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Abstract

How would a static scene react to a local poke? What
are the effects on other parts of an object if you could lo-
cally push it? There will be distinctive movement, despite
evident variations caused by the stochastic nature of our
world. These outcomes are governed by the characteris-
tic kinematics of objects that dictate their overall motion
caused by a local interaction. Conversely, the movement of
an object provides crucial information about its underlying
distinctive kinematics and the interdependencies between
its parts. This two-way relation motivates learning a bijec-
tive mapping between object kinematics and plausible future
image sequences. Therefore, we propose iPOKE – invert-
ible Prediction of Object Kinematics – that, conditioned on
an initial frame and a local poke, allows to sample object
kinematics and establishes a one-to-one correspondence to
the corresponding plausible videos, thereby providing a con-
trolled stochastic video synthesis. In contrast to previous
works, we do not generate arbitrary realistic videos, but
provide efficient control of movements, while still capturing
the stochastic nature of our environment and the diversity of
plausible outcomes it entails. Moreover, our approach can
transfer kinematics onto novel object instances and is not
confined to particular object classes. Our project page is
available at https://bit.ly/3dJN4Lf.

1. Introduction
Imagine a 3-year-old standing next to a stacked pyramid

of glasses in a shop. Can you sense the urge to pull one
glass out—just to observe what happens. We have an inborn
curiosity to understand how the world around us reacts to our
actions, so we can eventually imagine and predict their out-
come beforehand. This ability to predict is the prerequisite
for targeted, goal-oriented interaction with our world rather
than random manipulation of our environment. Once we
are older, we have also learned to generalize and predict the
dynamics of previously unseen objects when they are pulled
or poked; and the less audacious have understood that it is
often more effective to have others do daring experiments
like the one above (and pay the bill) while they are learning
by merely watching the outcome. While such experiments

Figure 1. iPOKE: Conditioned on a local poke controlling desired
object motion in a static image, our invertible model learns a rep-
resentation of the remaining object kinematics for arbitrary object
classes. Once learned, our framework allows users to locally con-
trol intended movements while sampling diverse realistic motion
for the remainder of the object and to even transfer kinematics to
unseen object instances.

are not just fun to watch, they also help to imagine the many
possible outcomes caused by the stochastic nature of the
many factors beyond our control.
Given a single static image, how can an artificial vision sys-
tem imagine, i.e. synthesize, the many possible outcomes
when locally manipulating the scene? It needs to learn how
a local poke affects different parts of an object and the re-
sulting kinematics [49]. Conditioned on only the start frame
and the displacement of a single pixel, we want to synthesize
multiple videos, each showing the different plausible future
dynamics. To render this generative, stochastic approach
widely applicable, training should only require videos of
objects in motion, but no ground truth information regarding
the forces acting on an object such as a local poke. The
representation of the kinematics should then generalize to
similar objects not seen during training in contrast to instance
specific models [15]. Moreover, the method should work
for arbitrary objects, rather than being tuned to just a single
class [1, 21]. Therefore, no prior motion model is available,
but all kinematics have to be learned from the unannotated
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video data. Previous work on video synthesis has mainly
explored two opposing research directions: (i) uncontrolled
future frame prediction [24, 10, 53, 59] synthesizing videos
based on a start frame, but with no control of scene dynamics,
and (ii) densely controlled video synthesis [50, 73, 77, 74]
demanding tedious, per-pixel guidance how the video will
evolve such as by requiring the object motion to be provided
per pixel [50, 73, 77] or a future target frame [74]. Our
sparsely controlled video synthesis based on few local user
interactions constitutes the rarely investigated midground in
between, allowing for specific but still efficient control of
kinematics.
In this paper, we present a model for exercising local con-
trol over the kinematics of objects observed in an image.
Indicating movements of individual object parts with a sim-
ple mouse drag provides sufficient input for our model to
synthesize plausible, holistic object motion. To capture the
ambiguity in the global object articulation, we learn a dedi-
cated latent kinematic representation. The synthesis problem
is then formulated as an invertible mapping between object
kinematics and video sequences conditioned on the observed
object manipulation. Due to its stochastic nature, our latent
representation allows to sample and transfer diverse kine-
matic realizations fitting to the sparse local user input to then
infer and synthesize plausible video sequences as shown in
Fig. 1.
To evaluate our model on controlled stochastic video syn-
thesis, we conduct quantitative and qualitative experiments
on four different datasets exhibiting complex and highly ar-
ticulated objects, such as humans and plants. Comparisons
with the state-of-the-art in stochastic and controlled video
prediction demonstrate the capability of our model to predict
and synthesize plausible, diverse object articulations inferred
from local user control.

