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Abstract

Text recognition remains a fundamental and extensively
researched topic in computer vision, largely owing to its
wide array of commercial applications. The challenging
nature of the very problem however dictated a fragmenta-
tion of research efforts: Scene Text Recognition (STR) that
deals with text in everyday scenes, and Handwriting Text
Recognition (HTR) that tackles hand-written text. In this
paper, for the first time, we argue for their unification – we
aim for a single model that can compete favourably with
two separate state-of-the-art STR and HTR models. We first
show that cross-utilisation of STR and HTR models trigger
significant performance drops due to differences in their in-
herent challenges. We then tackle their union by introduc-
ing a knowledge distillation (KD) based framework. This
however is non-trivial, largely due to the variable-length
and sequential nature of text sequences, which renders off-
the-shelf KD techniques that mostly work with global fixed
length data, inadequate. For that, we propose four dis-
tillation losses, all of which are specifically designed to
cope with the aforementioned unique characteristics of text
recognition. Empirical evidence suggests that our proposed
unified model performs at par with individual models, even
surpassing them in certain cases. Ablative studies demon-
strate that naive baselines such as a two-stage framework,
multi-task and domain adaption/generalisation alternatives
do not work that well, further authenticating our design.

1. Introduction

Text recognition has been studied extensively in the past
two decades [37], mostly due to its potential in commercial
applications. Following the advent of deep learning, great
progress [4, 35, 57, 63, 5, 8, 7] has been made in recognition
accuracy on different publicly available benchmark datasets
[41, 58, 30, 39]. Beyond supervised text recognition, very
recent attempts have been made that utilise synthetic train-
ing data via domain adaptation [67], learn optimal augmen-
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Figure 1. Despite performing well for scene images (IAM [39]), a
model trained on HTR datasets (a), performs poorly in STR sce-
narios (ICDAR-2015 [30]) and vice-versa (b). Although jointly
training a model (c) using both STR and HTR datasets helps im-
prove the disparity between the datasets, the gap still remains far
behind the specialist models. Our KD based proposed method
leads to performance at par or even better than individual models.

tation strategy [38, 6], couple with visual question answer-
ing [10], and withhold adversarial attacks [60].

Albeit with great strides made, the field of text recogni-
tion remains fragmented, with one side focusing on Scene
Text Recognition (STR) [30], and the other on Handwriting
Text Recognition (HTR) [39]. This however is not surpris-
ing given the differences in the inherent challenges found in
each respective problem: STR studies text in scene images
posing challenges like complex backgrounds, blur, arte-
facts, uncontrolled illumination [63], whereas HTR tackles
handwritten texts where the main challenge lies with the
free-flow nature of writing [6] of different individuals. As
a result, utilising models trained for STR on HTR (and vice
versa) straightforwardly would trigger a significant perfor-
mance drop (see Figure 1). This leads to our motivation –
how to design a unified text recognition model that works
ubiquitously across both scenarios.

While there is no existing work addressing this issue,
one might naively think of training a single text recogni-
tion network using training data from both STR and HTR
datasets. However, for the apparent issues of large domain
gap and model capacity limitation [54], while the jointly
trained model reduces the performance gap between HTR
and STR datasets, it still lags significantly behind individual
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specialised models. Another solution is to include a classi-
fication network prior to specialised STR and HTR models
(i.e., a two-stage network). During evaluation, the classi-
fier decides if an input belongs to scene or handwritten text,
followed by choosing an appropriate model for downstream
recognition. Yet, this solution has two downsides: a) clas-
sification network will incur additional computational cost
and extra memory consumption to store all three neural net-
works. b) cascaded connection of the classifier and text
recognition models will compound cumulative errors.

In this work, we introduce a knowledge distillation (KD)
[22, 49] based framework to unify individual STR and HTR
models into a single multi-scenario model. Our design at a
high-level, does not deviate much from a conventional KD
setting where a learnable student model tries to mimic the
behaviour of a pre-trained teacher. We first train both STR
and HTR models separately using their respective training
data. Next, each individual model takes turns to act as a
teacher in the distillation process, to train a single unified
student model. It is this transfer of knowledge captured by
specialised teachers into a single model, that leads to our
superior performance in contrast to training a single model
using joint STR and HTR datasets (see Figure 1).

Making such a design (KD) to work with text recognition
is however non-trivial. The difficulty mainly arises from
the variable-length and sequential natures of text images –
each consists of a sequence of different number of individ-
ual characters. Hence, employing off-the-shelf KD methods
[49] that aim at matching output probabilities and/or hidden
representations between pre-trained teacher and learnable
student model, which are used for global fixed length data,
may not be sufficient to transfer knowledge at local charac-
ter level. We thus propose three additional distillation losses
to tackle the unique characteristics of text recognition.

