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Abstract

Mixed-precision networks allow for a variable bit-width
quantization for every layer in the network. A major lim-
itation of existing work is that the bit-width for each layer
must be predefined during training time. This allows lit-
tle flexibility if the characteristics of the device on which
the network is deployed change during runtime. In this
work, we propose Bit-Mixer, the very first method to train
a meta-quantized network where during test time any layer
can change its bit-width without affecting at all the overall
network’s ability for highly accurate inference. To this end,
we make 2 key contributions: (a) Transitional Batch-Norms,
and (b) a 3-stage optimization process which is shown ca-
pable of training such a network. We show that our method
can result in mixed precision networks that exhibit the desir-
able flexibility properties for on-device deployment without
compromising accuracy. Code will be made available.

1. Introduction
Despite their unprecedented accuracy, directly deploy-

ing Deep Neural Networks on devices with limited com-
putational resources and/or power constraints remains pro-
hibitive. To address this problem, a series of related re-
search directions have emerged such as network prun-
ing [29, 35, 25], network compression [24, 40, 27], neural
architecture search [28, 6] and network quantization. The
later offers the most straightforward improvements as using
fewer bits for the weights and activations significantly re-
duces the compute and storage requirements. For example,
switching from FP32 to Int-8 precision, a 4× improvement
in terms of speed and storage is obtained without any bells
and whistles. This paper is on mixed-precision networks
which allow for a variable bit-width quantization for every
layer in the network.

Mixed-bit precision networks allow for a finer granular-
ity of quantization at a layer level and, hence, offer prac-
tical advantages in terms of finding a more optimal trade-
off between efficiency (i.e. speed) and memory require-

ments, and network accuracy. While this is more flexible
than having the same bit-width across the whole network,
mixed-bit precision approaches have also their own limi-
tations. Firstly, due to an ever-growing number of differ-
ent hardware platforms that a developer needs to support,
each with its own unique characteristics and capabilities,
quantizing networks, partially or fully, with mixed-bit pre-
cision in order to obtain an optimal trade-off between accu-
racy and speed becomes challenging. Secondly, and more
importantly, even on the same device, due to either other
concurrent processes running, battery level, temperature, or
simply prioritization, the available resources can vary. Ide-
ally, a network should be able to dynamically react to these
changes and adapt its quantization level per layer or mod-
ule on the fly without incurring undesirable, or even more
importantly, unpredictable penalties on inference accuracy.

The method we propose in this paper, coined Bit-Mixer,
attempts to provide an answer to the aforementioned chal-
lenges. Bit-Mixer shifts away the focus from finding the
optimal bit-with allocation per layer during training as
done in all previous work. Instead, we propose to train a
meta-quantized network that during test time can switch to
any quantization level for any layer in the network. Train-
ing such meta-networks is however non-trivial due to the ex-
ponential number of unique combinations, the weight shar-
ing constraint across different bit-widths, and the drastic
variations in representational power that occur when the bit-
width changes (e.g. 4 bits vs 1 bit). To this end, we make
the following contributions:

1. Transitional Batch-Norms: To properly compensate
for the distribution shift that arises when a change in
the bit-width occurs between two consecutive layers,
for each transition between different bit-widths, we
propose to learn a separate batch normalization layer,
coined Transitional Batch-Norm.

2. 3-stage Optimization: We firstly propose an efficient
2-stage process to train an intermediate meta-network
which at runtime can select different bit-widths which
however are shared across the entire network. Then,
a 3-rd final stage is introduced to gradually transition
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(b) Adabits: A single network can be
quantized to any of n bit-widths at run-
time. All layers inside the network share
the same bit-width.
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(c) Proposed method (Bit-Mixer): A
single network whose individual layers
can be quantized at runtime to any bit-
width, without any re-training.

Figure 1: Comparison between prior network quantization paradigms (a,b) and ours (c). Our method is the only one re-
sulting in an exponential number of mixed precision networks that one can choose from to fit the device characteristics and
computational resources available on-the-fly.

from the intermediate meta-network to the final one
where the quantization level can be randomly selected
at a block or layer level. Notably, our meta-network
uses a single, shared set of weights.