2. Related Work
Video Synthesis. Video synthesis denotes the general

task of generating novel video sequences. While some
works solely focus on transferring a predefined holistic mo-
tion between objects [73] or interpolating motion between
a starting and end frame [54, 79, 43, 4, 55], the most com-
monly addressed problem is video prediction. Given an
initially observed video sequence, the goal is to infer a
likely continuation into the future. To this end, proposed
methods either generate a single, deterministic video se-
quence [76, 70, 69, 77, 6] or model the distribution over
likely future sequences [23, 16, 40, 59, 53, 10, 19]. More-
over, the employed model architectures exhibit large di-
vergence with latent RNN-based methods being the domi-
nant modelling choice [53, 24]. However, also more com-
plex models based on transformers [75], pixel-level autore-
gression [51, 40, 45, 16, 70, 10], factorization of dynam-
ics and content [53, 24] and image warping using optical

flow [71, 44, 25] have been proposed. Despite these methods
showing promising results, none of them is able to exercise
control over the video generation process.
Controllable Video Synthesis. Exercising user control over
the video synthesis process requires a detailed understanding
of the object kinematics and interplay of the object parts. To
circumvent the difficult task of learning object kinematics
directly from data, Davis et al. [15] resort to fixed, linear
mathematical models. Thus, they can only consider con-
straint oscillating motion around an object’s rest state. In
contrast, our model learns natural, unconstrained object kine-
matics from video, thus is also applicable to highly complex
articulation such as those of humans. Other works rely on a
low-dimensional, parametric representation e.g. keypoints
to transfer motion between videos [1, 5] or to synthesize
videos based on action labels [81]. Given such assumptions,
these works cannot be universally applied to arbitrary object
categories and allow only for coarse control compared to our
fine-grained, local object manipulations. By iteratively warp-
ing single images with local sets of estimated optical flow
vectors, [27] takes a first step towards sparsely controlled
video generation for arbitrary object categories. However,
due to the method’s warping based nature, it is still not able
to generate temporally coherent motion and requires optical
flow guidance for each individual predicted image frame. To
overcome such limitations, [6] introduces a hierarchical dy-
namics model, which can predict complex object dynamics
controlled by a single optical flow vector in a given image,
but does still not consider the natural motion ambiguity of
the remaining, uncontrolled object parts. In contrast, our
model learns a dedicated, stochastic kinematics representa-
tion modeling this incertitude of the object remainder and,
thus, is capable of synthesizing locally controlled but also
diverse object motion.
Invertible Neural Networks. Invertible neural networks
(INNs) are learnable bijective functions often used to trans-
form between two probability distributions, thus being a natu-
ral choice for addressing inverse problems [3], introspecting
and explaining neural network representations [22, 32] and
domain transfer [62, 63]. Typically, INNs are realized as
generative normalizing flows [60, 47, 37] which have re-
cently also found application in image [37, 58] and video
synthesis [39, 19]. In this work, we use normalizing flows to
learn the missing residual information, i.e. the latent object
kinematics, not being determined by the by the sparse local
control over part of the object motion.

3. Approach
Controlled video synthesis seeks to generate a plausible

future video sequence X ∈ RT×H×W×3 given an initial
frame x0 and a user-defined control c that locally specifies
part of the video dynamics,

(x0, c) 7→X = [x1, . . . , xT ] . (1)
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Figure 2. Overview of our proposed framework iPOKE for controlled video synthesis: We apply a conditional bijective transformation τθ to
learn a residual kinematics representation r capturing all video information not present in the user control c defining intended local object
motion in an image frame x0 (orange path). To retain feasible computational complexity, we pre-train a video autoencoding framework
(E,GRU,D) (blue path) yielding a dedicated video representation z as training input for τθ . Controlled video synthesis is achieved by
sampling a residual r, thus defining plausible motion for the remaining object parts not directly affected by c, and generating video sequences
X̂ from the resulting z = τθ(r|x0, c) using GRU and D (black path).