More specifically, we first impose a character aligned
hint loss. This encourages the student to mimic character-
specific hidden representations of specialised teacher over
the varying sequence of characters in a text image. Next, an
attention distillation loss is further imposed over the atten-
tion map obtained at every step of character decoding pro-
cess by an attentional decoder. This compliments the char-
acter localised hint-loss, as attention-maps capture rich and
diverse contextual information emphasising on localised re-
gions [23]. Besides localised character level information,
capturing long-range non-local dependencies among the se-
quential characters is of critical importance, especially for
an auto-regressive attentional decoder framework [34]. Ac-
cordingly we propose an affinity distillation loss as our third
loss, to capture the interactions between every pair of posi-
tions of the variable character length sequence, and guide
the unified student model to emulate the affinity matrix of
the specialised teachers. Finally, we also make use of state-
of-the-art logit distillation loss to work with our three pro-

posed losses. It aims at matching output probabilities of
student network over the character vocabulary, with that of
pre-trained teachers.

Our main contributions can be summarised as follows:
(a) We design a practically feasible unified text recognition
setting that asks a single model to perform equally well
across both HTR and STR scenarios. (b) We introduce
a novel knowledge distillation paradigm where an unified
student model learns from two pre-trained teacher models
specialised for STR and HTR. (c) We design three addi-
tional distillation losses to specifically tackle the variable-
length and sequential nature of text data. (d) Extensive ex-
periments coupled with ablative studies on public datasets,
demonstrate the superiority of our framework.

2. Related Works
Text Recognition: With the inception of deep learning,
Jaderberg et al. [27, 26] introduced a dictionary-based text
recognition framework employing deep networks. Alter-
natively, Poznanski et al. [44] addressed the added diffi-
culty in HTR by using a CNN to estimate an n-gram fre-
quency profile. Later on, connectionist temporal classifica-
tion (CTC) layer [17] made end-to-end sequence discrim-
inative learning possible. Subsequently, CTC module was
replaced by attention-based decoding mechanism [33, 51]
that encapsulated language modeling, weakly supervised
character detection and character recognition under a sin-
gle model. Needless to say attentional decoder became the
state-of-the-art paradigm for text recognition for both scene
text [35, 63, 61, 66] and handwriting [6, 38, 59, 67]. Dif-
ferent incremental propositions [5, 8, 7] have been made
like, improving the rectification module [66, 61], designing
multi-directional convolutional feature extractor [12], im-
proving attention mechanism [11, 34] and stacking multiple
BLSTM layer for better context modelling [35].

Besides improving word recognition accuracy, some
works have focused on improving performance in low data
regime by designing adversarial feature deformation mod-
ule [6], and learning optimal augmentation strategy [38], to-
wards handling adversarial attack [60] for text recognition.
Zhang et al. [67] introduced unsupervised domain adapta-
tion to deal with images from new scenarios, which however
definitely demands a fine-tuning step to specialise in new
domain incurring additional server costs. On the contrary,
we focus on unifying a single model capable of performing
consistently well across both HTR and STR images.
Knowledge Distillation: Earlier, knowledge distillation
(KD) was motivated towards training smaller student mod-
els from larger teacher models for cost-effective deploy-
ment. Caruana and his collaborators [1] pioneered in this
direction, by using mean square error with the output log-
its of deeper model to train a shallower one. The seminal
work by Hinton et al. [22] introduced softer probability

984



distribution over classes by a temperature controlled soft-
max layer for training smaller student models. Furthermore,
Romero et al. [48] employed features learned by the teacher
in the intermediate layers, to act as a hint for student’s learn-
ing. Later works explored different ideas like mimicking at-
tention maps [64] from powerful teacher, transferring neu-
ron selectivity pattern [24] by minimising Maximum Mean
Discrepancy (MMD) metric, graminian matrices [62] for
faster knowledge transfer, multiple teacher assistants [40]
for step-wise knowledge distillation and so on. In addi-
tion to classification setup, KD has been used in object de-
tection [14], semantic segmentation [21], depth-estimation
[43], pose estimation [42], lane detection [23], neural ma-
chine translation [54] and so forth. Vongkulbhisal et al. [56]
proposed a methodology of unifying heterogeneous classi-
fiers having different label set, into a single unified classi-
fier. In addition to obtaining smaller fast-to-execute model,
using KD in self-distillation [3] improves performance of
student having identical architecture like teacher. Keeping
with self-distillation [3], our teacher networks and trainable
student share exactly same architecture, but our motivation
lies towards obtaining an unified student model from two
pre-trained specialised teachers.

Unifying models: A unified model bestows several bene-
fits compared to specialised individual models such as lower
annotation and deployment cost, as unlike it’s counterpart,
unified models need not grow linearly with increasing do-
mains [46] or tasks [65] while simultaneously cherishing
the benefits of shared supervision. Towards embracing the
philosophy of general AI, where the goal is to develop a sin-
gle model handling multiple purposes, attempts have been
made towards solving multiple tasks [28, 32, 65] via multi-
task learning, working over multiple domains [9, 46], and
employing universal adversarial attack [36]. While unsu-
pervised domain adaptation [55] still needs fine-tuning over
target domain images, domain generalisation [15] aims to
extract domain invariant features, eliminating the need of
post-updating step. In NLP community, handling multi-
ple language pairs in one model via multi-lingual neural-
machine-translation [18, 54], has been a popular research
direction in the last few years. Albeit all these text recogni-
tion and model unifying approaches are extensively studied
topics, we introduce an entirely new aspect of text recog-
nition by unifying STR and HTR scenarios into a single
model having significant commercial advantage.