3. We conducted several ablation studies which shed
light into the behaviour of several components of our
method. Moreover, building on top of the findings of
[11], we analyze Bit-Mixer’s sub-nets exploring the
inter-dependencies between the accuracy and the quan-
tization level selected for a given layer. Finally, we ex-
tensively evaluated the accuracy of the proposed Bit-
Mixer across different architectures and model sizes.

2. Related work

Network quantization aims to alleviate the high com-
putational and memory cost of modern deep neural net-
works by using fewer bits (i.e. b < 32) for the weights
and activations. Most of the early works quantized the
weights only [15, 8]. Follow-up works quantize both the
weights and the activations while maintaining the same bit-
width across the entire network using uniform quantization
schemes [19, 20, 47, 33, 37, 2, 48, 50, 13, 3].

More recently, a growing body of work explores mixed-
precision quantization which enables, within the same ar-
chitecture, different layers to use different bit-widths [12,
39, 42]. The bit-width allocation process is typically per-
formed either using reinforcement learning techniques [12,
42] or differential search [44, 39]. Contrary to Bit-Mixer
(our work), all the aforementioned methods result in a sin-

gle network with different but pre-defined bit-widths per
layer that cannot be modified without retraining.

Related to our work is the line of research somewhat re-
lated to Neural Architecture Search (e.g. [6, 38, 28]), and, in
particular, the works of [46, 45, 4] where the authors train
a super-network from which sub-nets with varying depth,
width, and kernel size can be sampled without retraining.
These works do not consider the problem of network quan-
tization at all.

More closely related to our work is AdaBits [21] where
the authors propose to train a single neural network, with a
shared set of weights, that can switch bit-width at runtime.
However, a major limitation of AdaBits is that it is not a
mixed-precision network: it uses the same bit-width across
the entire network which reduces its flexibility in practical
scenarios. Moreover, from a methodological perspective,
the Transitional Batch-Norms as well as the 3-stage opti-
mization procedure proposed in our work are fundamentally
different from the methods described in [21].

3. Method
3.1. Unifying 1–n bit quantization

For a given layer l, we denote the quantization of the
weights W and input activations A as quant(W, b) =
W̃b and quant(A, b) = Ãb, respectively, where b =
{1, 2, . . . , n} denotes the bit-width.

For the quantization function, we opted to adopt and
adapt the recently proposed LSQ [13] as follows: to han-
dle both cases b = 1 (i.e. binary networks) and 1 < b ≤ n,
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Figure 2: Difference between various quantization schemes (from left to right) used in DoReFa [48], AdaBits [21] and
Bit-Mixer (Ours). In all cases y = quant(x)

we quantize both the activations and the weights between
(−mb,mb), where mb = 2b−1 − 1 is the maximum value
representable using b bits 1. Although this symmetric quan-
tization discards 1 state, we will show that this has no
impact on the accuracy of the quantized networks. Fur-
thermore, the case b = 2 degenerates in what is known
as ternary quantization, allowing for further specific opti-
mizations made possible by the induced sparsification [49].
Overall, our unified quantization scheme is defined as:

W̃b = qb(W )

Ãb = qb(A),
(1)

where the quantization function qb(x) is computed as:

qb(x) = α× q’(clip(
x

α
,−mb,mb))

q’(x) =

{
⌊.⌋, if b > 1

sign, if b = 1
,

(2)

where ⌊.⌋ is the floor rounding operator and α ∈ R rep-
resents the learnable scalar that defines the quantization step
size as in LSQ [13]. For each layer and bit-width two such
scalars are learned, one for the weights and another for the
activations. Notice that we replaced the round function
used in LSQ [13] with floor. This allows us to obtain the
weights W̃i directly from W̃i+1 without the need of storing
the full precision weights, significantly reducing the model
storage requirements (as its size is determined solely by the
size of W̃n). The difference between various quantization
schemes for mixed precision networks is shown in Fig. 2.