Our goal is here to efficiently control video synthesis. In-
stead of having users tediously specify the dynamics at each
pixel, e.g. by providing a dense vector field [77], c should
only be a very sparse signal. Thus, we assume to be pro-
vided only a local poke, the desired movement at one image
location between start and end frame. The poke c ∈ R4 con-
sequently comprises a shift, c1:2, at a single pixel location,
c3:4, performed only by a simple mouse drag. Evidently,
even densely defining the motion of every pixel between
start and end frame does not fully define the object dynamics
in between, even less so only a sparse 4D c vector. Given
this highly limited conditioning information, we model the
distribution of all plausible future videos

X ∼ p(X|x0, c) , (2)

thus contrasting previous work, which only yields some
arbitrary, uncontrolled realization [40, 45, 16, 10]. Our main
challenge is then to model the object kinematics which define
how the movement of one part of an object affects the rest,
thus yielding overall concerted object dynamics. As X is a
random variable, the mapping in (1) is actually non-unique.
There is a lot of residual information r beyond user control,
which we need to turn (1) into a unique one-to-one mapping

(x0, c, r) 7→X , (3)

where the residual r would then capture object kinematics
specifying the movement of the remaining object parts given
the sparse local control c.

3.1. Invertible Controlled Video Synthesis

Seeking to find the mapping (3) we naturally arrive at a
problem of stochastic video prediction. So far, the domi-
nant approach to such problems are conditional variational
autoencoder (cVAE) based models [38, 61, 65]. cVAE em-
ploys strong regularization to remove the given condition-
ing from the remaining data variations, thus facing a trade-
off between synthesis quality and capturing all these varia-
tions [11, 83], in our case the diverse object kinematics r.
To avoid this, we use a conditional bijective, i.e. one-to-one,
mapping τ between each residual r and the corresponding
video

X = τ(r|x0, c) (4)

so that all plausible X for a given conditioning can be synthe-
sized. Moreover, the inverse mapping τ−1 allows to recover
the residual kinematics for any X ,

r = τ−1(X|x0, c) , (5)

which then can be considered as a random variable
r ∼ p(r|x0, c), since τ−1 is unique and X is a random
variable defined in (2). To solve the conditional video synthe-
sis task, we now show how to learn τ such that r (i) indeed
contains all video information not present in (x0, c) and (ii)
follows a distribution which can be easily sampled from.
Learning the invertible mapping τ . We equip τ with pa-
rameters θ which, by employing Eq. (5), can be learned from
training videos X . By the change-of-variables theorem for
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Figure 3. Controlled stochastic video synthesis showing three video
sequences for the same user control c (red arrow) and randomly
sampled kinematics r on the PP dataset. Our model generates
diverse, plausible object motion while accurately approaching the
target location (red dot) for the controlled object part. Additionally,
to ease comparison of the motion difference between samples, we
show optical flow maps between the first and last frame of each
sequence. Best viewed in video on our project page.

probability distributions, we have

p(X|x0, c) =
p(τθ(r|x0, c)|x0, c)
|det Jτθ (r|x0, c)|

= p(τ−1θ (X|x0, c)|x0, c) · | det Jτ−1
θ

(X|x0, c)| .
(6)

Here, Jτθ denotes the Jacobian of the transformation τθ and
|det[·]| the absolute value of the determinant. Recall that
we have to ensure to learn τθ such that r contains all video
information not present in (x0, c). Effectively, this requires
learning τθ such that r is independent of (x0, c). This can
be achieved by introducing some independent prior q(r) and
minimizing KL[p(r|x0, c)‖q(r)], which then constitutes an
upper bound on the mutual information MI [r, (x0, c)] [2,
62] as derived in Appendix D.1 and thus, indeed forces the
intended independence. Moreover, by using Eq. (5) and
(6), we can express KL[p(r|x0, c)‖q(r)] as a function of the
training data X what facilitates learning of τθ by minimizing

KL[p(r|x0, c)‖q(r)] ∝ EX

[
− log

(
q
(
τ−1θ (X|x0, c)