3. Methodology
Overview: Our objective is to design a single unified model
working both for STR (S) and HTR (H) word images. In
this context, we have access to labelled STR datasets DS =
{(Is,Ys) ∈ Is × Ys}, as well as labelled HTR datasets
DH = {(Ih,Yh) ∈ Ih × Yh}. Here, I denotes word image
from respective domain with label Y = {y1, y2, · · · , yK},

and K denotes the variable length of ground-truth charac-
ters. We first train two individual text-recognition models
using DS and DH independently. Thereafter, a single uni-
fied model is obtained from two domain specific teacher via
knowledge distillation.
3.1. Baseline Text Recognition Model

Given an image I, text recognition model R tries to pre-
dict the machine readable character sequence Y. Out of
the two state-of-the-art choices dealing with irregular texts,
we adopt 2-D attention that localises individual characters
in a weakly supervised way, over complicated rectification
network [61]. Our text recognition model consists of three
components: (a) a backbone convolutional feature extractor
[52], (b) a RNN decoder predicting the characters autore-
gressively one at each time-step, (c) a 2D attentional block.

Let the extracted convolutional feature map be F ∈
Rh

′×w′×d, where h′, w′ and d signify height, width and
number of channels. Every d dimensional feature at Fi,j
encodes a particular local image region based on the re-
ceptive fields. At every time step t, the decoder RNN pre-
dicts an output character or end-of-sequence (EOS) yt based
on three factors: a) previous internal state st−1 of decoder
RNN, (b) the character yt−1 predicted in the last step, and
(c) a glimpse vector gt representing the most relevant part of
F for predicting yt. To obtain gt, previous hidden state st−1

acts as a query to discover the attentive regions as follows:
J = tanh(WFFi,j +WB ~ F +Wsst−1)

αi,j = softmax(WT
a Ji,j) (1)

gt =
∑
i,j

αi,j · Fi,j i = [1, .., h′], j = [1, .., w′] (2)

where, WF , Ws, Wa are the learnable weights. Calculating
the attention weight αi,j at every spatial position (i, j), we
employ a convolution operation “~” with 3× 3 kernel WB
to consider the neighbourhood information in 2D attention
mechanism. There exists αt ∈ Rh

′×w′
corresponding to ev-

ery time step of decoding, however t is dropped in Eqn. 1
and 2 for notational brevity. The current hidden state St
is updated by: (ot, st) = RNN(st−1; [E(yt−1), gt])),
where E(.) is character embedding layer with embedding
dimension R128, and [.] signifies a concatenation operation.
Finally, ỹt is predicted as: p(ỹt) = softmax(Woot + bo)
with learnable parameters Wo and bo. This model is trained
end-to-end using cross-entropy loss H(·, ·) summed over
the ground-truth sequence Y = {y1, y2, · · · , yK}, where
yt is one-hot encoded vector of size R|V|, and |V | is the
character vocabulary size.

LC =

K∑
t=1

H(yt, ỹt) = −
K∑
t=1

|V |∑
i=1

yt,i log p(ỹt,i) (3)

3.2. Basics: Knowledge Distillation

Initially, knowledge distillation (KD) [22] was proposed
for classification tasks to learn a smaller student model
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Figure 2. STR and HTR models, pre-trained using respective images, are used as teachers to train a unified student model via knowledge
distillation, with four distillation losses and a cross-entropy loss (LC ). The tth time-step for decoding is shown, which unrolls across time.

by mimicking the output of a pre-trained teacher. Given
a particular data, let the output from pre-trained teacher
be ỹTt = softmax(lTt ) and that of learnable student be
ỹSt = softmax(lSt ), where lt is pre-softmax logits from re-
spective models. Temperature (τ ) normalised softmax is
used to soften the output so that more information regarding
inter-class similarity could be captured for training. There-
fore, given ỹTτ,t = softmax(

lTt
τ ), ỹ

S
τ,t = softmax(

lSt
τ ) and

ground-truth y, the student network is trained to optimise
the following loss function:

LKD =

K∑
t=1

H(yt, ỹSt ) + λ

K∑
t=1

H(ỹTτ,t , ỹSτ,t) (4)

where λ is a hyper-parameter balancing the two terms, and
the first term signifies traditional cross-entropy loss be-
tween the output of student network and ground-truth la-
bels, whereas the second term encourages the student to
learn from softened output of teacher.

Adopting basic KD formulation however is unsuitable
for our purpose. Firstly, text recognition dealing with
varied-length sequence recognition requires distilling local
fine-grained character information. Additionally, there ex-
ists a sequential dependency among the predicted characters
due to auto-regressive nature of attentional decoder, thus re-
quiring a global consistency criteria during distillation pro-
cess. (b) While training teacher and student usually involves
same (single domain) dataset, we here have two separate do-
mains, STR and HTR, which thus needs to deal with larger
domain gap and data coming from two separate domains.