3.2. Transitional Batch-Norm

Quantizing the individual layers and blocks to different
bit-widths will result in features that follow different dis-
tributions. This is because of two reasons: Firstly, it is a
consequence of the inherent change in the representational

1This is because in binary nets both the weights and the activations are
quantized using the sign function, hence a symmetric quantizer is needed.

power due to the change of precision. Secondly, as the
number of bits drops, the network is unable to approximate
closely the feature distribution of higher bit-widths, as the
weight distribution significantly changes (this can also be
seen in Fig. 6 for b = {1, 2, 3, 4}).

To properly compensate for the distribution shift that
arises when a change in the bit-width occurs between two
consecutive layers, for each transition between different bit-
widths, we propose to learn a separate batch normaliza-
tion layer, coined Transitional Batch-Norm. Specifically,
if 1 ≤ i ≤ n is the bit-with of layer l − 1 and 1 ≤ j ≤ n
is the bit-with of layer l, we learn BN parameters γij and
βij . The parameters γij and βij remain tied to the bit-width
j of the layer l since they depend on the current quantiza-
tion level alone, irrespectively of the layer’s weights, which
do not undergo a transition as opposed to the activations.
We note that introducing the Transitional Batch-Norm lay-
ers does not induce any increase in the complexity of the
network; only a small increase in network size is introduced
(less than 1% of the total parameters count). Importantly,
we emphasize that, without the Transitional Batch-Norms,
the network is unable to converge to a satisfactory level of
accuracy. This phenomenon is present both when training
from scratch and when initializing from a pretrained model
(see also Table 1).

We note that the core idea of the transitional BatchNorm
is to compensate for the distribution shift that occurs be-
tween two consecutive layers, i.e. per transition (i.e. it de-
pends on the state of two layers: previous and current) and
not per layer as in previous Conditional BatchNorm [9]
works. This is noticeably different from prior work on dy-
namic networks [45, 43, 46] and adaptive quantization [21]
where the BatchNorm depends on the input only.

3.3. Optimization process

A key remaining aspect of our method is how to train
the proposed meta-network which turns out to be very chal-
lenging for several reasons. A direct naive approach, where
all the paths are active simultaneously, is unfeasible due to
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both memory and computational constraints. Besides this,
we considered an approximation to this training where all
active paths are considered between 2 adjacent layers. Even
in this case, we found the models unstable to train due to the
internal competition arising, especially early in the training.

A more computationally feasible approach is to select
randomly (with equal probability) during training an active
sub-path or a set of active sub-paths. However, we found ex-
perimentally that this leads to networks in which the accu-
racy of all bit-widths are closely tight together, pulling them
towards the one with the lowest accuracy, hence diminish-
ing the advantages of training the proposed meta-network.

To successfully train the newly introduced quantized
meta-network, we firstly propose an efficient way to train
a meta-network which can work at runtime with different
bit-widths which however shared across the entire network
(Stages I & II below). Then, to obtain the final meta-
network, we propose to progressively train the previous net-
work by gradually transitioning from networks where all the
layers are quantized to the same bit-width to ones where the
quantization level is randomly selected at a block or layer
level (Stage III below). The procedure is summarized as:
Stage I: During this stage, the network weights are kept
real-valued while the activations are quantized to n differ-
ent bit-widths. At each iteration, we randomly select, with
equal probability, a bit-width b out of the predefined set
{1, . . . , n}. At this stage, the model will use the same bit-
width for the activations across all layers of the network.
Stage II: During this stage, we use the network trained in
Stage I as initialization and repeat the process of the previ-
ous stage, with the difference being that this time both the
weights and the activations are quantized. Again, the model
will use the same bit-width, randomly selected at each itera-
tion, for both weights and activations across all layers of the
network. Note that Adabits [21] trains a network similar to
the one obtained at the end of this stage.
Stage III: Continuing the training process by resuming
from the previous checkpoint, during this stage, and with
probability σ, the weights and features are trained in the
same fashion as described in Stage II (i.e. the same bit-
width is used across all layers). For the rest of time, i.e.
with probability 1 − σ, the bit-width b of each individual
layer is randomly selected independently of each other, re-
sulting in a network where different bit-widths are used for
different layers. As the training progresses, we gradually
decrease σ, effectively increasing the chance of training the
meta-network with layer-wise random bit-with allocation.
We continue the process until 1 − σ = k, where k is typi-
cally 3

4 . All 3 stages share the same training scheduler.

