
Reality Transform Adversarial Generators for Image Splicing Forgery Detection
and Localization

Xiuli Bi Zhipeng Zhang Bin Xiao∗

Chongqing University of Posts and Telecommunications
Chongqing, China

bixl@cqupt.edu.cn S190201087@stu.cqupt.edu.cn xiaobin@cqupt.edu.cn

Abstract

When many forgery images become more and more re-
alistic with help of image editing tools and convolutional
neural networks (CNNs), authenticators need to improve
their ability to verify these forgery images. The process
of generating and detecting forgery images is the same as
the principle of Generative Adversarial Networks (GANs).
In this paper, since the retouching progress of forgery im-
ages requires to suppress the tampering artifacts and to
keep the structural information, we consider this retouch-
ing progress as an image style transform, and then propose
a fake-to-realistic transform generator GT . For detecting
the tampered regions, a localization generator GM is pro-
posed too, which is based on a multi-decoder-single-task
strategy. By adversarial training two generators, the pro-
posed α-learnable whitening and coloring transform (α-
learnable WCT) block in GT automatically suppress the
tampering artifacts in the forgery images. Meanwhile, the
detection and localization abilities of GM will be improved
by learning the forgery images retouched by GT . The ex-
periment results demonstrate that the proposed two gener-
ators in GAN can simulate confrontation between the faker
and the authenticator well; the localization generator GM

outperforms the state-of-the-art methods in splicing forgery
detection and localization on four public datasets.

1. Introduction
Cyberspace has experienced explosive growth, and

countless images are uploaded to the Internet every day,
which includes a lot of forgery images. Since forgery im-
ages can be easily produced by user-friendly image editing
tools and used to create fake news and rumors, it is neces-
sary to develop more effective methods for image forgery
detection and localization. For the image forgeries, copy-
move and removal forgery require a single source image,
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but splicing forgery copies and pastes regions from one
or more source images onto the target image. Fig. 1-
(a) demonstrates the two examples of splicing forgery im-
ages. In this paper, our work focuses on detecting the splic-
ing forgery images and then locate the tampered regions of
these detected images.

The image splicing forgery detection methods can be
summarized into two main categories, methods based on
conventional features extraction[19, 6, 14, 21] and meth-
ods based on convolutional neural networks (CNNs)[26,
28, 9, 1, 25, 24, 2, 13]. Most conventional methods focus
on a particular image fingerprint that is caused by imag-
ing processing and post-processing. Because the partic-
ular image fingerprint is easy to be influenced by post-
processing, such as JPEG compression, down-sampling,
and mean filtering, many conventional methods are easy to
fail. Fig. 1-(c) shows the experiments results of a conven-
tional method[19].

CNN-based methods can be further divided into patch-
based nethods and end-to-end methods. For patch-based
methods, since the final detection result is derived from
the decisions of image patches, the detected results are
generally composed of square white blocks, or only the
patches on boundaries of the tampered regions are detected.
For end-to-end methods, if the tampering artifacts are sup-
pressed and reduced by the faker, it is difficult for end-to-
end methods to detect tampered regions. Fig. 1-(d) shows
the experimental results of a CNN-based method[1].

To solve these problems, V. Kniaz et al.[13] introduced a
GAN-based method named Mixed Adversarial Generators
(MAG) for image splicing forgery detection and localiza-
tion. However, MAG requires class segmentations to re-
touch splicing forgery images, which consumes a host of
computational resources. Furthermore, since the prediction
of both tampered region and class segmentation is generated
in a single decoder network, some untampered semantic re-
gions, who are similar to the tampered regions in the ground
truth, will be easily detected as the tampered regions, as the
experiment results demonstrated in Fig. 1-(e)
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(a)Splicing forgery Image (b)Ground Truth (c)ADQ (e)MAG (f)Ours(d)LSTM

Figure 1. Two examples of splicing forgery images and corresponding localization results of four types of detection methods. (a) The
splicing forgery images. (b) Ground truths of tampered regions. (c) The detection result of a conventional detection method ADQ[19]. (d)
The detection result of a CNN-based detection method LSTM[1]. (e) The detection result of a GANs-based detection method MAG[13].
(f) The detection result of the proposed RTAG.