))
− log |det Jτ−1

θ
(X|x0, c)|

]
. (7)

By selecting q(r) = N (r|0, I) [38, 80] and inserting this
into Eq. (7) we arrive at the simple objective function

min
θ
L(τθ,X, x0, c) = EX,x0,c[‖τ−1θ (X|x0, c)‖22

− log |det Jτ−1
θ

(X|x0, c)|] .
(8)

Figure 4. Controlled stochastic video synthesis showing three video
sequences for the same user control c (red arrow) and randomly
sampled kinematics r on the iPER dataset. Our model generates
diverse, plausible object motion while accurately approaching the
target location (red dot) for the controlled body part. Best viewed
in video on our project page.

A detailed derivation can be found in the Appendix D.2.
Note, that optimizing Eq. (8) simultaneously ensures (i) in-
dependence of r and (x0, c) and (ii) yields a generative
probabilistic model as we can easily draw samples from q(r)
and use the conditional mapping (4) to obtain synthesized
videos. Thus, our model is capable to synthesize videos in a
controlled but nonetheless stochastic manner without facing
the trade-off encountered in cVAE.

3.2. Architecture for Tractably Learning τθ
To realize the conditionally bijective nature of our map-
ping τθ, we implement it as a conditional invertible neural
network (cINN) [56, 18, 17, 62, 19], which requires equal
dimensionality of the transformed random variables. Thus,
X would demand r to be very high dimensional, entailing in-
feasible computational complexity. As a remedy, we replace
X with a compact, information-preserving video encoding
z ∈ Rh×w×d, with h · w · d� H ·W · 3 · T , learned by a
standard sequence autoencoding framework [38] consisting
of a 3D-ResNet [28] encoder E, a GRU [12] for temporal
enrollment in the latent space, and an image decoder G to
obtain video predictions X̂ . Prior to learning τθ, we train
this model to reconstruct training videos X by using a re-
spective loss Lrec and additionally add static and temporal
discriminators [13, 73], DS and DT , to increase visual and
temporal coherence of X̂ , thus resulting in the objective

Lae = Lrec + LDS + LDT . (9)

Detailed information on implementation and training can be
found in the Appendix E.1. Afterwards we can learn τθ from
the compact latent video encodings z = E(X) instead of
high-dimensional videos X .
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Figure 5. Controlled stochastic video synthesis showing three video
sequences for the same user control c (red arrow) and randomly
sampled kinematics r on the Human3.6m dataset. Our model gener-
ates diverse, plausible object motion while accurately approaching
the target location (red dot) for the controlled body part. Best
viewed in video on our project page.

So far, cINNs operating on latent representations have
been implemented as a sequence of fully connected lay-
ers [32, 62, 63], thus discarding the spatial information nat-
urally constituting visual data. However, since the condi-
tioning c describes a spatial shift of a single pixel, such
architectures are not able to effectively leverage this informa-
tion. To this end, we use the poke c to define a two-channel
map C ∈ RH×W×2 with Cc3,c4,1:2 = c1:2 and zeros else-
where, and instead design a fully convolutional cINN, such
that the crucial spatial information about the control location
can be incorporated as best as possible. More specifically,
our architecture comprises K subsequently arranged cINN
sub-blocks. By directly forwarding a portion d

K of the output
of each block to the final representation r, we reduce mem-
ory requirements and avoid vanishing gradients for large
K [18, 48]. Within the k-th block, we apply a series of
Nk masked convolutions [48], which have been shown to
obtain improved expressivity compared to standard flow ar-
chitectures such as coupling layers [17, 18, 37]. Finally,
the conditioning information (x0, c) is separately processed
by two dedicated encoding networks Φx0

and Φc, yielding
representations of the same spatial size than the flow input,
to which they are concatenated before each masked convolu-
tion. We visualize the architecture and training in Fig. 2 and
provide further details in Appendix E.2.

