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Abstract

Instance segmentation methods require large datasets
with expensive and thus limited instance-level mask labels.
Partially supervised instance segmentation aims to improve
mask prediction with limited mask labels by utilizing the
more abundant weak box labels. In this work, we show
that a class agnostic mask head, commonly used in partially
supervised instance segmentation, has difficulties learning
a general concept of foreground for the weakly annotated
classes using box supervision only. To resolve this problem,
we introduce an object mask prior (OMP) that provides the
mask head with the general concept of foreground implicitly
learned by the box classification head under the supervision
of all classes. This helps the class agnostic mask head to fo-
cus on the primary object in a region of interest (RoI) and
improves generalization to the weakly annotated classes.
We test our approach on the COCO dataset using different
splits of strongly and weakly supervised classes. Our ap-
proach significantly improves over the Mask R-CNN base-
line and obtains competitive performance with the state-of-
the-art, while offering a much simpler architecture. 1

1. Introduction

Instance segmentation is an essential task in computer
vision with applications ranging from autonomous vehi-
cles to robotics and medical imaging [5, 6, 13, 22, 26, 30].
A major contributor to the success of recent instance seg-
mentation methods is the availability of large-scale datasets
with numerous instance-level mask labels [7, 8, 12, 24, 36].
A major problem with mask labels is that their acquisi-
tion is rather time-consuming at ∼ 67 seconds per instance
[4]. Conversely, weak labels (w.r.t. instance masks) such
as bounding boxes (∼ 10.5 seconds) allow for much more

*This paper is the product of work during an internship at TomTom.
1Code is available at: https://github.com/dbtmpl/OPMask
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Figure 1. Our object mask prior (OMP) provides foreground cues
to the mask head highlighting the primary instance in ambiguous
RoIs (yellow pixels indicate foreground). OPMask is able to re-
solve ambiguous constellations and segment the correct instance,
while our Mask R-CNN baseline fails to do so.

efficient annotation [4]. Nonetheless, for classes without
sufficient mask labels, conventional instance segmentation
methods perform poorly and tend to generate mask predic-
tions that are perforated, do not cover the entire object or
are completely missing it [16, 20]. To improve mask pre-
dictions for classes with no mask labels available, recent re-
search has focused on addressing the problem in a partially
supervised learning setting [9, 16, 20, 40], where all classes
are annotated with box labels while only a subset of these
classes also carry instance mask labels. The goal in partially
supervised instance segmentation is to use the abundant but
weak box labels in conjunction with the strong but limited
mask labels to predict better instance masks for the weakly
(box) annotated classes.

In current methods, the task of generalizing mask predic-
tions for weak classes is either achieved with meta-learning
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of class aware weights [16] or with a class agnostic mask
head [9, 20, 40]. In the latter case, instead of predicting a
mask per class, each pixel in the RoI is classified into either
foreground or background. Thus, the class agnostic mask
head faces the challenge of having to learn a general con-
cept of foreground in order to generalize to unseen object
classes. However, this often fails, even if abundant box la-
bels are provided for the weak classes.

In this paper, we identify that the problem originates, on
the one hand, from the ambiguous constellations between
object instances, where pixels of one instance appear in the
bounding box of the other. Thus, the actual foreground be-
comes ambiguous to the mask head when the RoI contains
multiple and possibly overlapping instances. See Figure 1
for examples. On the other hand, instances of weak classes
that appear in the background of a RoI during training are
actively learned as background. This hurts generalization
to weak classes that frequently interact with other super-
vised classes. To address these problems, we introduce an
object mask prior (OMP) that highlights the correct fore-
ground in each RoI. This helps the mask head to resolve
ambiguous constellations, learn a more general concept of
the foreground, and generalize it to weak classes.

Recent works have demonstrated that shape priors are
beneficial inductive biases that steer models towards more
stable mask predictions. For example, ShapeMask [20] cre-
ates a knowledge base of shape priors by applying k-means
to the ground-truth masks, whereas ShapeProp [40] cre-
ates priors by using pixel-wise multiple instance learning on
bounding boxes. Although these priors help to generalize
to weak classes, they do not explicitly address the problems
mentioned above.

