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Abstract

We propose a novel transformer-based styled handwrit-
ten text image generation approach, HWT, that strives to
learn both style-content entanglement as well as global
and local style patterns. The proposed HWT captures the
long and short range relationships within the style exam-
ples through a self-attention mechanism, thereby encoding
both global and local style patterns. Further, the proposed
transformer-based HWT comprises an encoder-decoder at-
tention that enables style-content entanglement by gather-
ing the style features of each query character. To the best of
our knowledge, we are the first to introduce a transformer-
based network for styled handwritten text generation.

Our proposed HWT generates realistic styled hand-
written text images and outperforms the state-of-the-art
demonstrated through extensive qualitative, quantitative
and human-based evaluations. The proposed HWT can
handle arbitrary length of text and any desired writing
style in a few-shot setting. Further, our HWT general-
izes well to the challenging scenario where both words
and writing style are unseen during training, generating
realistic styled handwritten text images. Code is avail-
able at: https://github.com/ankanbhunia/Handwriting-
Transformers

1. Introduction
Generating realistic synthetic handwritten text images,

from typed text, that is versatile in terms of both writ-
ing style and lexicon is a challenging problem. Automatic
handwritten text generation can be beneficial for people
having disabilities or injuries that prevent them from writ-
ing, translating a note or a memo from one language to an-
other by adapting an author’s writing style or gathering ad-
ditional data for training deep learning-based handwritten
text recognition models. Here, we investigate the problem
of realistic handwritten text generation of unconstrained
text sequences with arbitrary length and diverse calligraphic
attributes representing writing styles of a writer.

Figure 1: Comparison of HWT (c) with GANwriting [14]
(d) and Davis et al. [5] (e) in imitating the desired unseen
writing style (a) for given query text (b). While [14, 5]
capture global writing styles (e.g., slant), they struggle to
imitate local style patterns (e.g., character style, ligatures).
HWT (c) imitates both global and local styles, leading to
a more realistic styled handwritten text image generation.
For instance, style of ‘n’ (red line) appearing in (a) is mim-
icked by HWT, for a different word including same char-
acter ‘n’. Similarly, a group of characters in ‘thought’
and ‘personalities’ (blue and magenta lines) are styled
in a way that matches with words (‘throughout’ and
‘qualities’) sharing some common characters in (a).
Furthermore, HWT preserves cursive patterns and connec-
tivity of all characters in word ‘also’ (green line).

Generative Adversarial Networks (GANs) [8] have been
investigated for offline handwritten text image generation
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[4, 3, 14, 7, 5]. These methods strive to directly synthe-
size text images by using offline handwriting images during
training, thereby extracting useful features, such as writing
appearance (e.g., ink width, writing slant) and line thickness
changes. Alonso et al. [3] propose a generative architec-
ture that is conditioned on input content strings, thereby not
restricted to a particular pre-defined vocabulary. However,
their approach is trained on isolated fixed-sized word im-
ages and struggles to produce high quality arbitrarily long
text along with suffering from style collapse. Fogel et al. [7]
introduce a ScrabbleGAN approach, where the generated
image width is made proportional to the input text length.
ScrabbleGAN is shown to achieve impressive results with
respect to the content. However, both [3, 7] do not adapt to
a specific author’s writing style.

Recently, GAN-based approaches [5, 14] have been in-
troduced for the problem of styled handwritten text image
generation. These methods take into account both content
and style, when generating offline handwritten text images.
Davis et al. [5] propose an approach based on StyleGAN
[15] and learn generated handwriting image width based on
style and input text. The GANwriting framework [14] con-
ditions handwritten text generation process to both textual
content and style features in a few-shot setup.

In this work, we distinguish two key issues that impede
the quality of styled handwritten text image generation in
the existing GAN-based methods [5, 14]. First, both style
and content are loosely connected as their representative
features are processed separately and later concatenated.
While such a scheme enables entanglement between style
and content at the word/line-level, it does not explicitly en-
force style-content entanglement at the character-level. Sec-
ond, although these approaches capture global writing style
(e.g., ink width, slant), they do not explicitly encode local
style patterns (e.g., character style, ligatures). As a result
of these issues, they struggle to accurately imitate local cal-
ligraphic style patterns from reference style examples (see
Fig. 1). Here, we look into an alternative approach that ad-
dresses both these issues in a single generative architecture.