3.3. Automatic Simulation of User Control
Training our model for controlled video synthesis relies on
user controls c and corresponding video sequences X de-
picting natural object responses to be available. Providing
sufficient amounts of such training data for every targeted
object category is tedious and costly. Instead, we employ an
efficient self-supervised strategy to artificially generate such

Figure 6. Motion Transfer on iPER: We extract the residual kine-
matics from a ground truth sequence (top row) and use it together
with the corresponding control c (red arrow) to animate an image
xt showing similar initial object posture (second row). We also
visualize a random sample from q(r) for the same (xt, c) (bottom
row), indicating that the residual kinematics representation solely
contains motion information not present in (xt, c) (for a detailed
description cf. Sec. 4.2). Best viewed in video on our project page.

interactions directly from the observed motion of a collec-
tion of cheaply available training videos X . To this end, we
extract dense optical flow maps [29] F ∈ RH×W×2 between
the start and end frames, x0 and xT , of X whose individual
shift vectors can be interpreted as sparse pixel displacements
c = {(Fln,1,ln,2,1, Fln,1,ln,2,2)}Ncn=1. During training, we ran-
domly sample such simulated pokes at positions ln which
exhibit sufficiently large motion that reliably corresponds
to the foreground object. Contrasting [6], which use a sim-
ilar strategy, but restrict the user control to be defined by
only a single poke, we allow a user to control the degree
of freedom of the object articulation by training our model
on up to 5 simultaneous interactions c, i.e. on a variable
number Nc ∈ [1, 5] of local pokes. Note that for inferring
user controls after training we do not require optical flow
estimates, but use simple mouse drags instead.

4. Experiments
Subsequently, we evaluate our model for controlled

stochastic video synthesis on four video datasets showing di-
verse and articulated object categories of humans and plants.
Implementation details and video material can be found in
the Appendices F and G, and on our project page.

4.1. Datasets
We evaluate our approach to understand and synthesize ob-
ject dynamics on the following four datasets:
Poking-Plants (PP) [6] consists of 27 videos of 13 different
types of pot plants. To learn a single kinematics model for
all plants is notably challenging given the large variance
in shape and texture of the plants. Overall, PP contains of
43k frames, from which a fifth is used as a test set and the
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Figure 7. Understanding object kinematics: By sampling 1000 random control inputs at location l = c3:4 for a fixed image x0 we obtain
varying video sequences, from which we compute motion correlations for l with all remaining pixels. By mapping these correlations to the
pixel space, we visualize the interplay correlation of distinct object parts, thus yielding insights about the learned kinematics.

remainder as training data.
iPER [42] contains of 30 humans with diverse styles per-
forming various simple and complex movements. We follow
the official train/test split which results in a training set of
180k frames and a test set of 49k frames.
Tai-Chi-HD [64] is a collection of 280 in-the-wild Tai-Chi
videos from Youtube. We follow previous work [64] and use
252 videos for training and 28 videos for testing. Given the
large variance in background and camera movement, this
dataset tests the real-world applicability of our model. Since
the motion between subsequent frames is often small, we
skip every other frame.
Human3.6m [30] is a large scale human motion dataset with
video sequences of 7 human actors performing 17 different
actions. We follow previous work [76, 53, 24] by center-
cropping and downsampling the videos to 6.25 Hz and by
using actors S1,S5,S6,S7 and S8 (600 videos) for training
and actors S9 and S11 (239 videos) for testing.

4.2. Qualitative Evaluation

Controlled Stochastic Video Synthesis. In Fig. 3, 4 and
5 we show examples for controlled stochastic video syn-
thesis generated by our proposed model on the PP, iPER
and Human3.6m datasets. For each dataset, we show the
ground-truth frames following a fixed given image x0, as
well as three synthesized examples generated from a fixed
user control c (red arrows) and randomly sampled kinematics
realizations r ∼ q(r). Examples for the Tai-Chi dataset can
be found in the supplemental, where we also show additional
synthesized videos based on control inputs from real human
users and demonstrate our model to also plausibly react to
different pokes at the same location. The individual videos
are discussed in the Appendices A and B.
Transfer of Kinematics. Besides sampling plausible ob-
ject kinematics, we can also apply our model to transfer
the kinematics inferred from a source sequence Xs =
[xs,0, . . . , xs,T ] to a novel object instance. To this end,
we extract the corresponding residual kinematics rs =
τ−1θ (Xs|xs,0, c) for a user control c simulated based on
Xs and use Eq. (4) to animate a target image xt show-

