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Abstract

Deep Convolutional Neural Networks (CNNs) have

long been the architecture of choice for computer vision

tasks. Recently, Transformer-based architectures like Vision

Transformer (ViT) have matched or even surpassed ResNets

for image classification. However, details of the Trans-

former architecture ±such as the use of non-overlapping

patches± lead one to wonder whether these networks are

as robust. In this paper, we perform an extensive study of

a variety of different measures of robustness of ViT models

and compare the findings to ResNet baselines. We investi-

gate robustness to input perturbations as well as robustness

to model perturbations. We find that when pre-trained with

a sufficient amount of data, ViT models are at least as robust

as the ResNet counterparts on a broad range of perturba-

tions. We also find that Transformers are robust to the re-

moval of almost any single layer, and that while activations

from later layers are highly correlated with each other, they

nevertheless play an important role in classification.

1. Introduction

Convolutions have served as the building blocks of

computer vision algorithms in nearly every application

domainÐwith their property of spatial locality and trans-

lation invariance mapping naturally to the characteristics

of visual information. Neural networks for vision tasks

adopted the use of convolutional layers quite early on

[11, 31], and since their resurgence with Krizhevsky et al.’s

work [29], all modern networks for vision have been con-

volutional [41, 44, 17, 22, 25, 24, 47]Ðwith innovations

such as residual [17] connections being applied to a back-

bone of convolutional layers. Given their extensive use,

convolutional networks have been the subject of significant

analysisÐboth empirical [45] and analytical [13, 1].

Recently, after seeing tremendous success in language

tasks [49, 7, 3], researchers have been exploring a vari-

ety of avenues for deploying attention-based Transformer

*All authors contributed equally.

Figure 1. Transformers vs. ResNets. While they achieve simi-

lar performance for image classification, Transformer and ResNet

architectures process their inputs very differently. Shown here

are adversarial perturbations computed for a Transformer and a

ResNet model, which are qualitatively quite different.

networks [4, 9, 48, 27]Ðand other attention-based archi-

tectures [53, 52, 40, 32, 54]Ðin computer vision. Trans-

formers are also gaining popularity in vision and language

tasks [42, 33, 46, 5, 34, 39].

In this paper, we focus on one particular Trans-

former architectureÐthe Visual Transformer (ViT) intro-

duced by Dosovitskiy et al. [9]Ðbecause it was shown

to achieve better performance than state-of-the-art resid-

ual networks (ResNets) [17] of similar capacity, when both

are pre-trained on sufficiently large datasets [28], such as

JFT-300M [43]. We also focus on ViT because, unlike other

Transformer models for vision, their architecture consists

solely of Transformer layers.

Dosovitskiy et al.’s results [9] tell us that such an archi-

tecture is preferable in terms of performance, given enough

training data to overcome the lack of an inductive bias

through convolutions. But, the pure attention-based mecha-

nism by which ViT models process their inputs is a signifi-

cant departure from the familiar decade-long ubiquitous use

of convolution networks for computer vision. In this paper,

we seek to gain a better understanding of how these archi-

tectures behaveÐin terms of their robustness against pertur-

bations to inputs and to the model parameters themselvesÐ

and build up an understanding of these models that parallels

our knowledge about convolution.

We begin with an exhaustive set of experiments compar-

ing the performance of various ViT model variants, under

different perturbations to their image inputs, to similarly
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sized and trained ResNet architectures [17, 28]. Perturba-

tions range from natural variations [21, 19, 18] to adver-

sarial perturbations [45, 14, 21, 23] and spatial transforma-

tions [10]. We also evaluate texture and shape bias [12].

We then turn our attention to the action of the ViT models

themselves, analyzing the evolution of information through

the cascade of Transformer layers and the redundancies in

their internal representations via correlation analysis and le-

sion studiesÐas has been done in the past for Transform-

ers for language tasks [51, 38, 36, 8] and for ResNets for

vision tasks [50, 15]. Moreover, since it is known that self-

attention can learn to mimic convolutions [6], we also inves-

tigate the effect of enforcing spatial locality in the attention

mechanism of the Transformer layers of ViT models.

Our investigations provide researchers and practitioners

with a deeper understanding of how this new class of deep

network architectures work, the range of applications to

which they may be deployed, and provide potential avenues

for how they may be improved in terms of performance or

efficiency. Our contributions are as follows:

• We measure robustness of ViT models of different sizes

that are pre-trained on different datasets and compare

them to corresponding ResNet baselines.