1.1. Contributions

We introduce a new styled handwritten text genera-
tion approach built upon transformers, termed Handwriting
Transformers (HWT), that comprises an encoder-decoder
network. The encoder network utilizes a multi-headed self-
attention mechanism to generate a self-attentive style fea-
ture sequence of a writer. This feature sequence is then
input to the decoder network that consists of multi-headed
self- and encoder-decoder attention to generate character-
specific style attributes, given a set of query word strings.
Consequently, the resulting output is fed to a convolutional
decoder to generate final styled handwritten text image.
Moreover, we improve the style consistency of the gen-

erated text by constraining the decoder output through a
loss term whose objective is to re-generate style feature se-
quence of a writer at the encoder.

Our HWT imitates the style of a writer for a given query
content through self- and encoder-decoder attention that
emphasizes relevant self-attentive style features with re-
spect to each character in that query. This enables us to cap-
ture style-content entanglement at the character-level. Fur-
thermore, the self-attentive style feature sequence generated
by our encoder captures both the global (e.g., ink width,
slant ) and local styles (e.g., character style, ligatures) of a
writer within the feature sequence.

We validate our proposed HWT by conducting extensive
qualitative, quantitative and human-based evaluations. In
the human-based evaluation, our proposed HWT was pre-
ferred 81% of the time over recent styled handwritten text
generation methods [5, 14], achieving human plausibility in
terms of the writing style mimicry. Following GANwrit-
ing [14], we evaluate our HWT on all the four settings on
the IAM handwriting dataset. On the extreme setting of
out-of-vocabulary and unseen styles (OOV-U), where both
query words and writing styles are never seen during train-
ing, the proposed HWT outperforms GANwriting [14] with
an absolute gain of 16.5 in terms of Frèchet Inception Dis-
tance (FID) thereby demonstrating our generalization capa-
bilities. Further, our qualitative analysis suggest that HWT
performs favorably against existing works, generating real-
istic styled handwritten text images (see Fig. 1).

2. Related Work
Deep learning-based handwritten text generation ap-

proaches can be roughly divided into stroke-based online
and image-based offline methods. Online handwritten text
generation methods [9, 2] typically require temporal data
acquired from stroke-by-stroke recording of real handwrit-
ten examples (vector form) using a digital stylus pen. On
the other hand, recent generative offline handwritten text
generation methods [4, 3, 14, 7] aim to directly generate
text by performing training on offline handwriting images.

Graves [9] proposes an approach based on Recurrent
Neural Network (RNN) with Long-Term Memory (LSTM)
cells, which enables predicting future stroke points from
previous pen positions and an input text. Aksan et al. [4]
propose a method based on conditional Variational RNN
(VRNN), where the input is split into two separate latent
variables to represent content and style. However, their ap-
proach tends to average out particular styles across writers,
thereby reducing details [17]. In a subsequent work [1], the
VRNN module is substituted by Stochastic Temporal CNNs
which is shown to provide more consistent generation of
handwriting. Kotani et al. [17] propose an online hand-
writing stroke representation approach to represent latent
style information by encoding writer-, character- and writer-
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character-specific style changes within an RNN model.
Other than sequential methods, several recent works

have investigated offline handwritten text image generation
using GANs. Haines et al. [11] introduce an approach to
generate new text in a distinct style inferred from source im-
ages. Their model requires a certain degree of human inter-
vention during character segmentation and is limited to gen-
erating characters that are in the source images. The work of
[4] utilize CycleGAN [24] to synthesize images of isolated
handwritten characters of Chinese language. Alonso et al.
[3] propose an approach, where handwritten text generation
is conditioned by character sequences. However, their ap-
proach suffers from style collapse hindering the diversity of
synthesized images. Fogel et al. [7] propose an approach,
called ScrabbleGAN, that synthesizes handwritten word us-
ing a fully convolutional architecture. Here, the characters
generated have similar receptive field width. A conversion
model is introduced by [20] that approximates online hand-
writing from offline samples followed by using style trans-
fer technique to the online data. This approach relies on
conversion model’s performance.