4. Ablation studies
Unless otherwise stated, we conduct our ablation studies

by using Bit-Mixer to train a meta-ResNet-18 [16] on Im-

ageNet. We mainly report the accuracy of Bit-Mixer for
the following 2 cases (note there is only one single net-
work that is evaluated): fixed bit-width selection across all
layers and random bit-width selection for each individual
layer. For the latter case, we simply randomize the layer-
wise bit-width selection for every iteration (forward pass) of
the validation set. Hence, the average bit-width for a layer
across multiple runs is ≈ 3. We note that this random layer-
wise bit-width selection has been intentionally chosen for
Bit-Mixer’s evaluation protocol since it conclusively shows
that Bit-Mixer works as expected. However, in Section 4.2,
we do provide accuracy results for the case where a simple
method, based on [11], has been used in order to discover
high-performing sub-nets within the trained meta-network.

4.1. Effect of Transitional Batch-Norm

In Section 3.2, we introduced the Transitional Batch-
Norm layers to compensate for the distribution shift be-
tween adjacent layers that are quantized to different bit-
widths. Herein, we show their importance in terms of effec-
tively training Bit-Mixer. As Table 1 shows, without Transi-
tional Batch-Norm, the meta-network is unable to converge
to a good solution although it was initialized using a model
trained up to Stage II. The effect can be also observed by
analyzing the statistics of the features before and after ap-
plying the Transitional Batch-Norm layer in Fig. 3.

Table 1: Top-1 accuracy (%) on ImageNet for Bit-Mixer
trained with and without Transitional BN.

Bit-Mixer Bit-width
4 3 2 Rand.

w/o Transitional BN 8.2 5.6 10.2 8.8
with Transitional BN 69.2 68.6 64.4 65.8

4.2. Analyzing Bit-Mixer’s sub-nets

Bit-Mixer’s trained meta-network contains an exponen-
tial number of sub-nets. By changing the bit-width of its
individual layers (at runtime, and without extra training), a
device or an application where the network is deployed can
benefit from a finer trade-off between accuracy and speed.
Herein, we describe a method for “extracting” highly per-
forming sub-nets from the meta network given a specific
avg. bit-width budget. We note that no training is required
for finding these sub-nets.

To facilitate the selection of interesting (as measured in
terms of accuracy per avg. bit-width) candidates out of the
given population, we followed [11], and for each layer, we
computed the top eigenvalue of the Hessian 2. Note that, for
this purpose, we used the network with the highest possible

2Since forming the entire Hessian matrix is computationally and mem-
ory prohibitive, we made use of the power iteration algorithm [31].
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Figure 3: Variance per channel over the quantized activa-
tions Ãb, b = 2, 3, 4 before and after applying the Transi-
tional Batch-Norm. Notice that the layer helps reducing the
variance of the quantized activations significantly, stabiliz-
ing the training of the Bit-Mixer meta-network.

Figure 4: Top-1 accuracy (%) on ImageNet for a set of sub-
nets extracted from Bit-Mixer’s meta-ResNet-18. Note that
the accuracy smoothly varies as the avg. bit width changes.

Figure 5: Top eigenvalues of the Hessian matrix for each
layer of the network with const. bit-width equal to 4. No-
tice that layers located towards the end of the network are
generally more sensitive to noise.

bit-width (i.e. constant bit-width equal to 4 for all layers).
The top eigenvalues computed per each layer for the net-
work can be seen in Fig. 5. Smaller eigenvalues correspond
to flatter loss surfaces, which, in turn, suggest that such lay-

ers are good candidates for more aggressive quantization
since the induced errors are less likely to be amplified [18].