• We measure robustness with respect to input perturba-

tions, and find that ViTs pre-trained on sufficiently large

datasets tend to be generally at least as robust as their

ResNet counterparts.

• We measure robustness with respect to model perturba-

tions, and find that ViTs are robust to the removal of

almost any single layer, and that later layers provide

only limited updates to the representations of individ-

ual patches, but focus on consolidating information in the

CLS token.

2. Preliminaries

2.1. Transformers

Self-attention based Transformer architectures were in-

troduced in [49], where they showed superior performance

on machine translation. They have since been applied suc-

cessfully to many tasks in NLP. Notably [7, 2] have shown

that combined with pre-training, these models achieve

nearly human performance on a wide range of NLP tasks.

The input to Transformer models is a sequence of

vectorsÐtypically embeddings of input tokensÐthat are

processed by a stack of Transformer blocks. Each block

consists of 1) a multi-head self-attention layer that aggre-

gates information across tokens using dot-product attention;

and 2) a tokenwise feed-forward (MLP) layer. Both use

layer normalization and residual connections.

Vision Transformer ViT [9] uses the same Transformer

architecture discussed above. They key difference comes in

the image pre-processing layer. This layer partitions the im-

age into a sequence of non-overlapping patches followed by

a learned linear projection. For example, a 384×384 image

can be broken into 16 × 16 patches resulting in a sequence

length of 162. This is accomplished using a 2D convolu-

tion, where the number of filters determines the hidden size

of the sequence input to the Transformer. Following [7] ViT

also appends a special CLS token to the input, whose repre-

sentation is used for final classification .

2.2. Model Variants

In order to better understand and contrast ViTs and

ResNets, we evaluate a range of models from each archi-

tecture family. We follow [9] and use models which vary

in the number of parameters, their input patch-size, and in

the datasets on which they were pre-trained. Table 1 sum-

marizes the sizes of the models used in our experiments.

We append ª/xº to model-names to denote models that take

patches of size x as input, and use model variants that were

pre-trained either on ILSVRC-2012, with ∼ 1.3 million im-

ages, on ImageNet-21k, with ∼ 12.8 million images, or

on JFT-300M [43] which contains around 375M labels for

300M images. All models are finetuned on ILSVRC-2012.

We obtained saved parameter checkpoints for the ViT mod-

els from the authors of [9], and those for the ResNet models

from the authors of [28].

3. Robustness to Input Perturbations

In this section we compare the robustness to input pertur-

bations of ViT models to ResNets. We do this by measuring

performance of a range of representatives from each archi-

tecture family, as described in Sec. 2.2. To capture differ-

ent aspects of robustness we rely on different, specialized

benchmarks ImageNet-C, ImageNet-R and ImageNet-A.

We also pit our models against different types of adversarial

attacks. Finally, we explore the texture bias of ViTs.

3.1. Natural Corruptions

So called ªnaturalº or ªcommonº perturbation bench-

marks provide an important yardstick for estimating real-

world performance in the presence of naturally occurring

image corruptions [19, 16, 30]. Robustness to such pertur-

bations can be important for example in safety-critical ap-

plications. We use ImageNet-C, a benchmark introduced

in [19] to evaluate ViT’s robustness to natural corruptions.

ImageNet-C includes 15 types of algorithmically gener-

ated corruptions, grouped into 4 categories: ‘noise’, ‘blur’,

‘weather’, and ‘digital’. Each corruption type has five levels

of severity, resulting in 75 distinct corruptions.

Our results, averaged over all corruptions and all severi-

ties, are shown in the second column of Fig. 2. More granu-

lar results can be found in Appendix C. We find that the size

of the pre-training dataset has a fundamental effect on the
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Model ViT-B ViT-L ViT-H ResNet-50x1 ResNet-101x1 ResNet-50x3 ResNet-101x3 ResNet-152x4

# Params 86M 307M 632M 23M 45M 207M 401M 965M

Table 1. Architectures. Model architectures used in our experiments along with the number of learnable parameters for each.
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Figure 2. Robustness Benchmarks. Accuracy of ViT and ResNet models on ILSVRC-2012 (clean), ImageNet-C, ImageNet-R and