Few recent GAN-based works [5, 14] investigate the
problem of offline styled handwritten text image generation.
Davis et al. [5] propose an approach, where handwritten
text generation is conditioned on both text and style, cap-
turing global handwriting style variations. Kang et al. [14]
propose a method, called GANwriting, that conditions text
generation on extracting style features in a few-shot setup
and textual content of a predefined fixed length.
Our Approach: Similar to GANwriting [14], we also in-
vestigate the problem of styled handwritten text generation
in a few-shot setting, where a limited number of style exam-
ples are available for each writer. Different from GANwrit-
ing, our approach possesses the flexibility to generate styled
text of arbitrary length. In addition, existing works [5, 14]
only capture style-content entanglement at the word/line-
level. In contrast, our transformer-based approach enables
style-content entanglement both at the word and character-
level. While [5, 14] focuses on capturing the writing style
at the global level, the proposed method strives to imitate
both global and local writing style.

3. Proposed Approach
Motivation: To motivate our proposed HWT method,

we first distinguish two desirable characteristics to be con-
sidered when designing an approach for styled handwritten
text generation with varying length and any desired style in
a few-shot setting, without using character-level annotation.
Style-Content Entanglement: As discussed earlier, both
style and content are loosely connected in recently intro-
duced GAN-based works [14, 5] with separate processing
of style and content features, which are later concatenated.
Such a scheme does not explicitly encode style-content en-

tanglement at the character-level. Moreover, there are sep-
arate components for style, content modeling followed by
a generator for decoding stylized outputs. In addition to
style-content entanglement at word/line level, an entangle-
ment between style and content at the character-level is ex-
pected to aid in imitating the character-specific writing style
along with generalizing to out-of-vocabulary content. Fur-
ther, such a tight integration between style and content leads
to a cohesive architecture design.
Global and Local Style Imitation: While the previous req-
uisite focuses on connecting style and content, the second
desirable characteristic aims at modeling both the global as
well as local style features for a given calligraphic style. Re-
cent generative methods for styled handwritten text genera-
tion [14, 5] typically capture the writing style at the global
level (e.g., ink width, slant). However, the local style pat-
terns (e.g., character style, ligatures) are not explicitly taken
into account while imitating the style of a given writer. We
argue that both global and local style patterns are desired to
be imitated for accurate styled text image generation.

3.1. Approach Overview

Problem Formulation: We aim to learn the complex
handwriting style characteristics of a particular writer i ∈
W , where W includes a total of M writers. We are given
a set of P handwritten word images, Xs

i = {xij}Pj=1, as
few-shot calligraphic style examples of each writer. The
superscript ‘s’ in Xs

i denotes use of the set as a source of
handwriting style which is transferred to the target images
X̃t
i with new textual content but consistent style properties.

The textual content is represented as a set of input query
word strings A = {aj}Qj=1, where each word string aj
comprises an arbitrary number of characters from permitted
characters set C. The set C includes alphabets, numerical
digits and punctuation marks etc. Given a query text string
aj ∈ A from an unconstrained set of vocabulary and Xs

i ,
our model strives to generate new images X̃t

i with the same
text aj in the writing style of a desired writer i.

Overall Architecture: Fig. 2 presents an overview of
our proposed HWT approach, where a conditional genera-
tor Gθ synthesizes handwritten text images, a discrimina-
tor Dψ ensures realistic generation of handwriting styles,
a recognizer Rϕ aids in textual content preservation, and a
style classifier Sη ensures satisfactory transfer of the calli-
graphic styles. The focus of our design is the introduction of
a transformer-based generative network for unconstrained
styled handwritten text image generation. Our generator Gθ

is designed in consideration to the desirable characteristics
listed earlier leveraging the impressive learning capabilities
of transformer models. To meticulously imitate a handwrit-
ing style, a model is desired to learn style-content entangle-
ment as well as global and local style patterns.