In this work, we rethink the principle of generating and
detecting forgery images. When image fakers retouch the
forgery images more realistic, they need to hide the tam-
pering artifacts, while keeping the structural information of
the forgery image unchanged. The retouching progress of
forgery images is the same as the task of image style trans-
form. Thus, we consider the retouching process of forgery
image as the image style transform, which transforms splic-
ing forgery images from a ‘fake style’ to a ‘real style’.
Based on this insight, we propose the fake-to-realistic trans-
form generator GT to simulate the faker. In contrast, the
authenticators need to detect the tampered regions from
these more ‘real style’ splicing forgery images, so a lo-
calization generatorGM with the multi-decoder-single-task
(MDST) strategy is proposed. In the adversarial training be-
tween GT and GM , for progressively suppressing the tam-
pering artifacts of the splicing forgery image, we propose
α-learnable whitening and coloring transform blocks (α0.-
learnable WCT) based on WCT[16] in GT . While, through
the multi-decoder-single-task strategy (MDST), GM will
improve its detection and localization ability by learning
fewer tampering artifacts from the retouched images. More-
over, the discriminators DT and DM will qualify the out-
puts of GT and GM . The GAN framework for adversarial
training GM and GT is named Reality Transform Adver-
sarial Generators (RTAG), the two examples of detection
results are presented in Fig. 1-(f).

The main contribution of this work can be summarized
as follows: (1) The retouching progress of forgery images is
considered as the image style transform in this paper. Based
on this insight, a fake-to-realistic transform generator GT

is proposed, which applies the α-learnable WCT blocks to
automatically progressively retouch the splicing forgery im-
ages more realistic; (2) For detecting the tampered regions
by fewer tampering artifacts, a localization generatorGM is
proposed according to the multi-decoder-single-task strat-
egy; (3) By adversarial training GT and GM in the GAN
framework, the localization generator GM will detect and
locate the tampered regions even the splicing forgery im-

ages has fewer tampering artifacts.

2. Related Work

Most existing image splicing forgery detection methods
can be divided into the methods based on conventional fea-
tures extraction and the methods based on CNN. For con-
ventional methods, Liu et al.[20] proposed aligned dou-
ble quantization detection (ADQ), which utilizes the dis-
tribution of the image discrete cosine transform (DCT) co-
efficients to distinguish the tampered regions. Krawetz
et al.[14] proposed an error level analysis method (ELA),
which is intended to find the compression error difference
between the forgery regions and the real regions. Cozzolino
et al. [4] proposed a method for blind detection and local-
ization of splicing that uses cooccurrence based featrues, it
requires no prior knowledge of the host camera, the splic-
ing, or their processing history.

For CNN-based methods, many CNN-based methods
mainly learn the differences between image patches and
then determine whether an image patch was manipulated
or not. For instance, Bappy et al.[1] proposed a network
that contains a long short-term memory network (LSTM)
and an encoder-decoder architecture network. This pro-
posed network exploits resampling features from image
patches to detect tampered regions. Xiao et al.[26] pro-
posed a two-stage detection network, which learns the dif-
ferences of the image properties between un-tampered and
tampered regions from image patches with different scales.
To directly learn from the whole images and locate the
tampered regions, some end-to-end splicing forgery de-
tection methods are proposed. Wu et al.[25] presented
ManTra-Net, which contains an image manipulation trace
feature extraction network and a local anomaly detection
network. Bi et al.[2] proposed a ringed residual structure
U-Net (RRU-Net), which is an end-to-end image essence
attribute segmentation network without any pre-processing
and post-processing. The end-to-end methods can detect
tampered regions by learning various tampering artifacts
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Figure 2. The pipeline of RTAG. Ix and Iy denote randomly paired splicing forgery image and authentic image, IRx is the retouched image,
IRy is the reconstruction of Iy , Îx and ÎRx denote the reconstructions of Ix and IRx . L denotes the loss function, the superscript and subscript
of L illustrate the constraints of the network.

directly from the whole images. Hu et al.[9] proposed a
spatial pyramid attention network(SPAN) architecture that
compares patches through the local self-attention block on
multiple scales.