ImageNet-A. For ImageNet-C the accuracy is averaged across all corruption types and severity levels. We observe that (i) relative accuracy

on ILSVRC-2012 is generally predictive of relative accuracy on the perturbed datasets, and that when trained on sufficient data, the accuracy

of ViT models (ii) outperforms ResNets, and (iii) scales better with model size. Marker size related to model size. Detailed results for

ImageNet-C can be found in Appendix C.

robustness of ViTs. When the training set is small, the ViTs

are less robust compared to ResNets of comparable sizes,

and increasing the size of the ViTs does not lead to better

robustness. This is consistent with performance on the clean

set, and with the observations of [9] about the inductive bias

of convolutions being useful when pre-training data is lim-

ited. However, when the training data is ImageNet-21k, we

observe stronger robustness for most ViT models. This ef-

fect becomes even more pronounced when the models are

pre-trained on JFT-300M, where ViTs show better robust-

ness against most corruptions compared to ResNets. More-

over, in the larger pre-training data regime, performance

gains can be achieved for ViT models by increasing the

model size or by decreasing the patch size (and thus increas-

ing the amount of computation).

3.2. Real-World Distribution Shifts

Robustness to distribution shift, can be measured in

different ways. Here, we evaluate ViT models on

ImageNet-R [18], a dataset with different ªrenditionsº of

ILSVRC-2012 classes. An advantage of ImageNet-R is that

the renditions are real-world, naturally occurring variations,

such as paintings or embroidery, with textures and local im-

age statistics which differ from those of ImageNet images.

Despite the fundamental difference in the nature of the

perturbations in ImageNet-R and ImageNet-C, the mod-

els’ behavior on ImageNet-R is similar, as shown in Fig. 2.

Again, ViTs underperform ResNets when the pre-training

data is small and starts to outperform them when pre-trained

on larger datasets. The benefit of larger model sizes is also

more clear on larger datasets, especially for ViTs.

The behavior of our baseline ResNet models is in line

with those observed in Appendix G of [28], where they are

evaluated on objects out-of-context. The authors of [28]

create a dataset of foreground objects corresponding to

ILSVRC-2012 classes pasted onto miscellaneous back-

grounds. They find that when using more pre-training data,

better performance of the larger model on ILSVRC-2012

translates to better out-of-context performance.

Our finding that more pre-training data improves per-

formance on out-of-distribution data is also in line with

the findings in NLP. Hendrycks et al. [20] show that pre-

trained Transformers improve robustness on a variety of

out-of-distribution NLP benchmarks. One of their interest-

ing findings is that for NLP, larger models are not always

better. We observe a similar phenomenon for ViTs pre-

trained on ILSVRC-2012, but not for ViTs pre-trained on

ImageNet-21k or on JFT-300M.

3.3. Natural Adversarial Examples

Adversarial robustness is usually measured by consider-

ing the worst-case perturbation within a small radius in im-

age space. We explore ViTs performance on such perturba-

tions in Sec. 3.5. In contrast, the so called ªnatural adversar-

ialº examples of Hendrycks et al. [21] are unmodified real-

world images which were found by filtering with a trained

ResNet-50 model, and have been shown to transfer to other

models. In contrast to ImageNet-C and ImageNet-R, the lo-

cal statistics of these images is similar to ImageNet images.

Our results on ImageNet-A are shown in the right col-
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Figure 3. Adversarial Perturbations. Accuracy on a subset of 1000 images in ILSVRC-2012 validation of ViT and ResNet models,

on clean images (left) vs. those subject to model-specific adversarial attacks: FGSM and PGD-based perturbations (middle), and spatial

(rotation and translation) transformations (right). (We omit ViT-H/14 here, since it expects a different input image resolution than the other

models.) ResNet models are more robust to the simpler FGSM attack than their ViT counterparts, but this advantage disappears for the

more successful PGD attacks. For spatial attacks, the 16 × 16 ViT models exhibit equivalent robustness to ResNets of comparable size,

but ViT models with the larger patch-size of 32× 32 fare worse.

umn of Fig. 2. We find that ViTs, despite having a dra-

matically different architecture compared to ResNet-50, are

susceptible to the same natural adversarial images. Again

we find that larger pre-training datasets are beneficial to

ViT models, which start to outperform ResNets when both

are pre-trained on JFT-300M. This finding should be taken

with a grain of salt, since the adversarial selection process

is based on a ResNet-50, so the examples might be harder

for ResNets by design.