To this end, we introduce a transformer-based handwrit-
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Figure 2: Overall architecture of our Handwriting Transformers (HWT) to generate styled handwritten text images X̃t
i . HWT

comprises a conditional generator having an encoder TE and a decoder network TD. Both the encoder and decoder networks
constitute a hybrid convolution and multi-head self-attention design, which combines the strengths of CNN and transformer-
based models i.e., highly expressive relationship modeling while working with limited handwriting style example images.
Resultantly, our design seamlessly achieves style-content entanglement that encodes relationships between textual content
and writer’s style along with learning both global and local style patterns for given inputs (Xs

i and A).

ing generation model, which enables us to capture the long
and short range contextual relationships within the style ex-
amples Xs

i by utilizing a self-attention mechanism. In this
way, both the global and local style patterns are encoded.
Additionally, our transformer-based model comprises an
encoder-decoder attention that allows style-content entan-
glement by inferring the style representation for each query
character. A direct applicability of transformer-based de-
sign is infeasible in our few-shot setting due to its large data
requirements and quadratic complexity. To circumvent this
issue, our proposed architecture design utilizes the expres-
sivity of a transformer within the CNN feature space.

The main idea of the proposed HWT method is simple
but effective. A transformer-based encoder TE is first used
to model self-attentive style context that is later used by
a decoder TD to generate query text in a specific writer’s
style. We define learnable embedding vector qc ∈ R512 for
each character c of the permissible character set C. For ex-
ample, we represent the query word ‘deep’ as a sequence of
its respective character embeddings Qdeep = {qd . . . qp}.
We refer them as query embeddings. Such a character-wise
representation of the query words and the transformer-based
sequence processing helps our model to generate handwrit-
ten words of variable length, and also qualifies it to pro-
duce out-of-vocabulary words more efficiently. Moreover,
it avoids averaging out individual character-specific styles

in order to maintain the overall (global and local) writing
style. The character-wise style interpolation and transfer is
ensured by the self- and encoder-decoder attention in the
transformer module that infers the style representation of
each query character based on a set of handwritten samples
provided as input. We describe the proposed generative ar-
chitecture in Sec. 3.2 and the loss objectives in Sec. 3.3.

3.2. Generative Network

The generator Gθ includes two main components: an
encoder network TE : Xs

i → Z and a decoder network
TD : (Z,A) → X̃t

i . The encoder produces a sequence
of feature embeddings Z ∈ RN×d (termed as style fea-
ture sequence) from a given set of style examples Xs

i . The
decoder takes Z as an input and converts the input word
strings aj ∈ A to realistic handwritten images X̃t

i with
same style as the given examples Xs

i of a writer i. Both
the encoder and decoder networks constitute a hybrid de-
sign based on convolution and multi-head self-attention net-
works. This design choice combines the strengths of CNNs
and transformer models i.e., highly expressive relationship
modeling while working with limited handwriting images.
Its worth mentioning that a CNN-only design would strug-
gle to model long-term relations within sequences while an
architecture based solely on transformer networks would
demand large amount of data and longer training times [16].
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Encoder TE . The encoder aims at modelling both global
and local calligraphic style attributes (i.e., slant, skew, char-
acter shapes, ligatures, ink widths etc.) from the style ex-
amples Xs

i . Before feeding style images to the highly ex-
pressive transformer architecture, we need to represent the
style examples as a sequence. A straightforward way would
be to flatten the image pixels into a 1D vector [6]. How-
ever, given the quadratic complexity of transformer models
and their large data requirements, we find this to be infea-
sible. Instead, we use a CNN backbone network to obtain
sequences of convolutional features from the style images.
First, we use a ResNet18 [12] model to generate lower-
resolution activation maps hij ∈ Rh×w×d for each style
image xij . Then, we flatten the spatial dimension of hij
to obtain a sequence of feature maps of size n × d, where
n = h× w. Each vector in the feature sequence represents
a region in the original image and can be considered as the
image descriptor for that particular region. After that, we
concatenate the feature sequence vectors extracted from all
style images together to obtain a single tensor Hi ∈ RN×d,
where N = n× P .