3.3. Unifying Text Recognition Models

Overview: We propose a knowledge distillation method for
sequential text images to unify both scene-text and hand-
writing recognition process into a single model. Com-
pared to traditional knowledge distillation, we have two pre-
trained teacher networks T ∈ {TS , TH}, where TS is a spe-

cialised model trained from Scene text images DS , and TH
from Handwritten text images DH. Given these pretrained
teachers, we aim to learn a single Unified Student model
SU by four distillation losses tailored for sequential recog-
nition task, along with typical cross-entropy loss. TS , TH
and SU all have architectures identical to text recognition
network R(·). Directly training a single model by includ-
ing images from both the STR and HTR datasets leads to
sub-optimal performance due to limited model capacity and
large domain-gap. In contrast, training of specialised mod-
els might assist to extract underlying structure from respec-
tive data, which can then be distilled into a unified student
network with guidance from the specialised teachers.

We have two pre-trained teachers T ∈ {TS ,TH}, with
images coming from two different domains I ∈ {Is, Ih}. In
order to train a student network SU , we will get one loss in-
stance using STR pre-trained teacher and respective dataset
(TS , Is), and similarly another loss term for HTR counter-
part (TH, Ih). We describe the loss functions using gen-
eralised notation (T, I) which basically has two elements,
(TS , Is) and (TH, Ih) respectively. Thus mathematically,
(T, I) : {(TS , Is), (TH, Ih)}. Please refer to Figure 2.
Logits' Distillation Loss: We extend the traditional
knowledge distillation loss for our sequence recognition
task by aggregating cross-entropy loss over the sequence.
Given an image I , let the temperature normalised softmax
output from a particular pre-trained teacher and trainable
student be ỹTt (I) and ỹSU

t (I) at a particular time-step t. We
ignore τ of Eqn. 4 here for notational brevity. We call this
the logits’ distillation loss and define it as:

Llogits(T, I) =

K∑
t=1

H
(
ỹT

t (I), ỹ
SU
t (I)

)
(5)

where, (T, I) : {(TS , Is), (TH, Ih)}. We get two of such
logits’ distillation losses with respect to STR and HTR
datasets (and pre-trained teachers) respectively.
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Character Localised Hint Loss: The fact that interme-
diate features learned by the teacher could further act as
a ‘hint’ in the distillation process, was shown by Romero
et al. [48]. Being a sequence recognition task however,
text recognition needs to deal with variable length of se-
quence, with each character having variable width within
itself. While predicting every character, attention based de-
coder focuses on specific regions of convolutional feature-
map. In order to circumvent the discrepancy due to vari-
able character-width, we perform feature distillation loss at
the space of character localised visual feature, termed as
glimpse vector (see Eqn. 2) instead of global convolutional
feature-map. This provides the teacher’s supervision at lo-
cal level. As our student shares the same architecture identi-
cal to the pre-trained teachers, we do not need any paramet-
ric transformation layer to match the feature-space between
them. The character localised hint loss is given by:

Lhint(T, I) =

K∑
t=1

∥∥∥gT
t (I)− gSU

t (I)
∥∥∥

2
(6)

where, (T, I) : {(TS , Is), (TS , Ih)}. Given an input image
I, gTt (I) and gSU

t (I) are glimpse vector of size Rd at t-th
times step from a particular pre-trained teacher and train-
able student.
Attention Distillation Loss: While Character Localised
Hint Loss aids in enriching the localised information (i.e.
absolute information in the cropped region roughly enclos-
ing the specific character), computed attention map (see
Eqn 2) brings contextual information giving insights about
which region is relatively more important than the others,
over a convolutional feature map. Unlike attentional dis-
tillation, logits’ distillation does not explicitly take into ac-
count the degree of influence, each pixel has on model pre-
diction, thus making the attention map computed at every
step a complementary source of information [64] to learn
from the student. Furthermore, HTR usually shows over-
lapping characters, which however rarely occurs in STR.
Thus the student must learn the proper ‘look-back’ (at-
tention) mechanism from specialised teachers. Let αTt (I)
and αSU

t (I) represent the attention map from respective
teacher and learnable student at t-th time step, both hav-
ing size Rh

′×w′
for a given an input image I. Considering

(T, I) : {(TS , Is), (TH, Ih)}, the attention distillation loss
is computed as follows:

Lattn(T, I) =

K∑
t=1

∥∥∥αT
t (I)− α

SU
t (I)

∥∥∥
2

(7)

Affinity Distillation Loss: Attention based decoder encap-
sulates an implicit language model within itself, and the in-
formation of previously predicted characters flows through
its hidden state. While previous character localised hint loss
and attention distillation loss mostly contribute to informa-
tion distillation at local level, with the latter (attention) ad-
ditionally contributing towards the contextual information,

we need a global consistency loss to handle the long-range
dependency among the characters. Thus we introduce an
affinity distillation loss to model long-range non-local de-
pendencies from the specialised teachers. Given charac-
ter aligned features {g1, g2, . . . , gK} for a given image, the
affinity matrix capturing the pair-wise correlation between
every pair of characters is computed as:

Ai,j =
1

K ×K
· gi
||gi||2

· gj
||gj ||2

(8)

where,A ∈ RK×K represents the affinity matrix for a word
image having character sequence length K. We use l2 loss
to match the affinity matrix of specialised teacher AT (I)
and that of learnable student ASU (I):

Laff (T, I) =
∥∥AT (I)−ASU (I)

∥∥
2

(9)

Optimisation Procedure: Apart from the four distillation
losses used to learn from the specialised teacher, the uni-
fied student model SU is trained from ground-truth label for
image I ∈ {Is, Ih} using typical cross-entropy loss (see
Eq. 3). Thus, given (T, I) : {(TS , Is), (TH, Ih)}, the over-
all training objective for student becomes:

Lall =
∑
∀(T,I)

(
LC(I) + λ1 · Llogits(T, I) + λ2 · Lattn(T, I)

+λ3 · Lhint(T, I) + λ4 · Laff(T, I)
)

(10)
Due to difference in complexity of the task of HTR and

STR and their respective training data size, we observe a
tendency to learn a biased model that over-fits on either STR
or HTR dataset. To alleviate this, we employ a conditional
distillation mechanism that stabilises training, by deciding
in what proportion to learn from two different individual
specialised teachers, that results in a unified student model
performing ubiquitously over both STR and HTR scenarios.

4. Experiments
Datasets: Training paradigm for STR involves using large
synthetic datasets such as Synth90k [25] and SynthText
[20] with 8 and 6 million images respectively, and evalu-
ating (without fine-tuning) on real images such as: IIIT5K-
Words, Street View Text (SVT), SVT-Perspective (SVT-
P), ICDAR 2013 (IC13), ICDAR 2015 (IC15), and
CUTE80. IIIT5-K Words [41] has 5000 cropped words
from Google image search. SVT [58] hosts 647 images
collected from Google Street View where most images are
blurry, noisy and have low resolution. SVT-P [45] has 639
word images also taken from Google Street view but with
side-view snapshots resulting in severe perspective distor-
tions. ICD13 [31] contains 848 cropped word patches with
mostly regular images unlike IC15 [30] which has 2077
word images that are irregular i.e. oriented, perspective
or curved. Unlike others, CUTE80 [47] dataset contains
high resolution image but have curved text. In context of
HTR, we follow the evaluation setup described in [6] on
two large standard datasets viz, IAM [39] (1,15,320 words)
and RIMES (66,982 words).
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Algorithm 1 Training algorithm of the proposed framework
1: Input: Dataset: {DS ,DH}; Teachers: {TS , TH};

Learning rate: η; Total Training Steps: T , distil check:
T ′; Accuracy metric: Acc; distil acc. thresh. ω ≥ 1

2: Initialise: Unified Student Model: SU , params: θSU ;
Step: t = 1; Gradient: g; Flags: {fS , fH} are True

3: while t ≤ T do
4: g = 0
5: Get: (Is,Ys) ∈ DS train; (Ih,Yh) ∈ DHtrain
6: g += ∂(LC(Is) + LC(Ih))/∂θSU . see eq. 3
7: for each LKD in Lall − {LC} do . see eq. 10
8: iffS then g += ∂LKD(TS , Is)/∂θSU

9: iffH then g += ∂LKD(TH, Ih)/∂θSU

10: end for
11: Update θSU : θSU = θSU − η ∗ g
12: if t%T ′ == 0 then . conditional distillation
13: L = Lall − {LC}
14: {Ivals ,Yvals } = DS

val; {Ivalh ,Yvalh } = DH
val

15: ifL(TS , Is) > ω ·L(TH, Ih) then fH = False
16: else fH = True
17: ifL(TH, Ih) > ω · L(TS , Is) then fS = False
18: else fS = True
19: end if
20: t = t+ 1
21: end while

Implementation Details: We use a 31-layer CNN back-
bone feature extractor [34] without any pre-training. The
input image is resized to 48 × 160 following [34]. We first
pre-train the specialised HTR and STR model at a time. For
STR, we use Synth90k [25] and SynthText [20] dataset to-
gether, and respective training set is used for experiments
on IAM and RIMES dataset individually. We use Adam op-
timiser with initial learning rate of 0.001 and batch size of
32 for both specialised teacher pre-training, and distillation
based unified student model training. Decay rate of 0.9 is
applied after every 104 iteration till the learning rate drops
to 10−5. During conditional distillation (Algorithm 1), loss
is compared over the validation set with ω = 1.05. We set
λ1, λ2, λ3, and λ4 as 0.5, 5, 1 and 1 respectively. We imple-
ment the network and its training paradigm using PyTorch
trained in a 11 GB NVIDIA RTX-2080-Ti GPU.
Evaluation Protocol: To better understand the challenges
of unifying STR and HTR, and recognise contribution of
each alternative training paradigm we evaluate as follows:
(i) we first evaluate the pre-trained teacher models on the
dataset for what it has been trained for, e.g. TS on testing
set of STR dataset, and TH on that of HTR dataset. (ii) Next,
we evaluate on the alternative dataset for pre-trained teacher
model and see how the performance drops in cross-dataset
scenarios, e.g. TS on testing set of HTR dataset, and vice-
versa. ii) Finally, we evaluate the unified student model SU
on both STR and HTR datasets to verify if a single model
can perform ubiquitously for both scenarios.