3.4. Robustness and Model Size

On sufficiently large datasets, it is well known that for a

fixed architecture, larger models lead to better quality. Ka-

plan et al. [26] demonstrated that such improvements on

Transformers trained on large NLP datasets follow clear

and predictable power laws. In previous subsections, we

found that in addition to clean performance, the robust-

ness of ViTs and ResNets against various input perturba-

tions also improves with model size. The gap between large

and small models grows as the dataset becomes bigger. It is

therefore interesting to evaluate the relation between a mod-

els’ robustness and its size, when pre-trained on the largest

dataset, JFT-300M. The results are summarized in Fig. 4.

We find that the error rates follow consistent trends when

scaling up the model size, across up to two orders of mag-

nitude. This holds true on different robustness benchmarks,

as well as the clean ILSVRC-2012 validation set. We also

note that ViTs exhibit more favorable scaling compared to

ResNet. This suggests that given a sufficiently large pre-

training dataset, such as JFT-300M, the gap in robustness

between ViTs and ResNets will further increase as the mod-

els become bigger and bigger. Note that this advantage of

ViTs is only realized when the pre-training dataset is suffi-

Figure 4. Scaling. Performance of ViT and ResNet models as a

function of the number of model parameters. All models are pre-

trained on JFT-300M and fine-tuned on ILSVRC-2012. We see

consistent trends across different input perturbations: scaling up

ViTs provides better robustness gains than scaling up ResNets.

ciently large. In Appendix D we show that when pre-trained

on ImageNet-21k, ViTs’ robustness does not scale better

than ResNets’.

We also find that for the same model family, the slope in

the error rate vs. model size relation remains relatively con-

sistent across different datasets, despite their drastically dif-

ferent characteristics. This suggests that the scaling trends

we discovered might generalize to a broader set of evalua-

tion datasets and tasks.

3.5. Adversarial Perturbations

Most deep neural network models are vulnerable to ad-

versarial perturbations [45]Ðextremely small, but care-

fully crafted, perturbations to the input, that cause a model

to produce incorrect predictions. In NLP, Hsieh et al. [23]
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Figure 5. Example Perturbations. For example images from the ILSVRC 2012 validation set, we illustrate the perturbations computed

using PGD for two ViT models and two ResNet models (we use models pre-trained on JFT-300M). The perturbations are visualized as

images by linearly transforming their intensity from the original range of [−1, 1] to [0, 255].

have shown that attention-based models tend to be more ro-

bust to such perturbations than other architectures (such as

recurrent networks). In this section, we evaluate the robust-

ness of various ViT and ResNet models for image classifi-

cation to adversarial perturbations.

We consider perturbations with an L∞ norm of one gray

level, computed with knowledge of the model architecture

and weights (i.e., white-box attacks). We use two standard

approaches to compute these perturbations: the Fast Gradi-

ent Sign Method (FGSM) [14] and Projected Gradient De-

scent (PGD) [35], using eight iterations with a step size of

1/8 gray levels for the latter. Figure 3 reports the accura-

cies over a subset of 1000 images from the ILSVRC-2012

validation set, on the original images and after adding per-

turbations computed using both methods.

We see that the performance of all models degrades with

these perturbations, and as expected, PGD is more success-

ful than FGSM. Also, we find that larger models tend to

be more robust than smaller ones, and that pre-training on

larger datasets improves robustness to adversarial perturba-

tions. Interestingly, among models that are trained only on

ILSVRC-2012, the Transformer models appear to be more

robust than ResNet models of equivalent sizeÐquite a bit

more so with perturbations computed using PGD. Among

models trained with a medium amount of training data (pre-

trained on ImageNet-21k), we find that ResNet models are

more robust to the simpler FGSM attack than their Trans-

former counterparts, but the opposite is true for PGD at-

tacks. Finally, among models trained with the most training

data, robustness to FGSM appears largely to be monotonic

with model size. PGD attacks are again more successful,

but here, there appear to be diminishing returns with model

size once one crosses 300 million parameters.