GAN is a special framework of CNN, although recent
researches[11, 15, 29, 22] have revealed that GANs can
achieve amazing success in multiple tasks, GAN-based im-
age splicing forgery detection is still rare. V. Kniaz et al.[13]
introduced MAG for image splicing forgery detection and
localization. MAG adversarial trains a retoucher to retouch
the fake images and an annotator to predict the tampered re-
gions. MAG requires class segmentations to reconstruct and
retouch splicing forgery images, which consumes a host of
computational resources and the qulity of retouched images
are not realistic enough.

3. Proposed Method

In the proposed RTAG framework, generating and de-
tecting splicing forgery image is considered as an adver-
sarial game between a fake-to-realistic transform generator
GT and a localization generator GM . GT progressively re-

touches splicing forgery images from a ‘fake style’ to a ‘real
style’, then GM needs to detect the tampered regions by
learning the images retouched by GT , these retouched im-
ages have fewer tampering artifacts. By adversarial training
of GT and GM , the detection and localization abilities of
GM will be enhanced. This RTAG framework is shown in
Fig. 2. Here, GT and GM follow the objective function
V (GM ) and V (GT ) :

min
GM

V (GM ) =
1

3
Ex∼X [(GM (x)−m)2]

+
1

3
Ex∼X [(GM (GT (x))−m)2]

+
1

3
Ey∼Y [(GM (y)− 0W,H)2],

min
GT

V (GT ) = Ex∼X [(GM (GT (x))− 0W,H)2].

(1)

Where x denotes the values in a splicing forgery image Ix;
y denotes the values of in an authentic image Iy; X and Y
denote the forgery domain and the authentic domain sepa-
rately; m represents the ground truth of splicing forgery im-
age Ix; 0W,H is a black image that represents the authentic
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image Iy does not have any tampered regions.

3.1. Fake-to-realistic Transform Generator GT

In MAG[13], the annotator generator makes sure the re-
touched images recognizable by generating the prediction
of tampered regions and class segmentations. Generating
class segmentations not only need additional computational
sources but also may disturb the task of localization. Thus,
in this paper, we consider the retouching progress as an im-
age style transform. The fake-to-realistic transform gener-
ator GT is expected to transform splicing forgery images
Ix to realistic images while keeping the structural informa-
tion of Ix unchanged. As shown in Fig. 2-(a), we propose
the fake-to-realistic transform generator GT that applies
WCT[16] block between certain layers of the U-Net[23],
and a global block is inserted between encoder and decoder.
The structure of corresponding discriminator DT is a con-
ditional discriminator same as PatchGAN[10] architecture.

In generator GT , a splicing forgery image Ix and an au-
thentic image Iy are randomly paired, and they input the
first encoding block to generate feature map fx and fy .
WCT block directly matches feature map fx to the covari-
ance matrix of feature map fy . WCT firstly peels off the
style features in fx, such as colors, contrast, etc. Then the
transform feature map fxy will be obtained by filling the
peeled feature map fx with the style features in fy . Finally,
the transform feature map fxy is blended with feature map
fx by Eq. (2).

f̂xy = αfxy + (1− α)fx (2)

Where f̂xy denotes the output feature of the first WCT
block. α ∈ [0, 1] denotes the weight that controls the de-
gree of retouching. Then, f̂xy will be the input feature fx
of the next block.