Given a meta-network Φ, trained as described in Sec-
tion 3.3, and a target average bit-width bavg = 1

N

∑N
i bi,

where N is the number of layers and bi the selected bit-
width of the i-th layer, we attempt to identify a set of
promising sub-nets {Φ0, ...,Φm} formed by changing the
per-layer bit-width as follows: Let Cbits = ⌈N × bavg⌋ be
the total bit-cost of the desired sub-net, and vC ∈ RN a per-
layer defined cost-vector constructed by taking the high-
est eigenvalue of the Hessian matrix of each layer. Note
that, depending on the target scenario, the cost could be ad-
justed to take into consideration device-specific knowledge.
Since the set of sub-nets {Φ0, ...,Φm}C of cost C is fi-
nite, a straightforward approach is to use a greedy approach
generating all potential candidates of bit-cost Cbits. Once
generated, for each configuration from the set, we com-
pute its final ranking cost by taking the product Ctotal =
[b0b1...bN ] × vT

C . We can then select the top-k candidates
and evaluate their accuracy. Fig. 4 shows a few promising
candidates for various avg. bit-widths alongside their cor-
responding accuracy. It can be observed that even by using
a simple method like the one described above, a diverse set,
in terms of accuracy, of networks can be obtained covering
the whole spectrum of avg. bit-widths. Different runs will
result in slightly different accuracy for each variant. Gen-
erally, configurations with more bits allocated to the up-
per part of the network will perform better. While Fig. 4
depicts a set of promising candidates, some configurations
will under-perform, hence the average of all configurations
is around 3− 4% lower than that of the top performer.

4.3. Effect of knowledge distillation

Knowledge distillation has been previously shown to im-
prove the performance of both full precision [17] and quan-
tized neural networks [34, 32]. Herein, we analyze and val-
idate to what extent distillation helps improve the training
of Bit-Mixer for both Stages II and III. In particular, we ex-
plore two scenarios for the teacher: (1) Using a full preci-
sion network (FP32), and (2) using the trained network after
Stage I. We note that, in all cases, the student and teacher
networks have exactly the same architecture. As Table 2
shows, distillation does indeed improve the accuracy, al-
though the improvements are lower than typically observed
for independently quantized or full precision models.

4.4. 1–4 bit quantization

In Section 3, we introduced a unified quantization
scheme that can be used across all bit-widths, including 1
bit quantization (i.e. binarization). As our results in Table 3
suggest, using a single, shared, set of weights, we can suc-
cessfully train the meta-network up to Stage II using all 4
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Table 2: Top-1 accuracy (%) on ImageNet for Bit-Mixer
trained with and without distillation.

Method Teacher Bit-width
4 3 2 Rand.

Ours–Stage II
- 69.1 68.5 65.1 -

Stage I 69.4 68.7 65.6 -
FP32 69.3 68.7 65.5 -

Ours–Stage III
- 69.0 68.4 64.0 65.5

Stage I 69.1 68.6 64.5 65.7
FP32 69.2 68.6 64.4 65.8

Figure 6: Weights distribution for 1, 2, 3 and 4 bits after
quantization. Note the significant difference in distribution
for the 1 bit quantization.

bit-widths (i.e. 4,3,2 and 1) with minimal accuracy loss 3.
This is performed in order to align the 1 bit quantization to
the rest ones. The training scheduler used for the 4-3-2-1
quantization is the same as the one used for 4-3-2. Notice
that despite the relatively larger accuracy gap between bina-
rization and 4 bit quantization, also observed from the no-
ticeably different weight distribution as shown in Fig. 6, the
trained model after Stage II offers overall a good accuracy.