ing another object instance than xs,0 with similar articula-
tion. The resulting successfully transferred motion sequence
X̂t = τθ(rs|xt, c) is shown in Fig. 6 (second row) and
compared to Xs (top row). It can be seen, that the motion
contained in Xs is transferred to X̂t but not the object ap-
pearance shown in x0,s, indicating that our model indeed
has learned a residual representation r solely containing
kinematics. Additionally, we visualize a synthesized video
sequence based on a random sample r ∼ q(r) of residual
kinematics for the same conditioning (xt, c) (bottom row),
showing substantially different object motion except for the
controlled body part and thereby providing evidence that r
is also independent of the user-control c. More results of
kinematics transfer can be found in Appendix A.2.

Understanding Object Kinematics. To demonstrate how
well our model captures holistic object kinematics we an-
alyze its understanding of the interplay of integral object
parts. Therefore, we measure the pixel-wise correlations
when applying 1000 randomly sampled user controls c at
a fixed location l of a fixed image x0, i.e. varying only di-
rection and magnitude of the shift vector. To measure the
correlation in motion of all pixels with respect to the fixed
control location (and thus the remaining object parts with the
controlled part), we first compute optical flow maps between
the start frame x0 and the end frame xT of all resulting syn-
thesized video sequences. Next, we compute the shift of the
tracked pixel locations in xT with respect to the interaction
location l, thus obtaining 1000 [magnitude, angle] represen-
tations of the individual shifts. To measure the correlation
of a pixel with l, we now compute the variance over these
shifts. Fig. 7 illustrates the resulting correlation maps given
different locations l for both humans and plants. For humans,
we obtain high correlations for pixels constituting a certain
body parts and to parts which are naturally connected to l,
showing our model correctly understands the body structure.
For the plant, we see pulling at locations close to the trunk
(top mid and right) intuitively affects large parts of the ob-
ject. Interacting with individual small leaves mostly has only
little effect on the remaining object, in contrast to the pixels
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Method PP [6] iPER [42] Tai-Chi [64] Human3.6m [30]
FVD ↓ LPIPS ↓ SSIM ↑ FVD ↓ LPIPS ↓ SSIM ↑ FVD ↓ LPIPS ↓ SSIM ↑ FVD ↓ LPIPS ↓ SSIM ↑

Hao [27] 361.51 0.16 0.72 235.08 0.11 0.88 341.79 0.12 0.78 259.92 0.10 0.93
Hao [27] w/ KP – – – 141.07 0.04 0.93 – – – – – –
II2V [6] 174.18 0.10 0.78 220.34 0.07 0.89 167.94 0.12 0.78 129.62 0.08 0.91
iPOKE (Ours) 63.06 0.06 0.69 77.50 0.06 0.87 100.69 0.08 0.74 119.77 0.06 0.93

Table 1. Comparison with recent methods for sparsely controlled video synthesis [27, 6].

Hao Hao w/ KP iPOKE (Ours)
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Figure 8. Control accuracy: On the iPER dataset, we extract con-
trol signals c based on ground truth keypoints and also estimate
keypoints for the resulting synthesized videos. We only evaluate
the errors with respect to those keypoints used to define c. The
violins show the resulting MSE distributions. The numbers are the
mean errors in keypoint space indicated by the black dots. Our
model outperforms the baselines of Hao et al. by a large margin
and even approaches their model which is trained on keypoints.

representing the leave.

4.3. Quantitative Evaluation

As our proposed task of controlled and stochastic video syn-
thesis has been so far unattempted, we cannot directly com-
pare iPOKE to previous work. To nevertheless quantitatively
prove our model to reliably achieve this task, we separately
compare against the current state of the art stochastic video
prediction models [40, 10, 24] and sparsely controlled video
synthesis approaches [27, 6]. For all competitors we used
the provided pretrained models, where available, or trained
the models using official code.
Evaluation Metrics.
Motion Consistency. We evaluate the synthesis quality by
using the Fréchet Video Distance [68] (FVD, lower-is-better)
which is responsive to visual as well as temporal coherence
and uses an I3D network [67] trained on the Kinetics [34]
dataset as backbone. Unterthiner et al. [68] showed that the
metric correlates well with human judgement. The FVD-
scores we report are obtained from video of length 10.
Synthesis Quality. Since we have no direct means to evaluate
how well iPOKE models object kinematics, we compare
its synthesized videos against the groundtruth using two
commonly used framewise metrics, as producing uncorrect
kinematics would lead to large errors between the individ-
ual generated and groundtruth frames. We average over
time and over 5 samples due to the stochastic nature of our
model. As it has been shown to account for high- and low-
frequency image differences and also to correlate well with
human judgement, LPIPS [82] (lower-is-better) is the metric
of choice for this task. Additionally, due to its wide appli-
cation, we report framewise discrepancy as measured by
SSIM [84]. However, as this metric compares image patches