The next step includes modeling the global and local
compositions between all entities of the obtained feature se-
quence Z. A transformer-based encoder is employed for
that purpose. The encoder has L layers, where each layer
has a standard architecture that consists of a multi-headed
self-attention module and a Multi-layer Perceptron (MLP)
block. At each layer l, the multi-headed self-attention maps
the input sequence from the previous layer H l−1 into a
triplet (key K, query Q, value V ) of intermediate repre-
sentations given by,

Q = H l−1WQ,K = H l−1WK ,V = H l−1WV ,

where WQ ∈ RN×dq , WK ∈ RN×dk and WV ∈ RN×dv

are the learnable weight matrix for query, key and value
respectively. For each head, the process is represented as,

Oj = softmax
(
QKT

√
dk

)
V ∈ RN×dv , j ∈ {1, .., J}.

(1)
The concatenation of all J head outputs O = [O1, . . . ,OJ ]
is then fed through an MLP layer to obtain the output fea-
ture sequence H l for the layer l. This update procedure is
repeated for a total of L layers, resulting in the final feature
sequence Z ∈ RN×d. To retain information regarding the
order of input sequences being supplied, we add fixed posi-
tional encodings [23] to the input of each attention layer.

Decoder TD. The initial stage in the decoder uses the
standard architecture of the transformer that consists of
multi-headed self- and encoder-decoder attention mecha-
nisms. Unlike the self-attention, the encoder-decoder at-
tention derives the key and value vectors from the output of
the encoder, whereas the query vectors come from the de-
coder layer itself. For an mj character word aj ∈ A (length

Figure 3: Visualization of encoder-decoder attention maps
at the last layer of the transformer decoder. The attention
maps are computed for each character in the query word
(‘statistical’) which are then mapped to spatial regions
(heat maps) in the example style images. Here, heat maps
corresponding to the four different query characters ‘t’, ‘i’,
‘c’ and ‘l’ are shown. For instance, the top-left attention
map corresponding to the character ‘t’, highlights multiple
image regions containing the character ‘t’.

mj being variable depending on the word), the query em-
bedding Qaj = {qck}

mj

k=1 is used as a learnt positional en-
coding to each attention layer of the decoder. Intuitively,
each query embedding learns to look up regions of interest
in the style images to infer the style attributes of all query
characters (see Fig. 3). Over multiple consecutive decoding
layers, these output embeddings accumulate style informa-
tion, producing a final output Faj = {fck}

mj

k=1 ∈ Rmj×d.
We process the entire query embedding in parallel at each
decoder layer. We add a randomly sampled noise vector
N (0, 1) to the output Faj

in order to model the natural vari-
ation of individual handwriting. For an m-character word,
we concatenate these mj embedding vectors and pass them
through a linear layer, resulting in an mj × 8192 matrix.
After reshaping it to a dimension of 512 × 4 × 4mj , we
pass it through a CNN decoder having four residual blocks
followed by a tanh activation layer to obtain final output
images (styled hand written text images).

3.3. Training and Loss Objectives

Our training algorithm follows the traditional GAN
paradigm, where a discriminator network Dψ is employed
to tell apart the samples generated from generator Gθ from
the real ones. As the generated word images are of varying
width, the proposed discriminator Dψ is also designed to
be convolutional in nature. We use the hinge version of the
adversarial loss [18] defined as,

Ladv =E [max (1−Dψ(X
s
i , 0))]+

E [max (1 +Dψ(Gθ(X
s
i ,A)), 0)] .

(2)

While Dψ promotes real-looking images, it does not pre-
serve the content or the calligraphic styles. To preserve the
textual content in the generated samples we use a handwrit-
ten recognizer network Rϕ that examines whether the gen-

1090



erated samples are actually real text. The recognizer Rϕ
is inspired by CRNN [21]. The CTC loss [10] is used to
compare the recognizer output to the query words that were
given as input to Gθ. Recognizer Rϕ is only optimized with
real, labelled, handwritten samples, but it is used to encour-
age Gθ to produce readable text with accurate content. The
loss is defined as,

LR = Ex∼{Xs
i ,X̃

t
i}

[
−
∑

log (p (yr|Rϕ (x)))
]
. (3)

Here, yr is the transcription string of x ∼
{
Xs
i , X̃

t
i

}
.