The previous works[16, 17, 27] only manually set the
value of α. However, if α is too high, the structural infor-
mation in the retouched images may be lost, the retouched
images always carry black plaques and the edges of the re-
touched image are blurred with a color halo. Moreover, if
α is near to 1, the features of the splicing forgery image Ix
are almost replaced by the authentic image, GM will learn
nothing to distinguish the tampered regions. On the other
hand, if α is too low, the WCT will lose its function. There-
fore, it’s difficult to find a suitable value of α manually. To
address this issue, we propose α-learnable WCT block, the
structure of this block is shown in Fig. 3. α-learnable WCT
block can determine the best value of α by learning the fea-
ture map fx and fy . The qualitative result of α-learnable
WCT block is shown in Fig. 4-(f). Based on the experiment
results for evaluating α-learnable WCT block, we believe
it can be further used in other end-to-end style transform
networks.

Because the features of the forgery image Ix should be

GAP FC Sigmoid WCTConcat

aa

INW H C´ ´

INW H C´ ´

OUTW H C´ ´

xf

yf

ˆ
xyf

Figure 3. The structure of α-learnable WCT block. GAP denotes
the global average pooling[18], FC denotes the fully connected
layer.
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=1a =0.5a

=0.2a a

Figure 4. Qualitative results for α-learnable blocks and α-fixed
blocks. The red and yellow dotted boxes demonstrate that black
plaques and color halo blur are significantly reduced in the outputs
of α-learnable WCT blocks.

replaced by the features of the authentic image Iy from a
global view. Based on the global block proposed in[3], we
modify this global block by applying the convolutions of
different receptive fields to extract multi-level features, the
modified global block can get more comprehensive global
features. It is inserted between encoder and decoder to ex-
tract global features to enhance the realistic transform effi-
ciency. The structure of the modified global block is shown
in Fig. 5.

For implementing multi-task in GT , GT uses a mixed
loss function, which consists of four parts: LGT

content,
LGT
recons, LGT

realistic and LGT

adv . GT should not change the

14297



Conv3_2

Conv5_2

Conv7_2

GAP Repeat

Concat Conv1_1GAP Repeat

RepeatGAP

ef

(4 )INW H C´ ´ ´

INW H C´ ´

INW H C´ ´

INW H C´ ´

OUTW H C´ ´
INW H C´ ´

Figure 5. The structure of the modified global block. fe denotes
the feature map output by the encoder, the convolutional layer is
denoted as Conv(kernel size) (strides).

structural information of the forgery images while retouch-
ing the forgery images, so the content loss functionLGT

content

is defined as Eq. (3).

LGT
content = Ex∼X [‖x−GT (x)‖1] (3)

In Eq. (3), x denotes the values of a splicing forgery image
Ix, ‖·‖1 denotes the `1 norm. SinceGT needs to reconstruct
the authentic image Iy , and keep that the reconstructed im-
age IRy is the same as the authentic image Iy . So, the loss
function of reconstruction LGT

recons is applied to reinforce
the reconstruction ability of GT , LGT

recons is defined in Eq.
(4).

LGT
recons = Ey∼Y [‖y −GT (y)‖1] (4)

Where y denotes the values of the authentic image Iy . Since
GT is adversarial trained against GM , when the output re-
touched image IRx is more realistic, the prediction of GM is
harder. Therefore, we use a realistic loss function LGT

realistic

conducted by Eq. (5)

LGT

realistic = Ex∼X [‖0W,H −GM (GT (x))‖1] (5)

Finally, we use the least-squares equation, which is defined
in Eq. (6), as adversarial loss function of corresponding
discriminator DT . The adversarial loss function LGT

adv will
make the output retouched image IRx more realistic.

LGT

adv =
1

2
Ex∼X [(DT (GT (x))− 1)2]. (6)

The final loss function can be summarized as:

LT = λGT
contentL

GT
content + λGT

reconsL
GT
recons

+ λGT

realisticL
GT

realistic + λGT

advL
GT

adv,

λGT
content = 1, λGT

recons = 0.5, λGT

realistic = 0.5, λGT

adv = 1,
(7)

Where λ denotes the weights of each loss function, the val-
ues of each weight is set by the experience of the experi-
ments.