4.1. Competitors

To the best of our knowledge, there has been no prior
work dealing with the objective of unifying STR and HTR
models into a single model. Thus, we design a few strong
baselines based on the existing literature by our own. (i)
Multi-Task-Training: This is a naive frustratingly easy
training paradigm [13] where samples belonging to both
STR and HTR datasets are used to train a single network
guided by cross-entropy loss. Since STR has overwhelm-
ingly large synthetic training samples [25, 20] compared
to HTR dataset [39], we use weighted random sampling
(variant-I) to balance training data. Conversely, we ran-
domly sample a subset from STR dataset (variant-II) to
forcefully make the number of training images similar for
HTR and STR datasets in order to validate the utility of
conditional distillation. In variant-III, we treat HTR and
STR character units as different classes, thus extending it
to N-class to 2N class classification at each time step. (ii)
DA-Corr-Unsup: An obvious alternative is to try out any
domain adaptation method introduced for sequence recog-
nition task. Zhang et al. [67] proposed unsupervised do-
main adaptation (DA) technique for text images. We start
by training a model on either STR (or HTR) images that
acts as our source domain, followed by unsupervised adap-
tation to the target HTR (or STR) images – thus we have
two version of this model STR model adapted to HTR as
(HTR 7→STR), and (STR 7→HTR). Second-order statistics-
correlation distance [53] is used to align feature distribu-
tion from two domain. [iii] DA-Corr-Sup: As we have the
access to both labelled STR and HTR datasets, we further
extend the unsupervised DA setup of Zhang et al. [67] by
considering target domain to be annotated, allowing super-
vised DA. Cross-entropy loss is minimised for both source
and target domain in association to second-order statistics-
correlation between both STR and HTR domains. [iv] DA-
Adv-Unsup: We further adopt a recent work by Kang et
al. [29] employing adversarial learning for unsupervised
domain adaptation for text recognition. Here, the setup
remains same as DA-Corr-Unsup having two versions as
(HTR 7→STR) and (STR 7→HTR), but domain adaptation
tackled through a discriminator with a preceding gradient-
reversal layer. (v) DA-Adv-Sup: This is again a similar
adaptation of [29] following supervised DA which minimise
Cross-Entropy and domain classification loss for both STR
and HTR. (vi) DG-Training: Another alternative way to
address this problem could be to use Domain Generalisa-
tion (DG) training based on model agnostic meta-learning
using episodic-training [16]. It involves using weighted (λ)
summation [19] for gradient (over meta-train set) and meta-
gradient (over meta-test split through inner loop update) to
train our baseline text recognition model. The inner-loop
update process consists of support-sets consisting images
of either STR (or HTR) word images while the outer-loop
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Table 1. Quantitative performance against various alternatives. Competi-
tors use combined STR+HTR datasets in different setups: (a) Multi-Task
(Joint) Training, (b) Unsupervised and Supervised Domain Adaptation (DA),
(c) Domain Generalization (DG).

Methods STR datasets HTR dataset
IIIT5-K SVT IC13 IC15 SVT-P CUTE80 IAM RIMES

Multi-Task-Training-(I) 86.1 83.6 87.2 70.4 77.8 79.4 81.8 86.2
Multi-Task-Training-(II) 35.4 34.5 36.3 29.1 32.1 32.5 81.9 85.9
Multi-Task-Training-(III) 83.2 80.5 84.1 67.1 74.1 76.3 77.9 82.3

DA-Adv-Unsup (STR→ HTR) 82.6 80.1 84.2 66.8 74.2 75.8 58.7 64.1
DA-Adv-Unsup (HTR→ STR) 16.6 12.9 15.4 12.1 12.7 13.4 78.1 82.4

DA-Adv-Sup 88.1 85.6 89.2 72.5 79.9 81.6 83.1 87.5
DA-Corr-Unsup (STR→ HTR) 82.7 80.2 84.5 67.8 74.7 76.1 82.7 87.1
DA-Corr-Unsup (HTR→ STR) 17.1 13.1 15.9 12.7 13.1 13.9 82.7 87.1

DA-Corr-Sup 88.3 85.8 89.4 72.7 80.1 81.8 83.2 87.6
DG-training 88.5 86.0 89.5 72.9 80.3 82.0 83.4 87.7
Proposed 92.3 89.9 93.3 76.9 84.4 86.3 86.4 90.6

Table 2. Quantitative comparison of our STR-only and
HTR-only models, trained on STR and HTR datasets
respectively, against state-of-the-arts. Our method uses
STR-only and HTR-only as teachers during KD.