Following Stage II, we continued the training of the
above model to obtain the final, Stage III, 4-3-2-1 Bit-Mixer
model. However, during this last stage, the training did
not converge to the desired outcome. We believe that the
main reason for this is the lack of the zeroth state for the
binary case. Specifically, while the 2-4 bit-width quantiza-
tion share the lower states between themselves, as shown in
Fig. 1c, the same is not true for 1 bit quantization, which
lacks the zeroth state, introducing high quantization errors

3We note, that unlike the current paradigm used in most recent works
on network binarization that is to maintain the 1× 1 downsampling layers
to full precision [32], in our experiments we binarize them too.

Table 3: Top-1 accuracy (%) on ImageNet using a ResNet-
18 for 4-3-2-1 bits quantization.

Method Bit-width
4 3 2 1

Independent 69.1 68.5 65.1 59.0

Adabits [21] 69.2 68.5 65.1 -
Ours (Stage II) 69.4 68.7 65.6 -
Ours (Stage II) 68.7 68.0 64.2 57.3

around it and resulting in a different distribution (see Fig. 6).
However, we did manage to train successfully a Bit-

Mixer model with the following configuration bact =
{2, 3, 4} for the activations and bw = {1, 3, 4} for the
weights, respectively. The results are shown in Table 4. In-
stead of using 2 bits for the activations and weights, in this
case, we binarize the later. Since our 2 bit representation
is, in fact, a ternary one, this ternary-binary quantization
allows for efficient bit-wise implementation too which can
result in at least 40× [41] faster convolutions.

Table 4: Top-1 accuracy (%) on ImageNet using a ResNet-
18 for 4-3-1.5 bits quantization. See Section 4 for how rand
is defined. * -denotes binary-ternary quantization.

Method Bit-width
4 3 1.5* rand

Adabits [21] 69.2 68.5 - -

Ours - Stage II 69.0 68.7 64.0 -
Ours - Stage III 69.0 68.5 62.1 62.9

4.5. Scale– vs. clip–based mixed quantization

Throughout this work, we quantize our models using
Eq. 1 and 2. Fig. 7 shows how the learnable quantization
scaling factors α in Eq. 2 change their value as we advance
through the network. Importantly, the ratio between αi and
αj is approximately equal to that of mi/mj suggesting that
all bit-widths are roughly scaled to occupy the whole range.

To emphasise the importance of the per bit-width scal-
ing factors, we also tested a slightly different approach.
The idea is to have shareable quantized weights (and ac-
tivations) which are obtained by firstly quantizing the real-
valued weights to the maximum bit-width n (i.e. −mn and
mn) and then clipping them to fit the required bit-width (i.e.
−mi and mi). For the weights, this idea is described by:

W̃n = q’n(clip(
W

α
,−mn,mn)) (3)

W̃i = α× clip(W̃i+1,−mi,mi), (4)
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Intuitively, this has the effect that the largest (in magnitude)
values of the real-valued weights are mapped to states/bits
which are present only in the higher bit-widths. On the con-
trary, using per bit-width scaling factors, the whole range
of real-valued weights is mapped to the whole range corre-
sponding to a specific bit-width (i.e. −mi and mi). When
trained with this type of quantization, we found that the
obtained networks performed 5–10% worse than with the
scale-based quantization.

Figure 7: Quantization scales for the activations and
weights (dashed line) of each layer of a ResNet-18 model
quantized to b = {2, 3, 4}. Notice that the ratio between
each scale is approximately equal to that of their corre-
sponding maximum representable values.

4.6. Symmetric vs Asymmetric quantization

We firstly, note that, in this work, symmetric quanti-
zation to refers to the case where the data are mapped
to integers in the range {−2b−1 − 1, ..., 2b−1 − 1} while
asymmetric to the case where the data are mapped into
{−2b−1, ..., 2b−1 − 1}. In both cases, we consider 0 itself
as the zero point as this allows for more efficient imple-
mentations. To ensure that no accuracy loss occurs due to
the aforementioned design choices, we trained three mod-
els: One with asymmetric quantization, one with symmet-
ric, and finally one with symmetric quantization but using
the round function in Eq. 2 instead of floor. As the
results from Table 5 show, all 3 variants are producing es-
sentially identical results.