3.2. Localization Generator GM

MAG[13] used U-Net[23] to generate the detected re-
gion, the detected edges, and class segmentation, as shown
in Fig. 1-(e), a single encoder works for multiple tasks
(SDMT) will cause low precision of detection result. Be-
cause the untampered semantic regions, who are similar to
semantic classes of the tampered regions, will be detected as
the tampered regions. Thus, we replace the SDMT with the
multi-decoder-single-task strategy. MDST can make each
decoder of the network to focus on a single task and avoid
the interference between tasks.

As shown in Fig. 2-(b), GM ’s structure is a modified U-
Net, which has three encoders. The structure of DM is the
same as the structure of DT . While the forgery image Ix is
retouched by GT , it’s more difficult to distinguish the tam-
pered regions by image properties, such as colors, contrast,
etc. Thus, an edge decoder is needed to make GM focus
more on the edges between the tampered regions and un-
tampered regions. To make sure the hide code output by the
encoder is comprehensive and meaningful, a reconstruction
decoder is used to regularize the shared encoder. Because
the localization task is a global classification problem that
needs to compare the features of different regions globally,
the modified global block, which is used in GT , is used be-
tween encoder and decoders too.
GM is also trained by a mixed loss function that con-

sists of four parts: region loss LGM
region, edge loss LGM

edge,
reconstruction loss LGM

recons, and adversarial loss LGM

adv . The
region loss LGM

region is the loss function of the decoder who
predicts the tampered regions in the ground truth. LGM

region

calculates the distance between the detected regions and the
real tampered regions by a binary cross-entropy function, it
is conducted by Eq. (8).

LGM
region =− 1

2×W ×H
Ex∼X [GTregion · log(GM (x))

+ (1−GTregion) · log(1−GM (x))

+GTregion · log(GM (GT (x)))

+ (1−GTregion) · log(1−GM (GT (x)))]
(8)

In Eq. (8), W and H denote the width and height of
the ground truth, GTregion is the tampered regions in the
ground truth of forgery image Ix. GT (x) is the retouched
image IRx . GM (x) is the detected regions of forgery im-
age Ix. GM (GT (x)) is the detected regions of retouched
image IRx . The edge loss function LGM

edge can be calculated
as the formula LGM

region. Since the edge of tampered regions
contains few pixels, which will cause the loss result unsta-
ble and feedback insufficient. To address this issue, LGM

edge

is particularly defined as Eq. (9). We add external weights
to the binary cross-entropy function to regularize the edge
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loss.

LGM
edge =− 1

2×W ×H
Ex∼X [ωpos ·GTedge · log(GM (x))

+ ωneg · (1−GTedge) · log(1−GM (x))

+ ωpos ·GTedge · log(GM (GT (x)))

+ ωneg · (1−GTedge) · log(1−GM (GT (x)))]
(9)

Where, GM (x) is the detected edges of the tampered re-
gions in forgery image Ix, GM (GT (x)) is the detected
edges of the tampered regions in the retouched image IRx .
GTedge denotes the edges of tampered regions in the ground
truth. ωpos and ωneg are the weights that make GM focus
more on the edges of the tampered regions. In the exper-
iments below, we set ωpos = 1.5 and ωneg = 0.5. For
reconstruction decoder in GM , the loss function LGM

recons is
calculated by Eq. (10).

LGM
recons =

1

2
Ex∼X [‖x−GM (x)‖1

+ ‖GT (x)−GM (GT (x))‖1]
(10)

In Eq. (10), GM (x) denotes the reconstructed image Îx,
GM (GT (x)) is the reconstructed image ÎRx . Finally, an
adversarial loss LGM

adv is proposed to avoid blurry outputs,
which is defined as Eq. (11).

