= y], (1)

where x is the input image and Segr the skip connections
from intermediate feature maps of Seg.

To that end, we train the ObsNet to minimize a binary
cross-entropy loss function:

LObs(x, y) = (1Seg(x) 6=y−1) log(1−Obs(x, Segr(x)))

− 1Seg(x)6=y logObs(x, Segr(x)) (2)

with 1Seg(x)6=y the indicator function of Seg(x) 6= y.

Discussion. Since the observer network processes both the
image and skip connections from the segmentation network,
it has the ability to observe internal behaviour and dynamics
of Seg which has been shown to be different when process-
ing an OOD samples (as measured by, e.g., Mahalanobis

distance on feature maps [31] or higher order Gram matrices
on feature maps [53]).

We emphasize an advantage of our approach w.r.t. previ-
ous methods that is related to the low computational com-
plexity, as we only have to make a single forward pass
through the segmentation network and the observer network.
Experimentally, ObsNet is 21 times faster than MC Dropout
with 50 forward passes on a GeForce RTX 2080 Ti, while
outperforming it (see §4). Moreover, our method can be
readily used on state of the art pre-trained networks without
requiring retraining or even fine-tuning them.

3.2. Training ObsNet by triggering Failures

Without a dedicated training set of labeled OOD samples,
one could argue that ObsNet is an error detector (similarly
to [10]) rather than an OOD detector and that it is further-
more very difficult to train since pre-trained segmentation
networks are likely to make few errors. We propose to solve
both of these issues by following two design principles:

(ii.a) The lack of training data should be tackled by gen-
erating training samples that trigger failures of the segmenta-
tion network, which we can obtain using adversarial attacks.

(ii.b) Adversarial attacks should be localized in space
since OOD detection in a segmentation context corresponds
to unknown objects.

We propose to generate the additional data required to
train our ObsNet architecture by performing Local Adversar-
ial Attacks (LAA) on the input image. In practice, we select
a region in the image by using a random shape and we per-
form a Fast Gradient Sign Method (FSGM) [18] attack such
that it is incorrectly classified by the segmentation network:

x̃ = x + LAA(Seg,x) (3)
LAA(Seg,x) = ε sign(∇xL(Seg(x), y))Ω(x) (4)

with step ε, L(·) the categorical cross entropy and Ω(x) the
binary mask of the random shape. We show LAA examples
in Figure 3 and schematize the training process in Figure 2.

The reasoning behind LAA is two-fold. First, by con-
trolling the shape of the attack, we can make sure that the
generated example does not accidentally belong to the dis-
tribution of the training set. Second, leveraging adversarial
attacks allows us to focus the training just beyond the bound-
aries of the predicted classes which tend to be far from the
training data due to the high capacity and overconfidence of
DNNs, like OOD objects would be.

We show in the experiments that LAA produces a good
training set for learning to detect OOD examples. In prac-
tice, we found that generating random shapes is essential to
obtain good performances in contrast to non-local adversar-
ial attacks. These random shapes coupled with LAA may
mimic unknown objects or objects parts, exposing common
behavior patterns in the segmentation network when facing
them. We validate our approach in an ablation study in §4.2.
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Figure 2: Overview of our method. Training (blue arrow) The Segmentation Network is frozen. The input image is perturbed by a local
adversarial attack. Then the Observer Network is trained to predict Segmentation Network’s errors, given the images and some additional
skip connections. Testing (red arrow) No augmentation is performed. The Observer Network highlights the out-of-distribution sample,
here a motor-cycle. To compute the uncertainty map, the Observer Network requires only one additional forward pass compared to the
standard segmentation prediction.

Discussion. We point out that by triggering failures using
LAA, we address the problem of the low error rates of the
segmentation network. We can in fact generate as many
OOD-like examples as needed to balance the positive (i.e.,
correct predictions) and negative (i.e., erroneous predictions)
terms in Equation 2 for training the observer network. Thus,
even if the segmentation network attains nearly perfect per-
formances on the training set, we are still able to train the
ObsNet to detect where the predictions of the segmentation
network are unreliable.