Methods STR datasets HTR dataset
IIIT5-K SVT IC13 IC15 IAM RIMES

Shi et al. [52] 93.4 93.6 91.8 76.1 – –
Baek et al. [2] 87.9 87.5 92.3 71.8 – –
Yu et al. [63] 94.8 91.5 95.5 82.7 – –

Litman et al. [35] 93.7 92.7 93.9 82.2 – –
Bhunia et al. [6] – – – – 82.81 88.53
STR-only Model 93.1 90.9 93.5 78.2 53.4 58.5
HTR-only Model 11.5 7.6 10.3 7.1 85.9 90.2

Joint STR-HTR Model 86.1 83.6 87.2 70.4 81.8 86.2
Proposed (Unified) 92.3 89.9 93.3 76.9 86.4 90.6

Baseline-HTR

Baseline-STR

Proposed
Unified Model

done

cloino

done

gay

gov

gay

sinil

zalora

zalora

me

art

art

HTR  STR

Figure 3. Illustrative examples with attention maps, and predic-
tion (red → incorrect, blue → correct). While discrepancy ex-
ists for cross-dataset scenarios, attention-map from unified model
is nearly consistent with that of respective specialised model.

update process is materialised using images from a different
domain i.e. HTR (or STR). Such inner and outer-loop based
optimisation strategy helps learn a model that aims to gen-
eralise well for both scenarios without further fine-tuning.

4.2. Performance Analysis
From Table 2, it can be seen that while a model trained

on HTR fails miserably when evaluated on STR datasets,
training on STR followed by testing on HTR does not re-
sult in a similar collapse in performance. This indicates
that although STR scenarios partially encompass domain
specific HTR attributes, the reverse is not true. Interest-
ingly, this is likely why there is a positive transfer for HTR
datasets using unified model compared to HTR-only coun-
terpart. Moreover, our KD based unifying approach for
multi-scenario text recognition outperforms all other base-
lines by a significant margin. In particular, (i) For base-
lines designed for unification, we attribute the limitation of
all three multitask-learning-training (also named as joint-
training) variants to the reason that it does not consider the
varying complexity of two different tasks during joint train-
ing. Instead, our pre-trained teacher models first discover
the specialised knowledge from respective scenario. Given
the specialised knowledge, our framework can encapsulate
it into a single framework by balancing the learning via
conditional distillation from two different data sources (see
Figure 3). We outperform this joint-training (variant-I be-
ing the best performing competitor) baseline by a margin
of almost 6 − 7% on every dataset. Limited performance

of variant-II validates the necessity and motivation of con-
ditional distillation. (ii) The performance of unsupervised
DA is limited by a significant margin while evaluating on
both HTR and STR datasets. Starting from any source do-
main, it hardly gives any significant rise in target domain,
rather the performance even decreases in the source domain
after adaptation. An inevitable corollary of unsupervised
DA is the lack of any guarantee that a model will retain in-
formation about source domain after successful adaptation
to the target domain. (iii) The Domain Adaptation (DA)
based pipelines suppress multitask-learning-training base-
line while using supervised-labels from both the datasets,
but lags behind us by 3.5 − 4.5% on an average. Even
using supervised-labels from both the datasets, the learn-
ing process oscillates around discovering domain invariant
representation, and ignores main objective of unification of
two specialised knowledge available from labelled datasets.
Furthermore, adversarial learning based DA [29] falls short
compared to covariance based character-wise distribution
alignment [67] for text recognition – this also supports our
design of using distillation loss over glimpse vectors. (iv)
Both [67] and [57] train a text recognition model on a source
domain comprising of easily available synthetic images fol-
lowed by unsupervised adaptation to target domain consist-
ing of real world text images. While cost-effective training
from synthetic-data is their major objective, we consider to
have access to both the labelled datasets (which are readily
available nowadays) to design an unified model working for
both scenarios – making our work orthogonal to these two
DA based pipelines. (v) The purpose of Domain Generali-
sation (DG) is to find a model robust to domain-shift, giving
satisfactory performance without the need of further adapta-
tion. While such a technique plays a key role in unseen data
regime, given enough labelled data, a frustratingly-simpler
[13] alternative – multi-task learning – also achieves similar
performance gains. Given the labelled STR and HTR train-
ing data, we observe that although DG-training outperforms
multi-task-training, it lags behind our proposed method by
almost 4% due to unavailability of privilege information
(Table 1). (vi) The diversity of vocabulary (words present
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in the dataset) between STR and HTR scenarios forms an
important limitation to achieve SOTA performance [57].
While nouns (‘stop’, ‘walk’) are observed in STR images
(placard, road signs), verbs or adverbs (‘taking’, ‘giving’)
are more prevalent in HTR. Our specialised knowledge dis-
covery bridges this discrepancy via unification.

Table 3. Contribution (WRA) of
each KD constraint with LC
Llogits Lattn Lhint Laff IC15 IAM

- - - - 70.4 81.8
X - - - 75.3 84.9
X X - - 75.7 85.3
X X X - 76.4 85.9
X X X X 76.9 86.4

Table 4. Analysis of Time
and Space complexities.