LGM

adv =
1

2
(DM (C5)− 1)2, (11)

Where, C5 is a concatenation input of three parts: the de-
tected regions of forgery image Ix, the detected edges of the
tampered regions in forgery image Ix, the splicing forgery
image Ix or the retouched image IRx . The subscript of C5 is
the channel number of the concatenation. Finally, the The
final loss function of GM is computed as follow:

LM = λGM

maskL
GM

mask + λGM

edgeL
GM

edge

+ λGM
reconsL

GM
recons + λGM

advL
GM

adv ,

λGM

mask = 1, λGM

edge = 1, λGM
recons = 0.1, λGM

adv = 0.1.

(12)

Each weight λ in LM is set by the experience of the exper-
iments.

4. Experiments
4.1. Datasets

For the fair comparison, we perform evaluations on four
public splicing forgery image datasets: CASIA v2.0[5],
Columbia[8], NIST 2016[7] and FantasticReality[13]. The
details of each dataset are illustrated in Table 1. CASIA
v2.0 contains three types of image forgeries: splicing, copy-
move, and removal, the forgery images are post-processed
by methods such as filtering and blurring. The Columbia
dataset only contains splicing forgery and the tampered re-
gions are the large meaningless smooth regions which is not

post-processed. The image forgery types of NIST 2016 in-
clude splicing, copy-move, and removal, all the forgery im-
ages in the dataset are post-processed to hide visible traces
of manipulation. FantasticReality contains a large num-
ber of forgery images but only splicing forgery is included,
the splicing forgery images are not post-processed by any
method. Because we aim to detect splicing forgery, only
the splicing forgery images are selected in each dataset.

Dataset Characteristics

Image Format
Forgery/Authebtic

Images
Train/Test

Images
CASIA v2.0 TIFF, JPEG 5123/7491 715/100

Columbia JPEG 180/183 125/45
NIST 2016 JPEG 564/875 184/50

FantasticReality JPEG 19422/16592 12000/1000

Table 1. Characteristics of the image splicing forgery datasets.

4.2. Evaluation Metrics

The performance of splicing localization is evaluated by
mean average precision(mAP), Area Under Curve(AUC),
and F rate defined by the following equations:

Precison =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F =
2× Precison×Recall
Precison+Recall

,

(13)

where, TP and FP denote the numbers of correctly detected
and erroneously detected pixels, and FN is the number of
falsely missed pixels.

4.3. Setup

In our experiments, RTAG is trained using an Adam[12]
training optimizer with a batch size of 8, an initial learn-
ing rate of 3e-4, a decay rate of 0, and an epoch of 300.
Note that, in our observation, the performance of GT drops
sharply when batch size is more than 1, and GM ’s perfor-
mance drops sharply when batch size is too low. There-
fore, GT is trained with one splicing forgery image and
one authentic image each time, while GM is trained with
8 splicing forgery images or 8 retouched images each time.
To avoid GT takes excessive advantage in the adversarial
training, GT is updated every 8 batches. For data augmen-
tation, all the images are resized to 512×512. All training
processes are implemented on a NVIDIA Tesla V100 (32G)
GPU.

4.4. Comparisons

We compare RTAG with four state-of-the-art deep
learning splicing forgery detection methods: ManTra[25],
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Dataset CASIA v2.0 Columbia NIST FantasticReality
Metric mAP AUC F mAP AUC F mAP AUC F mAP AUC F
ADQ 0.293 0.698 0.476 0.344 0.637 0.536 0.096 0.319 0.296 0.221 0.511 0.409
ELA 0.054 0.306 0.158 0.302 0.595 0.475 0.081 0.301 0.243 0.267 0.587 0.398

ManTra 0.569 0.777 0.651 0.468 0.681 0.621 0.085 0.312 0.275 0.329 0.719 0.484
LSTM 0.526 0.758 0.617 0.488 0.723 0.622 0.112 0.552 0.366 0.388 0.757 0.530
C2Rnet 0.572 0.793 0.676 0.507 0.807 0.695 0.097 0.523 0.196 0.493 0.712 0.606
MAG - - - - - - - - - 0.780 0.903 0.824
RTAG 0.707 0.888 0.815 0.796 0.860 0.823 0.531 0.776 0.623 0.910 0.965 0.936

Table 2. Experimental results of plain splicing forgery.