One could ask why not using LAA for training a more
robust and reliable segmentation network in the first place,
as done in previous works [18, 42, 26], instead of adding
and training the observer network. Training with adversar-
ial examples improves the robustness of the segmentation
network at the cost of its accuracy (See §4.2), but it will not
make it infallible as there will still be numerous blind-spots
in the multi-million dimensional parameter space of the net-
work. It also prevents from using pre-trained state-of-the-art
segmentation networks. Here, we are rather interested in
capturing the main failure modes of the segmentation net-
work to enable ObsNet to learn and to recognize them later
on OOD objects.

Finally, one could ask why not perform adversarial at-
tacks at test time as it is done in ODIN [32]. Performing
test time attacks has two major drawbacks. First it is com-
putationally intensive at test time since it requires numerous
backward passes, i.e., one attack per pixel. Second, it is
not well adapted to segmentation as perturbations of a single
pixels can have effect on a large areas (e.g., one pixel attacks)
thus hindering the detection accuracy of perfectly valid pre-

dictions. We show in §4.3 that our training scheme is better
performing both in accuracy and speed when compared to
test time attacks.

4. Experiments
In this section, we present extensive experiments to vali-

date that our proposed observer network combined with local
adversarial attacks outperforms a large set of very different
methods on three different benchmarks.

4.1. Datasets & Metrics

To highlight our results, we select three datasets for Se-
mantic Segmentation of urban streets scenes with anomalies
in the test set. Anomalies correspond to out-of-distribution
objects, not seen during train time.

CamVid OOD: We design a custom version of CamVid
[9], where we blit random animals from [36] in a random
part of the image. This dataset contains 367 train and 233
test images. There are 19 different species of animals, and
one animal in each test image. This setup is analog to that
of Fishyscapes [6], with the main advantage that it does not
require the use of an external evaluation server and that we
provide a wide variety of baselines2.

StreetHazards: This is a synthetic dataset [24] from the
Carla simulator. It is composed of 5125 train and 1500
test images, collected in six virtual towns. There are 250
different kinds of anomalies (like UFO, dinosaur, helicopter,
etc.) with at least one anomaly per image.

2To ensure easy reproduction and extension of our work, we pub-
licly release the code for dataset generation and model evaluation at
https://github.com/valeoai/obsnet.
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(a) No attack (b) All pixels (c) Class wise (d) Square shape (e) Random shape

Figure 3: Adversarial attack examples. Top: Perturbations magnified 25×; middle: Input image with attacks; bottom: SegNet prediction.

BDD Anomaly: Composed of real images, this dataset
is sourced from the BDD100K semantic segmentation
dataset [65]. Here, motor-cycle and train are selected as
anomalous objects and all images containing these objects
are removed from the training set. The remaining dataset
contains 6688 images for training and 361 for testing.

To evaluate each method on these datasets, we select three
metrics for detecting misclassified and out-of-distribution
examples and one metric for calibration:
◦ fpr95tpr [32]: It measures the false positive rate when

the true positive rate is equal to 95%. The aim is to
obtain the lowest possible false positive rate while guar-
anteeing a given number of detected errors.
◦ Area Under the Receiver Operating Characteristic

curve (AuRoc) [25]: This threshold free metric corre-
sponds to the probability that a certain example has a
higher value than an uncertain one.
◦ Area under the Precision-Recall Curve (AuPR) [25]:

Also a threshold-independent metric. The AuPR is less
sensitive to unbalanced dataset than AuRoc.
◦ Adaptive Calibration Error (ACE) [47]: Compared

to standard calibration metrics where bins are fixed,
ACE adapts the range of each the bin to focus more on
the region where most of the predictions are made.

For all our segmentation experiments we use a Bayesian
SegNet [2], [28] as the main network. Therefore, our ObsNet
follows the same architecture as this SegNet. Ablation on
the architecture of ObsNet, hyper-parameters and training
details can be found in the supplementary material.

4.2. Ablation Study

First, to validate that the local adversarial attack con-
tributes to improving the observer network, we show on
Table 2 the performance gap for each metric on each dataset.