Table 5: Top-1 accuracy (%) on ImageNet using a standard
ResNet-18 quantized to 2, 3 and 4 bits using 3 different
quantization schemes.

Quantization Method Bit-width
4 3 2

symmetric 69.1 68.5 65.1
asymmetric 69.2 68.5 65.2

asymmetric with round 69.2 68.6 65.2

Method 32 4 3.5 3 2.5 2

DoReFa [48] 70.4 68.1 - 67.5 - 62.6
LQ-Net [47] 70.3 69.3 - 68.2 - 64.9

PACT [7] 70.4 69.2 - 68.1 - 64.4
QIL [22] 70.2 70.1 - 69.2 - 65.7
DSQ [14] 69.9 69.6 - 68.7 - 65.2
APoT [26] 70.2 - - 69.9 - -

EdMIPS [5]* - 68 67.7 67 66.4 65.9
Adabits [21] - 69.2 - 68.5 - 65.1

Ours 69.6 69.1 69.2 68.6 66.4 64.4

Table 6: Comparison against the state-of-the-art in fixed-bit
and mixed precision quantization in terms of top-1 accuracy
(%) on ImageNet using a ResNet-18 architecture. * refers
to results were either the number of bits or the accuracy is
approximately the one stated in the table.

5. Results
5.1. Experimental setup

All out experiments are performed on ImageNet [10].
We focus on the 2-4 bits quantization range. For b > 4,
the accuracy almost always matches or gets very close to
that of the full precision counterparts. Following previous
work (e.g. [21, 37, 5, 48] ) the batch normalization layers
are not quantized.
Network architectures: In order to cover a broad spectrum
of architectures in terms of depth, width, and cardinality
(i.e. via grouped convolutions) we performed experiments
using the following architectures: (a) ResNet [16] (18, 34,
50) and, (b) the recently proposed EBN of [1]. We chose the
later since it was shown to be efficient, suitable for quanti-
zation and flexible in terms of varying the width and the
group size of the model easily. For example, by increasing
the group size, more efficient variants can be obtained. Note
that we did not use expert convolutions as proposed in [1].
We used an EBN which, similarly to a Resnet-18, has 4
stages and 2 convolutional blocks per stage. The width of
each stage is double the one used in Resnet-18. Finally, the
group size per stage is denoted by G0:G1:G2:G3. We tried
3 EBN variants in total: 4:8:8:16, 4:8:16:32 and 4:4:4:4.
Training details: Unless otherwise stated, all models are
trained following the same recipe: the networks are trained
for 160 epochs using a cosine scheduler with warm-up (10
epochs) and no restarts [30] with a starting learning rate of
0.001 and a weight decay of 1e − 4. We used the Adam
optimizer [23]. For augmentation, we follow the standard
set of transformations used for ImageNet in prior works,
mainly: random crop, resize to 224 × 224px and random
flipping. For stage III, we gradually increase the probabil-
ity of 1 − σ from 0 to a target value k during early train-
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Table 7: Top-1 accuracy (%) on ImageNet obtained by ap-
plying Bit-Mixer on several ResNet and EBN architectures.
The accuracy of AdaBits is directly comparable with Ours-
Stage II. Notice that Bit-Mixer (Ours) is the only method
that can produce a result for layer-wise rand. bit alloca-
tion. Note that, as shown in Section 4.2, certain sampled
sub-nets from our Bit-Mixer meta-network are significantly
more accurate than rand. * - denotes result taking directly
from [21]. See Section 4 for how rand is defined.