An interesting observation is that the relative robustness

of ViT models to their ResNet counterparts appears to be

lower for attacks with FGSM than PGD. This is likely due

to the presence of the single large linear patch-embedding

layer at the beginning of all the ViT models, which causes

the single-iteration gradients used by FGSM to better corre-

spond to a pattern coordinated across larger spatial regions.

ViT→RN RN→ViT

ViT-B/16 vs. RN-101x1 79.7% (-2.5) 85.2% (-0.4)

ViT-B/32 vs. RN-50x3 82.2% (-1.7) 80.9% (-0.3)

ViT-L/16 vs. RN-101x3 84.3% (-1.8) 85.8% (-0.6)

ViT-L/32 vs. RN-152x4 85.4% (-0.7) 86.5% (-0.2)

Table 2. Transferability. Accuracy when evaluating adversarial

perturbations computed (with PGD) using ViT on ResNet models,

and vice-versa. All models are pre-trained on JFT-300M. Numbers

in parenthesis indicate difference from accuracy on unperturbed

images. The results indicate that adversarial perturbations do not

transfer well between ViT and ResNet models. Additional details

can be found in Appendix E.

This disadvantage disappears with multiple PGD iterations.

We visualize example patterns computed (using PGD)

for Transformer and ResNet models in Fig. 5, and find them

to be qualitatively quite different. For all models the pertur-

bations have the highest magnitudes around the foreground

objects. For ViT, there is a clear alignment of the patterns to

the patch partition boundaries. In contrast, the patterns for

ResNet models are more spatially incoherent.

Finally, we find that adversarial patterns do not transfer

over between ViT and ResNet architecturesÐi.e., patterns

computed using ViT models rarely degrade the performance

of ResNet models and vice-versa (see Table 2 and details

in Appendix E). This stands in contrast to our observations

with natural adversarial images described in Sec. 3.3.

3.6. Adversarial Spatial Perturbations

We now measure the spatial robustness of these models,

following the approach of Engstrom et al. [10] who explore

the landscape of spatial robustness using adversarial exam-

ples. In this setting, the adversary’s attack is chosen from

a given range of translations and rotations. The attack suc-

ceeds if any rotated and translated version of the image is

misclassified. These attacks are chosen to particularly test

the differences in input processing of these models. For ex-

ample, ViTs’ use of large non-overlapping patches could

increase their sensitivity to subpatch-sized shifts
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We test the performance of ViT and ResNet models un-

der grid attacks, (grid search over a discrete set of rota-

tions and translations), as these were found to be signifi-

cantly more powerful than any of the other attacks consid-

ered in [10]. We consider 9 equally spaced values each, for

horizontal and vertical translations in the range [−16, 16]
pixels, and 31 equally spaced values for rotations in the

range [−30◦, 30◦]. Following [10], when rotating and trans-

lating the images, we fill the empty space with zeros (black

pixels). We chose the translation ranges to span the largest

patch size (32× 32) used by any of the ViT models.

We present the results averaged over 1000 images from

the validation set of ILSVRC-2012 in the right column of

Fig. 3, and find both ViT and ResNet models to be suscepti-

ble to spatial attacks. Surprisingly, ViT models with a patch

size of 16 × 16 mostly maintain their positions relative to

the ResNet models, indicating they are no more suscepti-

ble to spatial adversarial attacks. In contrast, the perfor-

mance of ViT models that use a larger patch size of 32×32,

degrades much more than the comparable ResNet models.

We conclude that ViT models with smaller patch size, seem

to be as robust to translations and rotations as comparable

ResNets. However, ViT models with larger patch sizes tend

to be more susceptible to spatial attacks.

3.7. Texture Bias

Geirhos et al. [12] observe that (unlike humans)

ImageNet-trained CNNs tend to rely on texture more than

on shape for image classification. They further report that

reducing the texture bias leads to improved robustness to

previously unseen image distortions. We evaluate the tex-

ture bias of ViT models and compare it to ResNets using the

Conflict Stimuli benchmark of [12]. This dataset is gener-

ated by combining 160 images of objects with white back-

ground and 48 texture images using style transfer, result-

ing in 1280 test images with different (possibly conflicting)

shape and texture combinations. The fraction of examples

in this dataset that are classified correctly by their shape de-

termines the shape accuracy of a model.

The results are shown in Fig. 6. An interesting observa-

tion is that the larger patch-sized (32× 32) ViT models per-

form better than the smaller patch-sized (16× 16) variants.