A style classifier network Sη is employed to guide the
network Gθ in producing samples conditioned to a partic-
ular writing style. The network Sη attempts to predict the
writer of a given handwritten image. The cross-entropy ob-
jective is applied as a loss function. Sη is trained only on
the real samples using the loss given below,

LS = Ex∼{Xs
i ,X̃

t
i}

[
−
∑

yilog (Sη (x))
]
. (4)

An important feature of our design is to utilize a cycle
loss that ensures the encoded style features have cycle con-
sistency. This loss function enforces the decoder to preserve
the style information in the decoding process, such that the
original style feature sequence can be reconstructed from
the generated image. Given the generated word images X̃t

i ,
we use the encoder TE to reconstruct the style feature se-
quence Z̃. The cycle loss Lc minimizes the error between
the style feature sequence Z and its reconstruction Z̃ by
means of a L1 distance metric,

Lc = E
[∥∥∥TE(X

s
i )− TE(X̃

t
i )
∥∥∥
1

]
. (5)

The cycle loss imposes a regularization to the decoder for
consistently imitating the writing style in the generated
styled text images. Overall, we train our HWT model in
an end-to-end manner with the following loss objective,

Ltotal = Ladv + LS + LR + Lc. (6)

We observe balancing the gradients of the network Sη and
Rϕ is helpful in the training with our loss formulation. Fol-
lowing [3], we normalize the ∇Sη and ∇Rϕ to have the
same standard deviation (σ) as adversarial loss gradients,

∇Sη ← α

(
σD
σS

.∇Sη
)
,∇Rϕ ← α

(
σD
σR

.∇Rϕ
)
. (7)

Here, α is a hyper-parameter that is fixed to 1 during train-
ing of our model.

4. Experiments
We perform extensive experiments1 on IAM handwrit-

ing dataset [19]. It consists of 9862 text lines with around
1Additional experiments, including (i) quantitative comparison on

CVL and RIMES datasets and (ii) handwritten text recognition (HTR)
results, are presented in supplementary material.

Table 1: Comparison of the HWT with GANwriting [14]
and Davis et al. [5] in terms of FID scores computed be-
tween the generated text images and real text images of the
IAM dataset. Our HWT performs favorably against [14, 5]
in all four settings: In-Vocabulary words and seen style
(IV-S), In-Vocabulary words and unseen style (IV-U), Out-
of-vocabulary content and seen style (OOV-S) and Out-of-
vocabulary content and unseen style (OOV-U). On the chal-
lenging setting of OOV-U, HWT achieves an absolute gain
of 16.5 in FID score, compared to GANwriting [14].

IV-S ↓ IV-U ↓ OOV-S ↓ OOV-U ↓
GANwriting [14] 120.07 124.30 125.87 130.68
Davis et al. [5] 118.56 128.75 127.11 136.67
HWT (Ours) 106.97 108.84 109.45 114.10

62,857 English words, written by 500 different writers. For
thorough evaluation, we reserve an exclusive subset of 160
writers for testing, while images from the remaining 340
writers are used for our model training. In all experiments,
we resize images to a fixed height of 64 pixels, while main-
taining the aspect ratio of original image. For training, we
use P = 15 style example images, as in [14]. Both the
transformer encoder and transformer decoder employ 3 at-
tention layers (L = 3) and each attention layer applies
multi-headed attention having 8 attention heads (J = 8).
We set the embedding size d to 512. In all experiments,
we train our model for 4k epochs with a batch size of 8 on
a single V100 GPU. Adam optimizer is employed during
training with a learning rate of 0.0002.