CASIA v2.0

(a) Splicing Forgery Image

(b) Ground Truth

Columbia NIST

(d) ELA

(c) ADQ

(e) ManTra

(f) LSTM

(g) C2RNet

(h) RTAG

FantasticReality

Figure 6. Qualitative results of RTAG and other state-of-the-art methods. 1st and 2nd columns are the results for CASIA v2.0; 3rd and
4th columns are the results for Columbia; 5th and 6th columns are the results for NIST 2016; 7th and 8th columns are the results for
FantasticReality.

MAG[13], LSTM[1], C2RNet[26], and two conventional
methods: ADQ[19] and ELA[14]. Moreover, we espe-
cially compare our method with MAG on the FantasticRe-
ality dataset only, because MAG needs class segmentations
which are only provided in the FantasticReality dataset. All
the methods we compared are implemented with the code
and parameters proposed in the original papers.

We evaluate the performance of RTAG and comparative
methods at pixel-level. The evaluation results are present in
Table 2. The conventional methods always detect the whole

image as a tampered region, so these methods contain very
high Recall but low Precision. The training set of NIST
2016 is very small, and the tampered images are proper
post-processed to hide tampering artifacts, so many meth-
ods fail on this dataset. But our model learns to detect tam-
pered regions by fewer tampering artifacts and outperforms
other methods on NIST 2016. The results shown in Fig. 6
and Fig. 7 indicate that the performance of our method is
better than the state-of-the-art methods.
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(c) MAG

(d) RTAG

(a) Splicing Forgery Image

(b) Ground Truth

Figure 7. Qualitative results of MAG and RTAG on FantasticReal-
ity.

4.5. Ablation Study

To evaluate the necessity of each component of RTAG,
we compare the splicing forgery detection performance of
several ablated versions of RTAG on CASIA v2.0. The de-
tection results are presented in Table 3 and Fig. 8. We
first evaluate the performance of GM that is only trained
by splicing forgery images without GT . The result demon-
strates that the adversarial training between GM and GT is
critical for RTAG. Then we evaluate GM in SDMT strat-
egy, which means all the outputs of GM are generated by
a single decoder. The result proves that the MDST strategy
significantly improves the performance of the model.

Method
Components Metrics

GT
GM mAP FEdge Recons

Without GT ! ! 0.606 0.704
SDMT ! 0.622 0.731

Without Recons ! ! 0.684 0.772
Without Edge ! ! 0.689 0.775

RTAG ! ! ! 0.707 0.818

Table 3. Evaluation results for ablated versions of RTAG.

5. Conclusion

In this paper, we present a novel generative adversarial
network framework ((RTAG))for splicing detection and lo-
calization. RTAG adversarial trains a fake-to-realistic trans-
lation generator GT and a localization generator GM to
simulate the image fakers and the image authenticators. A
novel α-learnable whitening and coloring transform block
is proposed in GT to automatically and progressively sup-
press the tampering artifacts of the forgery images. Mean-
while, the multi-decoder-single-task strategy of GM will
push GM to improve its detection and localization abili-
ties by learning the retouched images with less tampering
artifacts multi-decoder-single-task strategy, and GM can
learn to detect tampered regions from fewer tampering arti-

(a)Splicing Forgery Image

(b)Ground Truth

(d)SDMT

(g)RTAG

(c)Without 
T
G(c)Without 
T
G

(e)Without Recons

(f)Without Edge 

Figure 8. Qualitative results of ablated versions of RTAG on CA-
SIA v2.0.

facts by adversarial training against GT . Experimental re-
sults demonstrate that the proposed method outperforms the
state-of-the-art methods on image splicing forgery detection
and localization.
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