Dataset Adv fpr95tpr ↓ AuPR ↑ AuRoc ↑
CamVid OOD 7 54.2 97.1 89.1

3 44.6 97.6 90.9
StreetHazards 7 50.1 98.3 89.7

3 44.7 98.9 92.7
BDD Anomaly 7 62.4 95.9 81.7

3 60.3 96.2 82.8

Table 2: Evaluation of the Local Adversarial Attack on each
dataset.

This validates the use of LAA to train the observer network
as per principle (ii.a).

The LAA can be seen as a data augmentation performed
during ObsNet training. We emphasize that this type of data
augmentation is not beneficial for the main network training,
which is known as robust training [38], and that it requires
an external observer network. Indeed, Table 3 illustrates the
drop of accuracy when training the main network with the
same adversarial augmentation as there is a trade-off between
the accuracy and the robustness of a deep neural network
[60]. In contrast, our method keeps the main network frozen
during ObsNet training, thus, the class prediction and the
accuracy remain unchanged, validating principle (i.a).

In Table 4, we show ablations on LAA by varying the type
of noise (varying between attacking all pixels, random pixels,
pixels from a specific class, pixels inside a square shape and
pixels inside a random shape, see Figure 3). We conclude
that local attacks on random shaped regions produce the best
proxies for OOD detection (see supplementary material for
detailed results), validating principle (ii.b).

In Table 5, we conduct several ablation studies on the
architecture of ObsNet. The main takeaway is that mim-
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Dataset Robust Mean IoU ↑ Global Acc ↑
Camvid ODD - 49.6 81.8

X 41.6 73.9
StreetHazards - 44.3 87.9

X 37.8 85.1
Bdd Anomaly - 42.9 87.0

X 41.5 85.9

Table 3: Impact of robust training on accuracy.

Type fpr95tpr ↓ AuPR ↑ AuRoc ↑
All pixels 51.9 97.1 89.6
Sparse pixels 54.2 97.2 89.6
Class pixels 46.8 97.2 89.9
Square patch 45.5 97.4 90.5
Random shape 44.6 97.4 90.6

Table 4: LAA ablation study by varying the attacked region.

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑
Smaller architecture 60.3 95.8 85.3
ObsNet w/o skip 81.3 92.0 74.4
ObsNet w/o input image 57.0 96.9 88.2
ObsNet 54.2 97.1 89.1

Table 5: ObsNet architecture ablation study.

icking the architecture of the primary network and adding
skip connections from several intermediate feature maps is
essential to obtain the best performances (see full results in
supplementary material), validating principle (i.b).

4.3. Quantitative and Qualitative results

We report results on Table 6, Table 7 and Table 8, with
all the metrics detailed above. We compare several methods:
◦ MCP [25]: Maximum Class Prediction. One minus the

maximum of the prediction.
◦ AE [25]: An autoencoder baseline. The reconstruction

error is the uncertainty measurement.
◦ Void [6]: Void/background class prediction of the seg-

mentation network.
◦ MCDA [1]: Data augmentation such as geometric and

color transformations is added during inference time.
We use the entropy of 25 forward passes.
◦ MC Dropout [17]: The entropy of the mean softmax

prediction with dropout. We use 50 forward passes for
all the experiences.
◦ Gaussian Perturbation Ensemble [15, 41]: We take

a pre-trained network and perturb its weights with a ran-
dom Normal distribution. This results in an ensemble
of networks centered around the pre-trained model.
◦ ConfidNet [10]: ConfidNet is an observer network that

Method fpr95tpr↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 65.4 94.9 83.2 0.510
Void [6] 66.6 93.9 80.2 0.532
AE [25] 93.0 87.1 59.3 0.745
MCDA [1] 66.5 94.6 82.1 0.477
Temp. Scale [19] 63.8 94.9 83.7 0.356
ODIN [32] 60.0 95.4 85.3 0.500
ConfidNet [10] 60.9 96.2 85.1 0.450
Gauss Pert. [15, 41] 59.2 96.0 86.4 0.520
Deep Ensemble [30] 56.2 96.6 87.7 0.459
MC Dropout [17] 49.3 97.3 90.1 0.463
ObsNet + LAA 44.6 97.6 90.9 0.446

Table 6: Evaluation on CamVid-ODD (best method in bold, second
best underlined).