Conversely, our prior is explicitly optimized to highlight
the foreground in a RoI using the box supervision from all
classes. This is achieved by exploiting the fact that the box
classification head naturally learns to identify the primary
class in a RoI. As the box head receives labels for all classes
in the partially supervised setting, the box features capture
a general concept of foreground. To reveal this foreground,
we use class activation maps (CAMs) [39], which are coarse
localization maps indicating the most discriminative image
regions detected by the model. Therefore, given a correct
classification, CAMs are expected to highlight foreground
areas corresponding to the primary RoI class.

Unlike previous methods that introduce separate mod-
ules for prior creation, we only rely on the features in the
box head and embed the OMP into our model in an end-to-
end manner. Besides using box supervision from all classes,
our prior is able to use mask gradients from the limited mask
labels to increase its spatial extent. We embed our OMP
in the Mask R-CNN meta architecture and name our over-
all model OPMask (Object Prior Mask R-CNN). Our main
contributions are the following:

• We identify two fundamental problems in partially
supervised instance segmentation: First, instances of
weak classes appearing in the background of a mask
supervised RoI during training are learned as back-
ground by the model. Second, in ambiguous RoIs con-
taining multiple and possibly overlapping instances,
the mask head has difficulties finding the foreground.

• We introduce an object mask prior (OMP) in the mask
head to solve the above identified problems. The prior
highlights the foreground across all classes by leverag-
ing the information from the box head.

• On the COCO dataset [24], OPMask significantly im-
proves over our Mask R-CNN baseline by 13.0 AP.
Compared with the prior state-of-the-art, we improve
over ShapeMask [20] and ShapeProp [40] and achieve
competitive results against CPMask [9] while using a
simpler architecture.

2. Related Work

Instance segmentation aims to segment every object in-
stance in a scene. Detection based approaches [6, 13, 22,
26], which add a mask prediction network to existing de-
tection models, represent the current state-of-the-art. Mask
R-CNN [13] extends the two stage detection network Faster
R-CNN [32] being the first to introduce a multi-task loss
combining detection and mask gradients. Mask R-CNN is
a strong baseline and often used as a meta-architecture due
to its extensibility. Contour based approaches [27, 30, 38]
segment objects by refining a sequence of vertices to match
the object shape. Bottom-up approaches group pixels to
generate instance masks [2, 25, 28]. As these approaches
need large datasets with pixel-wise supervision, they are not
suited for the partially supervised task.

Partially supervised instance segmentation. In par-
tially supervised instance segmentation, a subset of classes
is strongly annotated with box and mask supervision, while
the remaining classes carry only weak box labels. The goal
is to use the abundant box labels in conjunction with the
limited masks to predict instance masks for all classes.

The pioneering approach by Hu et al. [16] augments a
Mask R-CNN with a weight transfer function that learns
a mapping from box to mask weights, introducing a class
aware mask head capturing a representation for all classes.

Kuo et al. introduce ShapeMask [20] that creates a
knowledge base of shape priors by applying k-means to the
available ground-truth masks. A box embedding gives rise
to a linear combination of the k-means centroids generating
a shape prior that is further refined into an instance mask.
ShapeMask bases its prior solely on the limited mask la-
bels. In contrast, we use box labels of all available classes
and use mask labels for refinement.
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Figure 2. Overall architecture. The box head generates our OMP which is added to features entering the mask head to create object aware
features Fobject. The mask head then uses Fobject to predict instance masks.

ShapeProp [40] uses pixel-wise multiple instance learn-
ing (MIL) on bounding boxes to create a saliency heatmap,
which is further processed leading to a more expressive
shape activation map. Both ShapeProp and OPMask utilize
box labels to generate a prior for mask prediction. Shape-
Prop introduces two separate modules to generate and refine
their prior. On the other hand, we take advantage of the fact
that the box head implicitly learns a concept of foreground.
Thus, we design our model to leverage the features that are
already made available by the box head.