This trend is different from what we see for clean accuracy

as well as for ImageNet-C ImageNet-R and ImageNet-A.

This may be due to larger patch inputs preserving object

shape more than the smaller patches. We also observe that

unlike in all other experiments, the performance of ResNets

trained on JFT-300M is not ordered by model size.

4. Robustness to Model Perturbations

In this section we present our experiments on under-

standing the information flow in ViT models, by computing

layer correlations, lesion studies and restricting attention.
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Figure 6. Texture and Shape. Shape accuracy of ViT and ResNet

models on Conflict Stimuli [12]. In contrast to other robustness

results, shape accuracy is more a function of patch size, than model

size. 32×32 patch-sized ViT models do better than 16×16 ones.
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Figure 7. Representation Correlation Study. We compare the

representations (hidden features) after each Transformer block to

those of all other blocks. When taking all tokens into account

(left), we observe that representations are increasingly correlated

towards the end of the network. In contrast, when only looking at

the CLS token (right), the representations become less correlated

throughout the network. A potential explanation could be that

early layers focus on interactions among spatial tokens whereas

later layers focus on the interactions between spatial tokens and

the CLS token. Additional results can be found in Appendix F.

We first study how representation of input patches evolves

in the ViTs by computing their block level correlations.

Layer correlations We compute correlations between the

representations of each Transformer block with the rest. In

the left plots of Fig. 7 we present the correlations between

representations of all blocks on ViT-L/16 for 2 datasets. Ad-

ditional results for different models/datasets can be found in

Appendix F. We first notice that representation from many

blocks towards later layers appear to be highly correlated,

indicating a large amount of redundancy. Specifically, we

observe that the layers organize into larger groups. In fact

a similar pattern can be observed in ResNets, where down-

sampling layers separate the model into groups with differ-

ent spatial resolutions. Surprisingly, despite lacking such

inductive bias, ViT models also appear to organize layers
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Figure 8. Lesion Study. (top) Evaluation of ViT models when individual blocks are removed from the model after training. We notice

that besides the first block, one can remove any single block, self-attention or MLP from the trained model without substantially degrading

performance. The larger models and the models trained only on ILSVRC-2012 are less impacted by the removal of individual layers.

(bottom) Evaluation of ViT models when n > 1 random blocks are removed from the model after training, while always keeping the first

block. For each n, results are from 25 independent samples of n blocks and we show the average accuracy (line), standard error (error

bars) and min/max (shaded area) across samples. We observe that there is less redundancy in smaller models and their accuracy drops

quickly with removal of few blocks. Interestingly, we observe that removing self-attention layers hurts more than removing MLP layers.

Additional results can be found in Appendix G.

into stagesÐthe most striking example being a very large,

highly correlated group formed by the later layers, where

representations appear to change only slightly.

Recall that ViT models append a special CLS token into

the input sequence, whose representation is used to make

the final classification. We next look at the correlation of

the CLS token representations. Looking at this token in iso-

lation, we see a different pattern (see right side of Fig. 7):

the representation of CLS tokens only changes slowly at

the beginning of the network, but changes rapidly during

the later layers. This indicates that the later layers of the

network only provide limited updates to the representations

of the individual patches, but focus on consolidating the in-

formation needed for the classification in the CLS token.

Lesion study The presence of highly correlated represen-

tations across blocks raises the question whether the re-

spective blocks are redundant. Previous works [50, 15]

have shown that layers in residual networks exhibit a large

amount of redundancy, and that almost any individual layer

can be removed after training without hurting performance.

Following that line of work, we perform a lesion study

on ViTs where we remove single blocks from an already

trained network during inference, such that information has

to flow through the skip connection. Each block contains

two skip connections, and we separately investigate the ef-

fects of deleting MLP, self-attention layers, or the whole

block. This approach is similar to [37], but for whole layers

and including the MLP block. As shown in the top row of

Fig. 8, it indeed appears that besides the first block one can

remove any single block from the model without substan-

tially degrading performance. This is in line with results

reported for ResNets.

We next investigate the effect of removing several layers,

while always keeping the first block. We observe that as

more layers get removed, the performance gradually deteri-

orates (bottom row of Fig 8), with larger models being more

robust to layer removal. We also notice that the amount of

training data also influences robustness: models pre-trained

on large datasets are less robust to layer removal, indicating

perhaps higher model utilization. The results further show

that removing individual layers reduces accuracy less than

removing full blocks, indicating that there is limited co-

adaptation among the components within each Transformer

block. Lastly, we notice that removing MLP layers hurts the

model less than removing the same number of self-attention

layers, indicating the relative importance of self-attention.