4.1. Styled Handwritten Text Generation

We first evaluate (Tab. 1) our approach for styled hand-
written text image generation, where both style and content
are desired to be imitated in the generated text image. Fol-
lowing [14], we use Frèchet Inception Distance (FID) [13]
evaluation metric for comparison. The FID metric is mea-
sured by computing the distance between the Inception-v3
features extracted from generated and real samples for each
writer and then averaging across all writers. We evaluate
our HWT with GANwriting [14] and Davis et al. [5] in
four different settings: In-Vocabulary words and seen styles
(IV-S), In-Vocabulary words and unseen styles (IV-U), Out-
of-Vocabulary words and seen styles (OOV-S), and Out-
of-Vocabulary words and unseen styles (OOV-U). Among
these settings, most challenging one is the OOV-U, where
both words and writing styles are never seen during training.
For OOV-S and OOV-U settings, we use a set of 400 words
that are distinct from IAM dataset transcription, as in [14].
In all four settings, the transcriptions of real samples and
generated samples are different. Tab. 1 shows that HWT
performs favorably against both existing methods [14, 5].

Fig 4 presents the qualitative comparison of HWT with
[14, 5] for styled handwritten text generation. We present
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Figure 4: Qualitative comparison of our HWT (second column) with GANwriting [14] (third column) and Davis et al. [5]
(fourth column). We use the same textual content ’No two people can write precisely the same way just like no two people
can have the same fingerprints’ for all three methods. The first column shows the style examples from different writers.
Davis et al. [5] captures the global style, e.g. slant, but struggles to mimic the character-specific style details. On the other
hand, since GANwriting [14] is limited to a fixed length query words, it is unable to complete the provided textual content.
Our HWT better mimics global and local style patterns, generating more realistic handwritten text images.

results for different writers, whose example style images are
shown in the first column. For all the three methods, we use
the same textual content. While Davis et al. [5] follows the
leftward slant of the last style example from the top, their
approach struggles to capture character-level styles and cur-
sive patterns (e.g. see the word ‘the’). On the other hand,
GANwriting [14] struggles to follow leftward slant of the
last style example from the top and character-level styles.
Our HWT better imitates both the global and local style pat-
terns in these generated example text images.

4.2. Handwritten Text Generation

Here, we evaluate the quality of the handwritten text im-
age generated by our HWT. For a fair comparison with the
recently introduced ScrabbleGAN [7] and Davis et al. [5],
we report our results in the same evaluation settings as used
by [7, 5]. Tab. 2 presents the comparison with [7, 5] in
terms of FID and geometric-score (GS). Our HWT achieves
favourable performance, compared to both approaches in
terms of both FID and GS scores. Different from Tab. 1, the
results reported here in Tab. 2 indicates the quality of the
generated images, compared with the real examples in the
IAM dataset, while ignoring style imitation capabilities.

4.3. Ablation study

We perform multiple ablation studies on the IAM dataset
to validate the impact of different components in our frame-
work. Tab. 3 shows the impact of integrating transformer

Table 2: Handwritten text image generation quality com-
parison of our proposed HWT with ScrabbleGAN [7]
and Davis et al. [5] on the IAM dataset. Results are re-
ported in terms of FID and GS by following the same eval-
uation settings, as in [7, 5]. Our HWT performs favorably
against these methods in terms of both FID and GS. Best
results are in bold.

FID ↓ GS ↓
ScrabbleGAN [7] 20.72 2.56× 10−2

Davis et al. [5] 20.65 4.88× 10−2

HWT (Ours) 19.40 1.01× 10−2

encoder (Enc), transformer decoder (Dec) and cycle loss
(CL) to the baseline (Base). Our baseline neither uses trans-
former modules nor utilizes cycle loss. It only employs
a CNN encoder to obtain style features, whereas the con-
tent features are extracted from the one-hot representation
of query words. Both content and style features are passed
through a CNN decoder to generate styled handwritten text
images. While the baseline is able to generate realistic text
images, it has a limited ability to mimic the given writer’s
style leading to inferior FID score (row 1). The introduc-
tion of the transformer encoder into the baseline (row 2)
leads to an absolute gain of 5.6 in terms of FID score,
highlighting the importance of our transformer-based self-
attentive feature sequence in the generator encoder. We ob-
serve here that the generated sample still lacks details in
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Table 3: Impact of integrating transformer encoder
(Enc), transformer decoder (Dec) and cycle loss (CL) to
the baseline (Base) on the OOV-U settings of IAM dataset.
Results are reported in terms of FID score. Best results are
reported in bold. On right, we show the effect of each com-
ponent when generating two example words ‘freedom’ and
‘precise’ mimicking two given writing styles.