Finally, Fan et al. [9] learn the underlying shape and
appearance commonalities between instance masks that
should generalize to weak classes. The shape commonali-
ties are learned by a boundary prediction head, while the ap-
pearance commonalities are enforced by an attention based
affinity parsing module. Besides learning commonalities
that aid generalization, we also identify that a major prob-
lem lies in ambiguous RoIs and the mask head having diffi-
culties to learn a general concept of foreground. To address
this, we utilize our OMP, which highlights the foreground
of a RoI to resolve ambiguous constellations and help gen-
eralize to weak classes.

Weakly supervised instance segmentation approaches
solely rely on weak labels such as bounding boxes or im-
ages level labels [1, 3, 10, 15, 19, 21, 41, 42]. Models using
image-level labels [1, 10, 21, 41, 42] mostly use CAM based
image-wide localization information to assist instance mask
prediction. Zhou et al. [41] use the peaks of a class response
map to detect and segment instances. Ge et al. [10] refine
object attention maps using multi-task network heads shar-
ing the same backbone. Both Laradji et al. [21] and Ahn et
al. [1] create and refine pseudo masks which are later used
to train a Mask R-CNN [13]. Setups where only image-level
labels are available require the introduction of complex re-

finement modules. Conversely, in our setting, we rely on
mask gradients that are already available in the model to
improve our OMP.

Less work has been done using box supervision [15, 19].
Hsu et al. [15] employ a Mask R-CNN like architecture,
where the mask head uses a MIL objective. Khoreva et
al. [19] use GrabCut [33] to create pseudo ground truths to
train a separate segmentation model. Instead of using box
pixels to predict masks, we use CAMs to extract the fore-
ground information in the box features to create our OMP.

3. Method
In partially supervised instance segmentation, a conven-

tional Mask R-CNN with a class agnostic mask head fails
to predict reliable instance masks for certain weak classes,
as demonstrated in Figures 1 and 4. To address this, we
propose OPMask which introduces an object mask prior
(OMP) that captures foreground cues for all classes in the
dataset (i.e. generalized foreground). OPMask follows the
design of a Mask R-CNN [13] with a ResNet [14] backbone
and FPN [23]. The model is illustrated in Figure 2.

3.1. Object Mask Prior (OMP)

The OMP functions as an inductive bias capturing a
general concept of foreground to improve generalization to
weak classes. In the partially supervised learning setup, pre-
dicting a general foreground is non-trivial for two main rea-
sons: (1) pixel-wise mask labels are missing for a subset
of classes, and (2) in many cases RoIs contain multiple and
overlapping instances, making the foreground in a RoI am-
biguous. The OMP tackles these issues by highlighting the
correct foreground in each RoI, which helps the mask head
to learn a more general concept of the foreground, resolve
ambiguous RoIs, and generalize it to weak classes.
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We create such a prior by extracting the foreground in-
formation captured by the box features in the box head.
We use the fact that the box classification head learns a
representation of the primary class (i.e. foreground) for all
classes in the dataset. To reveal this foreground, we use
class activation maps (CAMs) [39], which provide coarse
localization maps emphasizing the most discriminative re-
gions the model uses for classification. Consequently, given
a correct classification, CAMs are expected to highlight
foreground areas corresponding to the primary RoI class.

To realize CAM calculation, we use a box head with four
convolution layers where Global Average Pooling (GAP) is
applied on the last convolutional feature map. The resulting
vector is processed by linear layers for box classification
and regression (see Figure 2). We calculate CAMs with a
function fWcls

which is a 1 × 1 convolution parameterized
with the classification weights Wcls as follows:

Mcam = fWcls
(Fbox) , (1)

where Fbox is the last feature map of the box head before
GAP. This allows calculating all CAMs efficiently with a
single operation while keeping them differentiable. De-
pending on whether it is training or inference time, we use
the ground truth labels or the classes predicted by the box
head to select the correct CAM slice from Mcam. We can
expect CAMs to be stable across categories, since the par-
tially supervised instance segmentation task assumes abun-
dant box labels for all classes.