Methods IC15 IAM GFlops Params.
M.T.T 70.4 81.8 0.67 19M
B.C.R 74.4 83.1 0.80 50M

KD-Res-12 74.2 83.9 0.38 16M
KD-Res-31 74.7 84.2 0.12 9M
Proposed 76.9 86.4 0.67 19M

4.3. Ablation Study:
[i] Competitiveness of our baseline: Our baseline text
recognition model is loosely inspired from the work by Li
et al. [34] that also uses 2D attention to locate the charac-
ters in weakly supervised manner even from irregular text
images for recognition. An alternative is to use a two-
stage framework consisting of an image rectification mod-
ule [52] followed by text recognition [2]. But as observed
by Zhang et al. [67], although rectification based networks
designed to handle spatial distortions lead to good perfor-
mance in irregular STR datasets, it becomes a bottleneck for
HTR tasks due to distortion caused by handwriting styles.
Hence, for the purpose of unified text recognition, 2D at-
tention mechanism provides a reasonable choice to bypass
the rectification network in the text recognition system. Ta-
ble 2 shows our baseline text recognition model to have a
competitive performance in comparison to existing meth-
ods in both STR and HTR datasets. Moreover, we tried to
replicate our KD based pipeline incorporating image recti-
fication module on the top of [2], but performance gets lim-
ited to 75.9% and 85.5% on IC15 and IAM dataset, respec-
tively. [ii] Binary-Classifier based two-stage alternative:
Besides Multi-Task-Training (M.T.T), another alternative is
to use a binary-classifier (B.C.R) to classify between HTR
and STR samples, then followed by selecting either STR or
HTR model accordingly. While this achieves performance
comparable to ours, it involves heavy computational ex-
penses for maintaining three networks (2 specialised models
+ 1 classifier) together even while using simple ResNet18 as
binary classifier – thus making it inefficient for online de-
ployment. A thorough analysis on the computational as-
pect is shown in Table 4. [iii] Significance of individ-
ual losses: Among the four knowledge distillation losses
(Llogits,Lattn,Lhint,Laff ), we use one of these distillation
constraints along with LC to understand their individual rel-
ative contribution. Table 3 shows Lhint to have the greatest
impact among others, increasing accuracy on IC15 (IAM)
by 5.1% (3.3%), followed by Llogits resulting in an in-
crease of 4.9% (3.1%), Laff by 4.8% (3.0%) and Lattn

by 4.3% (2.6%). [iv] Significance of conditional distil-

lation: Besides the vast difference in training data size, the
complexity of the task of HTR and STR is different. A sim-
ple multi-task-training often over-fits on either STR or HTR
dataset – leading to sub-optimal performance of the uni-
fied student model. Thus, conditional distillation not only
stabilises training, but also helps the student model to de-
cide in what proportion to learn from two different individ-
ual specialised teachers, so that the unified model performs
ubiquitously over both STR and HTR scenarios. Without
conditional distillation, the performance is reduced by 2.5%
and 0.4% on IC15 and IAM datasets, respectively. The hy-
perparameter ω controlling the conditional distillation pro-
cess is varied at 1.01, 1.03, 1.05, 1.07, 1.10, and results on
IC15 (IAM) are 76.8% (86.3%), 76.9% (86.3%), 76.9%
(86.4%), 76.8% (86.4%), 76.8% (86.4%). [vi] Hint Loss
location: While hint-based training leads to performance
enhancements, the location of feature distillation loss is de-
batable based on the model’s architecture. Thus, we em-
ploy Lhint on: (a) CNN features F and (b) hidden state
st of attentional decoder. Using Lhint on F lead to a
performance improvement of 3.8% (2.2%) while on st re-
sults in 4.6% (2.5%) enhancement on IC15(IAM) datasets;
both of which are lower as compared to Lhint on context
vector g giving 5.1% (3.3%) improvement over the base-
line model. [vii] Reduce model size using KD: Knowledge
distillation is a generic method used to compress [22] any
deep model regardless of the structural difference between
teacher and student. Hence, we further check if our tai-
lored KD method for attentional decoder based text recog-
nition framework could be used off-the-shelf, to reduce the
model size of unified student. We replace our student model
having 31-layer ResNet with just 12-layer (2+2+3+3+2) as
KD-ResNet-12, and replace normal convolution by depth-
wise convolution following MobileNetV2 architecture [50]
to obtain KD-ResNet-31. The two resulting light-weight
architectures give 74.2% (83.9%) and 74.7% (84.2%) ac-
curacies in IC15 (IAM) datasets without much significant
drop compared to our full version as shown in Table 4. This
suggests that our framework could be widened further for
model compression of text recognition model.

5. Conclusion
We put forth a novel perspective towards text recognition

– unifying multi-scenario text recognition models. To this
end we introduced a robust resource-economic online serv-
ing solution by proposing a knowledge distillation based
framework employing four distillation losses to tackle the
varying length of sequential text images. This helps us re-
duce the domain gap between scene and handwritten im-
ages while alleviating language diversity and model capac-
ity limitations. The resulting unified model proves capable
of handling both scenarios, performing at par with individ-
ual models, even surpassing them at times (e.g. in HTR).
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