based on the L2 distance, it is known to be deceivable by
blurry predictions.
Motion Diversity. Following previous work [40, 85] we eval-
uate the diversity by computing mutual distances between
the individual frames of different video samples (while fixing
the user control) using the LPIPS [82] metric. Moreover, we
also directly evaluate the diversity in the pixel space using
the MSE, thus measuring low-frequency image differences.
Controllable Video Synthesis. We compare our model with
the considered methods for sparsely controlled video syn-
thesis [27, 6] on all considered datasets using LPIPS [82],
SSIM [84] and FVD [68] on images of resolution of
128 × 128. Note that both competing baselines are lim-
ited in that they provide no means to stochastically model
the inherent ambiguity of the non-controlled object parts.
Additionally, [27] lacks a dedicated dynamics model, as this
method is based on a warping technique, which we describe
in Appendix F, and requires more than one control inputs to
reliably generate complex object articulation. Due to these
limitations, our model exhibits significantly better temporal
and visual consistency as indicated by the large gaps in FVD
and LPIPS scores in Tab. 1. To provide a stronger baseline,
we also train and evaluate the model of Hao et al. with in-
put trajectories based on groundtruth keypoints (Hao w/KP)
which are readily available for the iPER dataset and much
more reliable than those based on estimated optical flow.
Despite this advantage, we also outperform this baseline in
FVD and generate similarly sharp image frames as indicated
by comparable LPIPS scores.
Next, we use the displacements between the groundtruth
keypoints of the test sequences to construct targeted user con-
trols for each individual part of the human body. By using
these manipulations as test-time inputs and estimating key-
points [66] for the resulting generated videos, we assess the
targeted control accuracy by measuring the Mean Squared
Error (MSE) only between those estimated and groundtruth
keypoints which correspond to the poked body parts. Fig. 8
shows the resulting error distributions and means (black dots)
showing that we significantly outperform Hao et al. [27] and
achieve similar performance to their keypoint-based version.
Thus our model allows for accurate control of body parts
which are correctly moved to the intended target locations.
Stochastic Video Synthesis. To evaluate the visual quality
and the diversity of generated videos we compare against
recent state of the art methods for stochastic video synthe-
sis (SVS) [40, 53, 24], each of them based on variational
autoencoder (VAE). We adopt the SVS evaluation proto-
col and generate videos of spatial size 64 × 64. Tab. 2
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Method PP iPER [42] Tai-Chi [64] Human3.6m [30]
FVD ↓ DIV MSE‡ ↑ DIV LPIPS‡ ↑ FVD ↓ DIV MSE‡ ↑ DIV LPIPS‡ ↑ FVD ↓ DIV MSE‡ ↑ DIV LPIPS‡ ↑ FVD ↓ DIV MSE‡ ↑ DIV LPIPS‡ ↑

SAVP [40]† 92.2 – – 92.8 – – 236.8 – – 131.7 – –
IVRNN [10] 128.3 2.52 8.23 126.0 37.66 93.26 150.2 0.34 1.65 238.6 46.45 106.71
SRVP [24] 171.9 110.37 225.77 274.2 53.94 164.46 268.9 30.2 16.00 140.1 93.61 224.07
iPOKE (Ours) 56.59 133.37 275.04 81.49 98.95 201.58 96.09 69.96 126.76 111.55 124.25 309.06