The CAMs of the correct class are added to the corre-
sponding mask features as will be described in the next sec-
tion. Apart from providing the mask head favorable fore-
ground cues, this also allows the mask gradients to back-
propagate through the box head. A well known shortcom-
ing of CAMs is that they do not cover the full extent of the
objects, but only the minimal area of the most distinctive
features. Other works use expensive sampling or refinement
steps to increase the spatial extent of CAMs [34, 41, 42]. To
ensure a simple and fast architecture without separate CAM
refinement steps, we use the efficient original CAM defini-
tion [39] and leverage the mask gradients to provide mask
information to the features in the box head. This leads to an
increase in the spatial extent of the CAMs allowing them to
capture finer details.

As a result, CAMs that receive mask gradients give rise
to our OMP. The fact that the OMP originates from the box
classification task, which is directly optimized to classify
the primary instance in a RoI, provides it with strong fore-
ground cues. This is in direct contrast to previous work
[20, 40] that introduce separate modules for prior creation
and refinement. Conversely, our OMP is predestined to pro-
vide the mask head with a general concept of foreground
allowing it to resolve ambiguous RoIs and also better gen-
eralize to weak classes.

3.2. Inducing the Prior

After generating the OMP, we aggregate it with the FPN
features after RoIAlign Ffpn to create object-aware features
Fobject as follows:

Fobject = Ffpn +Mcam , (2)

where Mcam,k ∈ RH,W is added to each channel of its
matching RoI Ffpn,k ∈ RD,H,W . Before addition, we use
bilinear interpolation to adjust Mcam to the spatial dimen-
sions of Ffpn.

The addition highlights the features in Ffpn at the spatial
locations where the response of the OMP is high. This pro-
vides the mask head with explicit foreground information
that are embedded by the subsequent convolutional layers
in the mask head. This incentivizes the mask head to learn
a general concept of foreground for all classes in the dataset.
Note that this approach is different from feature fusion be-
tween box and mask features as proposed in [17] and [31].
While features are a rich description of the image and its
content, our OMP is a simple one layer object/background
encoding helping the mask head focus on the correct object.

After the addition, Fobject is processed by a function fmask

consisting of seven 3 × 3 convolution layers followed by
one transposed convolution layer doubling the features spa-
tial resolution and one 1 × 1 convolution performing mask
prediction as follows:

Mmask = fmask (Fobject) , (3)

where Mmask is the mask prediction after applying a pixel-
wise sigmoid. We use seven convolution layers to achieve a
receptive field large enough such that fmask operates on the
the entire input feature map. Batch normalization [18] is
applied after each 3 × 3 convolution to utilize its stochas-
tic properties to improve generalization. Finally, a pixel-
wise binary cross-entropy loss is applied to Mmask using the
available mask labels Mgt as follows:

LMask = BCE (Mmask,Mgt) . (4)

4. Experiments

In Section 4.1, first, the dataset and experimental setup
are introduced. Then, in Section 4.2, we provide evidence
that instances of weak classes appearing in the background
of a RoI during training are learned as background, and a
conventional class agnostic mask head has difficulties con-
sidering the correct foreground in ambiguous RoIs. Af-
terwards, Section 4.3 shows the capabilities of OPMask to
generalize to weak classes. Finally, in Section 4.4, we com-
pare our OMP against regular CAMs showing the positive
impact of mask gradients updating box features.
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4.1. Experimental Setup

We conduct our experiments on the COCO dataset [24].
To realize the partially supervised learning setup, we split
the mask labels of the 80 COCO thing classes into two sub-
sets. One subset consists of the strongly annotated classes
used for training, the other subset consists of the weakly
annotated classes used for evaluation and vice versa. Box
labels are available for all classes during training. To com-
pare against related work, we mainly focus on dividing the
COCO dataset between the 20 classes of the Pascal voc
dataset [8] (inside COCO), and the remaining 60 unique
COCO classes. In the following, non-voc → voc denotes
that the mask head is trained on the non-voc classes and
evaluated on voc classes, vice versa the same applies for
voc → non-voc. For training, we use SGD with Momen-
tum with an initial learning rate of 0.02 which is linearly
warmed up for the first 1000 iterations [11]. The batch size
is set to 16 and the gradients are stabilized by clipping them
at a value of 1.0. ResNet-50 and ResNet-101 [14] with a
FPN [23] are used as backbones. The implementation is
based on PyTorch [29] and Detectron2 [37].