Arch. #bits
Method

Indep. AdaBits Ours Ours
[21] (Stage II)

ResNet-18

4 69.1 69.2 69.4 69.2
3 68.5 68.5 68.7 68.6
2 65.1 65.1 65.6 64.4

Rand. - - - 65.8

ResNet-34

4 73.1 73.0 73.0 72.9
3 72.6 72.5 72.6 72.5
2 70.2 70.0 70.1 69.6

Rand. - - - 70.5

ResNet-50

4 75.5 76.3* 75.2 75.2
3 75.3 75.9* 74.9 74.8
2 72.8 73.3* 72.7 72.1

Rand. - - - 73.2

EBN
4 74.0 - 74.0 73.9
3 73.5 - 73.4 73.3

4:8:8:16 2 70.7 - 70.5 70.4
Rand. - - - 71.8

EBN
4 73.8 - 73.8 73.3
3 73.3 - 73.2 72.8

4:8:16:32 2 69.8 - 69.7 68.9
Rand. - - - 70.0

EBN
4 74.7 - 74.6 74.7
3 74.2 - 74.2 74.2

4:4:4:4 2 71.5 - 71.1 71.4
Rand. - - - 72.1

ing, until the network configurations stabilize. Note that
values for σ = [2/3, 4/5] work too. However, for σ too
low or too high, the sub-networks’ accuracy degrades to
that of the lowest bit-width. For the rest of the training
(typically after epoch 80), k remains fixed. The value of k
is determined based on the network architecture (typically
2/3 < k < 4/5). During evaluation, we resize the im-
ages to 256× 256px and then center crop them to the same
224 × 224px resolution. All experiments are implemented
using PyTorch [36].

5.2. Comparison with state-of-the-art

Herein, we firstly compare our method against the cur-
rent state-of-the-art in quantization. We note that it is hard

to make a direct comparison between Bit-Mixer and other
methods, as our method: (1) is the very first of its kind that
offers the flexibility of layer-wise bit-width selection during
runtime, (2) is not focusing on maximizing accuracy for a
specific bit-width like other fixed-bit quantization methods,
nor (3) is focusing on finding the optimal bit-width allo-
cation for maximizing accuracy like other mixed-precision
methods. Moreover, (4) the accuracy results reported in
other papers depend on other factors, for example, a very
important one is the accuracy of the original FP32 model
used. Hence, the main aim of these comparisons is to rather
illustrate that the networks trained with Bit-Mixer offer ac-
curacy on par with recently proposed state-of-the-art quan-
tization methods.

To this end, in Table 6, we report our results in com-
parison with a variety of recently proposed state-of-the-
art methods for fixed-bit and mixed precision quantiza-
tion [48, 47, 7, 22, 14, 26, 21, 5]. In all cases, the ResNet-
18 architecture was used. As it can be observed, Bit-Mixer
provides very competitive results by just training a single
meta-network which can dynamically define the per-layer
bit-width at runtime. This is very important as our goal is to
have the flexibility that Bit-Mixer can offer without however
compromising the capacity for highly accurate inference.

This section, and, in particular, Table 7, also provides
results obtained by training Bit-Mixer meta-networks using
the ResNet and EBN architectures detailed in Section 5.1.
Where possible, we also compare with Adabits [21]. Note
that Bit-Mixer after Stage II (Ours-Stage II) is directly com-
parable with Adabits. Note also that Bit-Mixer after Stage
III (Ours) is the only method that can provide layer-wise
random bit allocation. We believe that the results of Ta-
ble 7 conclusively show that Bit-Mixer can be successfully
applied to train meta-networks across a wide variety of net-
work architectures.

6. Conclusions
To the best of our knowledge, this work constitutes the

very first attempt to training a meta-network with shared
weights the layers/blocks of which can be independently
quantized to any desired bit-width at runtime. To this end,
we made two key contributions: (a) Transitional Batch-
Norms and (b) a 3-stage optimization pipeline which is
shown capable of training such a network. We presented
a series of ablation studies analyzing important components
and features of the proposed method. Moreover, we pre-
sented comparisons with several state-of-the-art quantiza-
tion methods as well as results obtained by applying Bit-
Mixer on several architectures. These results show that our
method can successfully train a meta-network with arbitrary
layer-wise bit-width selection without compromising accu-
racy.
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