FID ↓ Style Example

Base 134.45
Base + Enc 128.80
Base + Dec 124.81

Base + Enc + Dec 116.50

Base + Enc + Dec + CL 114.10

terms of character-specific style patterns. When integrat-
ing the transformer decoder into the baseline (row 3), we
observe a significant gain of 9.6 in terms of FID score. No-
tably, we observe a significant improvement (17.9 in FID)
when integrating both transformer encoder and decoder to
the baseline (row 4). This indicates the importance of self-
and encoder-decoder attention for achieving realistic styled
handwritten text image generation. The performance is fur-
ther improved by the introduction of cycle loss to our final
HWT architecture (row 4).

As described earlier (Sec. 3.2), HWT strives for style-
content entanglement at character-level by feeding query
character embeddings to the transformer decoder network.
Here, we evaluate the effect of character-level content en-
coding (conditioning) by replacing it with word-level con-
ditioning. We obtain the word-level embeddings, by using
an MLP that aims to obtain string representation of each
query word. These embeddings are used as conditional in-
put to the transformer decoder. Table 4 suggests that HWT
benefits from character-level conditioning that ensures finer
control of text style. The performance of word-level condi-
tioning is limited to mimicking the global style, whereas our
character-level approach ensures locally realistic as well as
globally consistent style patterns.

4.4. Human Evaluation

Here, we present results of our two user studies on 100
human participants2 to evaluate whether the proposed HWT
achieves human plausibility in terms of the style mimicry.
First, a User preference study compares styled text im-
ages generated by our method with GANwriting [14] and
Davis et al. [5]. Second, a User plausibility study that eval-
uates the proximity of the synthesized samples generated by
our method to the real samples. In both studies, synthesized

2Additional details are provided in supplementary material.

Table 4: Comparison between word and character-level
conditioning on IAM dataset. Results are reported in terms
of FID score. Our character-level conditioning performs fa-
vorably, compared to its word-level counterpart. Best re-
sults are reported in bold. On the right, we show the effect
of word and character-level conditioning, when generating
two example words ‘symbols’ and ‘same’ mimicking two
given writing styles.

FID ↓ Style Example

Word-level 126.87

Character-level 114.10

samples are generated using unseen writing styles of test set
writers of IAM dataset, and for textual content we use sen-
tences from Stanford Sentiment Treebank [22] dataset.

For User preference study, each participant is shown
the real handwritten paragraph of a person and synthesized
handwriting samples of that person using HWT, Davis et
al. [5] and GANwriting [14], randomly organized. The par-
ticipants were asked to mark the best method for mimicking
the real handwriting style. In total, we have collected 1000
responses. The results of this study shows that our proposed
HWT was preferred 81% of the time over the other two
methods.

For User plausibility study, each participant is shown
a person’s actual handwriting, followed by six samples,
where each of these samples is either genuine or synthesized
handwriting of the same person. Participants are asked
to identify whether a given handwritten sample is genuine
or not (forged/synthesized) by looking at the examples of
the person’s real handwriting. Thus, each participant pro-
vides 60 responses, thereby we collect 6000 responses for
100 participants. For this study, only 48.1% of the images
have been correctly classified, thereby showing a compara-
ble performance to a random choice in a two-class problem.

5. Conclusion

We introduced a transformer-based styled handwritten
text image generation approach, HWT, that comprises a
conditional generator having an encoder-decoder network.
Our HWT captures the long and short range contextual re-
lationships within the writing style example through a self-
attention mechanism, thereby encoding both global and lo-
cal writing style patterns. In addition, HWT utilizes an
encoder-decoder attention that enables style-content entan-
glement at the character-level by inferring the style repre-
sentation for each query character. Qualitative, quantitative
and human-based evaluations show that our HWT produces
realistic styled handwritten text images with varying length
and any desired writing style.
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