Baseline. We use a Mask R-CNN with a class agnostic
mask head. For a fair comparison, we use the same box
head as OPMask and also add batch norm to its mask head.
In the following, we call this baseline ‘Our Mask R-CNN‘.

4.2. Insights on Identifying Foreground in RoIs

Learning classes as background. A class agnostic
mask head faces the task of classifying RoI pixels be-
tween foreground or background, where pixels that cor-
respond to supervised classes are considered foreground,
while all other pixels are regarded as background. The
COCO dataset contains complex scenes with cluttered ob-
jects, which causes RoIs to often contain more than one in-
stance. Background pixels can either be part of the avail-
able supervised classes, belong to weak classes to which
we want to generalize, or not be part of any class in the
dataset. In the second case, we face the dilemma that the
model actively learns to classify features that correspond to
weak classes as background. This clearly conflicts with the
generalization goal of the partially supervised learning task.

This phenomenon particularly affects classes that fre-
quently interact with other classes and thus appear more of-
ten in the background of a mask supervised RoI. To investi-
gate this, we compute the correlation between class overlap
and mask AP for weak classes (in voc → non-voc and non-
voc → voc). To approximate the overlap between classes,
we compute the IoU of all ground-truth bounding boxes in
the COCO dataset. Afterwards, we compute a regression
between the mean IoU of each class and its mask AP.

Two regression models are presented in Figure 3. The
first (left) is computed with our Mask R-CNN baseline
showing a significant negative correlation between mean
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Figure 3. Regressions showing the correlation between box IoU
and mask AP of all COCO classes. We compare mask AP scores of
our Mask R-CNN baseline (left) and OPMask (right). The classes
with the largest relative improvement are highlighted.

IoU and mask AP across all classes (p = .003 < .01).
This provides evidence for our hypothesis that weak classes
appearing in the background of RoIs are actively learned as
background during training. The second regression (right),
computed with OPMask, shows only a weak negative cor-
relation that is not strong enough to reach significance (p =
.189 ≮ .01). At the same time, we see notable improve-
ments for classes with high mean IoU values, which are
more likely to appear in the background of other classes
RoIs (e.g. person: 0.99 to 22.72 AP, cat: 3.77 to 60.63
AP). This suggests that the OMP is able to provide the mask
head with a general concept of foreground, which counter-
acts learning these weak classes as background.

Resolving ambiguous RoIs. Another issue with mul-
tiple and possibly overlapping instances is that the primary
instance (i.e. foreground) of the RoI may be ambiguous. We
identify that a conventional mask head has difficulties to lo-
cate the foreground in these ambiguous constellations.

Full COCO non-voc → voc voc → non-voc
Model Amb. ¬Amb. Amb. ¬Amb. Amb. ¬Amb
Our Mask R-CNN 15.9 36.2 10.8 27.4 6.5 19.7
OPMask 20.5 38.0 19.5 37.2 17.1 32.2

Table 1. Mask AP of OPMask vs. our Mask R-CNN baseline in
ambiguous and non-ambiguous instances. OPMask shows better
performance in all comparisons, with the largest improvements in
ambiguous constellations in the partially supervised setup.

To quantify the effect of ambiguous instances on model
performance, we split the COCO validation set into ambigu-
ous and non-ambiguous instances. Since properly quantify-
ing ambiguity is non-trivial, we avoid complicated heuris-
tics and use the IoU of the box labels as a simple proxy. This
allows to capture general trends while putting emphasis on
simplicity and reproducibility. We consider instances with
a box label IoU ≥ 0.5 to at least one other instance in an
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image as ambiguous. Table 1 compares OPMask with our
Mask R-CNN baseline (both ResNet-50 backbones) in am-
biguous and non-ambiguous instances, trained in the fully-
and partially supervised COCO splits. The results show
that OPMask performs better than our Mask R-CNN base-
line in all comparisons, with the largest improvements in
ambiguous constellations. Especially in the partially super-
vised setting, our Mask R-CNN baseline falls significantly
behind OPMask. This suggests that a conventional class ag-
nostic mask head has considerable problems with ambigu-
ous instances, especially when it has to generalize to weak
classes. At the same time, OPMask manages to significantly
mitigate this drop in mask AP thanks to the OMP highlight-
ing the correct foreground in the RoIs. These results partic-
ularly reflect the precision of our OMP, as it is able to focus
the correct object even in such ambiguous constellations.