This behavior seems to be different to transformer models

in NLP, which as alluded to by [37] might behave in the op-

posite way. We have also observed this phenomenon in our

own experiments. Additional result from our lesion study

can be found in Appendix G.

Restricted attention Finally, we study the extent to

which ViT models rely on long-range attention. We eval-

uate this by spatially restricting the attention between
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Figure 9. Restricted Attention. (Left, Center) We evaluate two ViT models, pre-trained on different datasets, in terms of ILSVRC-2012

validation set accuracy when restricting attention among patches to only pairs that lie within a certain maximum horizontal or vertical

distance. Dashed lines show the results with an equivalent amount of masking where pairs of patches to mask are chosen randomly (as a

random permutation of the mask matrix used for spatially restricted attention). (Right) For the ViT-B/16 model pre-trained with JFT-300M,

we consider restricting attention to only between patches and the CLS token (without any attention between patches). We report accuracy

applying this restriction to a subset of Transformer blocksÐboth at the beginning and at the endÐof the model.

patches to those that lie within a certain distance.We apply

this restriction during inference only, by passing a spatial

distance-based mask for attention between patches. Note

that the masks always allow attention between the CLS to-

ken and all patches.

Figure 9 shows that even though these models were

trained assuming unrestricted attention, they degrade grace-

fully when inter-patch attention is restricted to be local. We

also compare to a baseline of randomly restricting atten-

tion by the same amountÐachieved by using a random (but

fixed across experiments) permutation of the mask matrix.

We see that in this case, the degradation in performance

is significantly higher in most casesÐwith a notable ex-

ception being the large ViT model that was trained only

on ILSVRC-2012 data. Our last evaluation in Fig. 9 con-

siders the extreme version of this case, when attention is

only allowed between patches and the CLS token, but not

among patches, for a subset of Transformer blocks in the

networkÐapplying it either only to blocks at the beginning

or at the end. Interestingly, we find that removing inter-

patch attention completely at the end of the network has

relatively little effect on accuracyÐalthough this is consis-

tent with our earlier observation that in the final few blocks

of the network, it is the CLS token that is primarily being

updated. In contrast, disrupting inter-patch attention in the

initial blocks causes a significant degradation in accuracy.

To summarize, we find that ViT models contain a surpris-

ing amount of redundancy, which indicates that the model

could be heavily pruned during inference.

5. Takeaways

In this paper, we studied different aspects of robustness

in ViT models, making a number of observations. Some of

these confirmed existing intuitions about neural networks

for vision, while others were perhaps surprising. We sum-

marize they key takeaways from our analysis below:

• Consistent with [9], we find that ViT models generally

outperform ResNets and scale better with model size,

when trained on sufficient data. Crucially, the above is

true also of robustness. We found that relative accuracy

on the standard ILSVRC-2012 validation set is predictive

of performance under a diverse array of perturbations.

• We discovered that FGSM attacks fare better against ViT

models than against ResNets. However, ResNet models

are not fundamentally more robust since both kinds of

models are equally vulnerable to perturbations computed

using PGD (which is more successful than the simpler

FGSM). However, the optimal perturbations for the two

kinds of models are very different and do not transfer.

• We found that choice of patch size in ViT models plays

a role in their robustness. Smaller patch sizes make

ViT models more robust to adversarial spatial transfor-

mations, but also incresae their texture bias.

• Through correlation analysis, we discovered that ViT

models organize themselves into correlated groups much

like ResNets, despite having no explicit downsampling-

based groups like ResNets. This analysis also showed

that most updates in the later layers are to the representa-

tion of the CLS token, rather than to those of individual

patches. Moreover, preventing attention between patches

in later layers led to a relatively lower drop in accuracy.

• We also found that despite their ability to allow patches

to communicate globally, restricting attention to be local

has a relatively lower effect on accuracy.

• Finally, our lesion studies showed that ViT models are

fairly robust to removing individual layers. But contrary

to observations on language tasks, we found that ViT

models are more robust to the removal of MLP layers

than self-attention ones.
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