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 65.5 94.7 80.8 0.463
Void [6] 69.3 93.6 73.5 0.492
AE [25] 84.6 92.7 67.3 0.712
MCDA [1] 69.9 97.1 82.7 0.409
Temp. Scale [19] 65.3 94.9 81.6 0.323
ODIN [32] 61.3 95.0 82.3 0.414
ConfidNet [10] 60.1 98.1 90.3 0.399
Gauss Pert. [15, 41] 48.7 98.5 90.7 0.449
Deep Ensemble [30] 51.7 98.3 88.9 0.437
MC Dropout [17] 45.7 98.8 92.2 0.429
ObsNet + LAA 44.7 98.9 92.7 0.383

Table 7: Evaluation on StreetHazard (best method in bold, second
best underlined).

is trained to predict the true class score. We use the
code available online and modify the data loader to test
ConfidNet on our experimental setup.
◦ Temperature Scaling [19]: We chose the hyper-

parameters Temp to have the best calibration on the
validation set. Then, like MCP, we use one minus the
maximum of the scaled prediction.
◦ ODIN [32]: ODIN performs test-time adversarial at-

tacks on the primary network. We seek the hyper-
parameters Temp and ε to have the best performance
on the validation set. The criterion is one minus the
maximum prediction.
◦ Deep ensemble [30]: a small ensemble of 3 networks.

We use the entropy the averaged forward passes.
As we can see on these tables, ObsNet significantly out-

performs all other methods on detection metrics on all three
datasets. Furthermore, ACE also shows that we succeed in
having a good calibration value.

To show where the uncertainty is localized, we outline
the uncertainty map on the test set (see Figure 4). We can
see that our method is not only able to correctly detect OOD

15707



Figure 4: Uncertainty map visualization. 1st column: We highlight the ground truth locations of the OOD objects to help visualize them
(red bounding box). 2nd column: Segmentation map of the SegNet. 3rd to 5th columns: Uncertainty Map highlight in yellow. Our method
produces stronger responses on OOD regions compared to other methods, while being as strong on regular error regions, e.g., boundaries

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 63.5 95.4 80.1 0.633
Void [6] 68.1 92.4 75.3 0.499
AE [25] 92.1 88.0 53.1 0.832
MCDA [1] 61.9 95.8 82.0 0.411
Temp. Scale [19] 61.8 95.8 81.9 0.287
ODIN [32] 60.6 95.7 81.7 0.353
ConfidNet [10] 61.6 95.9 81.9 0.367
Gauss Pert. [15, 41] 61.3 96.0 82.5 0.384
Deep Ensemble [30] 60.3 96.1 82.3 0.375
MC Dropout [17] 61.1 96.0 82.6 0.394
ObsNet + LAA 60.3 96.2 82.8 0.345

Table 8: Evaluation on Bdd Anomaly (best method in bold, second
best underlined).

objects, but also to highlight areas where the predictions are

wrong (edges, small and far objects, etc).
Finally, the trade-off between accuracy and speed is

shown on Figure 1, where we obtain excellent accuracy
without any compromise over speed.

5. Conclusion
In this paper, we propose an observer network called

ObsNet to address OOD detection in semantic segmentation,
by learning from triggered failures. We use skip connection
to allow the observer network to seek abnormal behaviour
inside the main network. We use local adversarial attacks
to trigger failures in the segmentation network and train
the observer network on these samples. We show on three
different segmentation datasets that our strategy combining
an observer network with local adversarial attacks is fast,
accurate and is able to detect unknown objects.
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Simultaneous semantic segmentation and outlier detection in
presence of domain shift. In GCPR, 2019. 2

[6] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland
Siegwart, and Cesar Cadena. The fishyscapes benchmark:
Measuring blind spots in semantic segmentation. arXiv, 2019.
5, 7, 8

[7] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and
Daan Wierstra. Weight uncertainty in neural networks. ICML,
2015. 2

[8] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and
Jörg Sander. Lof: identifying density-based local outliers.
In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 93–104, 2000. 2

[9] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla.
Semantic object classes in video: A high-definition ground
truth database. Pattern Recognition Letters, 2008. 2, 5

[10] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu
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