In addition, Figure 1 provides qualitative comparisons
between OPMask and our Mask R-CNN baseline handling
ambiguous instances. The results present ambiguous RoIs
where our Mask R-CNN baseline falsely predicts back-
ground instances as foregrounds. On the other hand, the
OMP is able to highlight the foreground instance in the RoI
allowing OPMask to correctly segment the instance. All
examples are from models trained either in the voc → non-
voc or non-voc → voc setting. Interestingly, the results in
the first row are achieved with models trained in the voc
→ non-voc setting, where person is a supervised class and
umbrella is a weak class. While the Mask R-CNN incor-
rectly segments the person, OPMask identifies the umbrella
as the primary class and is able to predict an accurate in-
stance mask while generalizing to a weak class. This fur-
ther emphasizes the quantitative results where our Mask R-
CNN baseline performs particularly poorly for ambiguous
instances in the partially supervised setting.

4.3. Generalization to Weakly Annotated Classes

Pascal voc vs. non-voc classes. We present the quan-
titative results for the voc vs. non-voc splits in Table
2. The results show that OPMask considerably improves
over our Mask R-CNN baseline in all cases. For example,
with a ResNet-50 backbone, a significant increase of 10.1
AP in non-voc → voc and 13.0 AP in voc → non-voc is
achieved. OPMask also performs better than previous ap-
proaches ShapeProp [40] and ShapeMask [20] in all cases.
It is notable that even with a ResNet-50, we achieve bet-
ter or competitive performance than ShapeMask and Shape-
Prop that are equipped with the stronger ResNet-101. When
comparing to the current state-of-the-art CPMask [9], we
achieve substantial improvements with a ResNet-50 back-
bone (e.g. 3.1 AP). For the ResNet-50 backbone CPMask
only provides results in the voc → non-voc setting. Our
model with a ResNet-101 backbone achieves competitive
performance in non-voc → voc (e.g. increase of 0.3 AP),

Input Mask R-CNN Ground TruthOMP Prediction

Figure 4. The Mask R-CNN baseline produces perforated, incom-
plete or missing masks. OPMask driven by the OMP is able to
accurately segment each instance of a weak class.

but also slightly worse performance in voc → non-voc (e.g.
0.8 AP decrease). It should be noted, however, that unlike
us, CPMask uses multi-scale training when equipped with
a ResNet-101 backbone, which is known to substantially
increase the overall performance of the model. The fact
that we significantly outperform CPMask without multi-
scale training on a ResNet-50, but only achieve competi-
tive performance on a ResNet-101 demonstrates the magni-
tude of improvements possible with multi-scale training. In
addition, CPMask adopts the more capable FCOS [35] for
box detection, which yields much better detection perfor-
mance than a Faster R-CNN (+5.3 AP), positively affecting
instance segmentation performance. We also emphasize the
computational efficiency of OPMask. At inference time,
our method (.12 s/img) is much more efficient than Shape-
Mask (29.1 s/img) and ShapeProp (.22 s/img), and only
slightly heavier than our Mask R-CNN baseline (.08 s/img)
2. The code of CPMask is not available yet. Nevertheless,
CPMask uses an extra boundary-parsing head requiring ad-
ditional boundary labels and a self-attention based affinity-
parsing module that produces expensive 142 × 142 × 256
feature maps. Further, both modules introduce an additional
loss for which gradients must be computed. Thus, in terms
of computing overhead, OPMask emerges as a simpler ap-
proach than our related work.