Table 2. Comparison with recent state-of-the-art in stochastic video prediction. As our model does not face trade-off between variability and
synthesis quality, we obtain significantly better motion video quality and diversity scores for all considered datasets. †: SAVP faced mode
collapse due to training instabilities caused by the two involved discriminator networks. As a consequence their model generates entirely
equal outputs when sampling. Therefore, we are unable to report diversity scores for this baseline. ‡: Reported numbers multiplied with 1e4.

summarizes the comparison in video quality (measured in
FVD score) and sample diversity (measured using LPIPS
and pixel-space MSE). All SVS methods are conditioned on
two image frames directly preceding the predicted sequence
if not stated otherwise. Details for training and evaluation
protocols can be found in the Appendices F and G. Our
method outperforms all competing approaches by large mar-
gins in both video quality and diversity. Moreover, Tab. 2
reveals that competing methods which achieve comparable
FVD scores to ours, i.e. video synthesis of similar visual
quality, fail in generating diverse samples and vice versa.
We attribute the limited performance of these models to the
discussed trade-off in synthesis quality and capturing data
variations of VAE-based approaches (cf. Sec. 3.1).
Controlling Future Ambiguity. We now assess the ability
of our model to control the degree of freedom in stochastic
object articulation by varying the number of local pokes.
Intuitively, an increasing number of user controls should
result in more accurate predictions and lowered between-
sample-variance due to the reduction in future ambiguity.
We evaluate the amount of uncertainty in predictions by
comparing average reconstruction scores of a fixed number
of samples from q(r) for increasing numbers of user controls.
More specifically, we report the mean prediction error and
standard deviation of 50 samples (Std-50s) for each of 1000
input images and pokes. On the iPER dataset this is done
by measuring MSE between estimated [66] and groundtruth
keypoints. For PP dataset we resort to the LPIPS metrics as
keypoints are not available. The resulting curves are depicted
in Fig. 9. As expected, the decreasing prediction errors and
between-sample-variances indicate that our model leverages
the additional future information provided by an increased
number of pokes. Thus, our model not only generates diverse
predictions but also provides means to control their uncer-
tainty by choosing an appropriate number of input pokes.
Ablation Study. As the competing VAE-grounded baselines
for SVS are all conditioned on observed motion in form of
observed past frames rather than dedicated, local user control,
we further compare our model method to a cVAE-baseline
(Ours cVAE) for locally controlled video synthesis. Thus,
we use the exact architecture of our video-autoencoding
framework (cf. Sec. 3.2) except for our latent cINN model.
To enable sampling, we realize the latent video representa-
tion z as a gaussian distribution and regularize it towards
a standard normal prior. The encodings obtained from the
control c and source image x0 are concatenated with z and
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Figure 9. Controlling Future Ambiguity: On the PP (left) and iPER
(right) datasets our model reduces mean prediction errors (blue)
and standard deviations of a sample of 50 residual samples given
the same (x0, c) for an increased number of control inputs. Thus,
our approach enables users to control future ambiguity by selecting
the number of control inputs.

Method PP Human3.6m [30]
FVD ↓ DIV MSE ↑ DIV LPIPS ↑ FVD ↓ DIV MSE ↑ DIV LPIPS ↑

Ours cVAE 70.9 3.37 7.59 269.6 83.17 210.39
iPOKE (Ours) 56.59 133.37 275.04 111.55 124.25 309.06

Table 3. Ablation. Comparison with a cVAE-counterpart to our
cINN-based model for controlled video synthesis, indicating its
superior performance due to variability vs. quality trade-off in
cVAE.
constitute the hidden state for the latent GRU. A detailed
architecture and training description of the baseline is con-
tained in the Appendix F. Thus, this baseline is the exact
variational counterpart of our model. We conduct ablation
experiments on all the considered object categories, using
the PP and Human3.6m datasets. Tab. 3, which summarizes
the results, again indicates the improved performance of our
invertible model compared to variational approaches.

5. Conclusion
We presented a novel model for controlling and synthesiz-

ing object kinematics of arbitrary object categories by locally
manipulating object articulation using simple mouse drags.
Our model is based on an invertible mapping between the
generated video sequences and a dedicated kinematics repre-
sentation learned from training videos only. To account for
the ambiguity in the global object articulation given a local
shift determining the motion of only an object part, learning
is based on a probabilistic formulation, thus allowing us to
sample and synthesize diverse kinematic realizations.
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