Qualitative Results.
In Figures 1 and 4, we provide qualitative insights into

how the OMP steers mask predictions and improves gener-
alization to weak classes. Each example shows a weak class
in either the voc → non-voc or non-voc → voc setup. Next
to the OMP and mask prediction of OPMask, our Mask R-

2All inference times were obtained with a Nvidia Tesla V100.
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non-voc → voc: test on voc voc → non-voc: test on non-voc
Backbone Method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

R-50-FPN

Mask R-CNN [13] 23.9 42.9 23.5 11.6 24.3 33.7 19.2 36.4 18.4 11.5 23.3 24.4
Our Mask R-CNN 26.4 46.4 26.7 14.2 26.4 36.5 18.9 35.5 18.4 12.4 22.8 22.9
MaskX R-CNN [16] 28.9 52.2 28.6 12.1 29.0 40.6 23.7 43.1 23.5 12.4 27.6 32.9
Mask R-CNN w/ ShapeProp [40] 34.4 59.6 35.2 13.5 32.9 48.6 30.4 51.2 31.8 14.3 34.2 44.7
CPMask [9] - - - - - - 28.8 46.1 30.6 12.4 33.1 43.4
OPMask 36.5 62.5 37.4 17.3 34.8 49.8 31.9 52.2 33.7 16.3 35.2 46.5

R-101-FPN

Mask R-CNN [13] 24.7 43.5 24.9 11.4 25.7 35.1 18.5 34.8 18.1 11.3 23.4 21.7
Our Mask R-CNN 27.7 48.0 28.2 13.6 28.6 38.0 21.0 39.2 20.5 13.5 26.4 23.9
MaskX R-CNN [16] 29.5 52.4 29.7 13.4 30.2 41.0 23.8 42.9 23.5 12.7 28.1 33.5
ShapeMask [20] 33.3 56.9 34.3 17.1 38.1 45.4 30.2 49.3 31.5 16.1 38.2 28.4
Mask R-CNN w/ ShapeProp [40] 35.5 60.5 36.7 15.6 33.8 50.3 31.9 52.1 33.7 14.2 35.9 46.5
CPMask [9] 36.8 60.5 38.6 17.6 37.1 51.5 34.0 53.7 36.5 18.5 38.9 47.4
OPMask 37.1 62.5 38.4 16.9 36.0 50.5 33.2 53.5 35.2 17.2 37.1 46.9

Table 2. Comparing OPMask with the state-of-the-art in the partially supervised instance segmentation setup on COCO. OPMask outper-
forms our Mask R-CNN baseline as well as our related work MaskX R-CNN, ShapeMask and ShapeProp with both backbones. Further,
OPMask performs better than CPMask on a ResNet-50 and remains competitive on a ResNet-101. non-voc → voc denotes that the mask
head is trained on the non-voc classes and evaluated on voc classes, vice versa the same applies for voc → non-voc.

CNN baseline predictions are presented. The results show
that the OMPs properly identify and highlight the primary
instances in the RoIs while covering most of the objects’
spatial extend. Furthermore, we realize that our coarse prior
is sufficient to enable the mask head to generalize to a re-
fined mask. This underlines our hypothesis that it is of par-
ticular importance to provide the class agnostic mask head
with a general concept of foreground across all classes. Fi-
nally, Figure 5 presents a number of COCO images with
overplayed mask predictions produced in the voc → non-
voc setup. The results show OPMask’s ability to generate
precise predictions for instances of weak classes across dif-
ferent scenarios and object sizes. All examples in this sec-
tion are achieved with models equipped with a ResNet-101.

Strongly vs weakly supervised class ratios. To pro-
vide a better overview of OPMask’s generalization abilities,
we evaluate its performance on different splits of strongly
and weakly annotated classes. To create the 40 class split,
we start with the 20 Pascal voc [8] classes and randomly
add another 20 classes from the non-voc split. Figure 6
shows that OPMask consistently improves over our Mask
R-CNN baseline while demonstrating stable performance
across all class splits. Even in the fully supervised setup
(Full coco), where a Mask R-CNN remains competitive
with other state-of-the-art instance segmentation methods,
OPMask achieves better performance (+1.6 AP). We at-
tribute these improvements to the fact that even with full
supervision, the OMP helps the class agnostic mask head re-
solve ambiguous RoIs, which in return improves OPMask
predictions. This shows that our OMP remains beneficial
when strong annotations are available for all classes.

4.4. Refining the Object Mask Prior

A simple CAM as the OMP might do a reasonable job,
though a better prior is expected to lead to a better segmen-

tation result. To improve our OMP, we let mask gradients
backpropagate through the box head, which augments the
box features with mask information. This enhances the
CAMs by increasing their spatial extent and allowing the
OMP to cover larger parts of the objects. The resulting re-
finement further improves the final mask AP by 1.1 points
in non-voc → voc with ResNet-50 backbone. To investigate
the improvement of the prior, we compare the mask AP of
the OMP with vanilla CAMs on the COCO validation set.
We compare against a Faster R-CNN and a Mask R-CNN
with the same box head as OPMask. In Table 3, AP and
AP50 results of voc vs. non-voc class splits are provided.
Since the Faster R-CNN does not receive any mask gradi-
ents, it is only trained and evaluated on all classes.

test on all test on voc test on non-voc
Model train set AP AP50 AP AP50 AP AP50

Faster R-CNN all 0.2 1.0 0.3 2.5 0.1 0.6
Mask R-CNN all 0.2 1.3 0.3 2.3 0.1 1.0
OPMask all 8.8 34.1 9.9 40.4 8.4 32.0
Mask R-CNN voc 0.3 1.9 0.6 4.0 0.2 1.0
OPMask voc 5.0 21.8 9.9 38.5 3.3 16.3
Mask R-CNN non-voc 0.2 1.5 0.4 2.8 0.2 1.0
OPMask non-voc 8.0 31.5 7.0 32.2 8.3 31.2

Table 3. Quantitatively comparing our OMP with CAMs of a
Faster R-CNN and Mask R-CNN. The results show that our OMP
is able to cover larger parts of the objects than conventional CAMs.

The results show that the OMP is significantly better than
the CAMs of Faster R-CNN and Mask R-CNN. This under-
lines the positive influence of mask gradients on box head
features and consequently on the OMP. The low AP values
of the CAMs generated by Faster R-CNN and Mask R-CNN
are caused by the fact that they often do not surpass the
pixel-wise IoU threshold (i.e. ≥ 0.5), and are mostly con-
sidered negatives. The Mask R-CNN, where the backbone
features are augmented with mask gradients, does not show
significant improvements over the Faster R-CNN. This sug-
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Figure 5. Qualitative results on COCO using the voc → non-voc split for training. This shows the ability of OPMask to predict precise
instance masks for objects of weak classes across different scenes, and various object sizes and appearances.

Full coco (80) non-voc (60) voc + 20 rand voc (20)

20

26

32

38

A
P

35.7

26.4
27.5

18.9

37.3
36.5

34.6

31.9

Mask R-CNN

OPMask

Figure 6. Performance of OPMask on varying numbers of super-
vised classes. It significantly improves over our Mask R-CNN
baseline across all class splits, including the fully supervised setup.

gests that for CAM refinement, mask gradients should im-
pact the features that are directly used to calculate the CAM
activations. Finally, Figure 7 demonstrates qualitative im-
provements of CAMs on a number of COCO images.

5. Conclusion

We proposed OPMask, a novel approach to partially su-
pervised instance segmentation. OPMask introduces an ob-
ject mask prior (OMP) that helps its class agnostic mask
head to learn a general concept of foreground, resolve am-
biguous RoIs and generalize to weak classes. Our research
pointed out two major problems hindering a class agnostic
mask head to generalize to weak classes. First, instances
of weak classes appearing in the background of a mask su-

Figure 7. Comparing our OMP with CAMs from a Faster R-CNN
and Mask R-CNN on COCO images. We see that our OMP is able
to cover larger parts of the objects than regular CAMs.

pervised RoI during training are learned as background by
the model. Second, in ambiguous RoIs that contain multiple
and possibly overlapping instances, the mask head has diffi-
culties to consider the correct foreground. We demonstrated
that both problems can be vastly alleviated with our OMP
that highlights foreground across all classes by leveraging
the information from the box head. Finally, we showed
that OPMask significantly improves over our Mask R-CNN
baseline and achieves competitive performance with the
state-of-the-art, while offering a much simpler architecture
with less computational overhead.
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