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Abstract

Autonomous navigation requires structured representa-
tion of the road network and instance-wise identification of
the other traffic agents. Since the traffic scene is defined on
the ground plane, this corresponds to scene understanding
in the bird’s-eye-view (BEV). However, the onboard cam-
eras of autonomous cars are customarily mounted horizon-
tally for a better view of the surrounding, making this task
very challenging. In this work, we study the problem of ex-
tracting a directed graph representing the local road net-
work in BEV coordinates, from a single onboard camera
image. Moreover, we show that the method can be ex-
tended to detect dynamic objects on the BEV plane. The
semantics, locations, and orientations of the detected ob-
jects together with the road graph facilitates a comprehen-
sive understanding of the scene. Such understanding be-
comes fundamental for the downstream tasks, such as path
planning and navigation. We validate our approach against
powerful baselines and show that our network achieves su-
perior performance. We also demonstrate the effects of
various design choices through ablation studies. Code:
https://github.com/ybarancan/STSU

1. Introduction
Road scene understanding is crucial for autonomous

driving since it forms the interface between perception and
planning. The fundamental task is to understand both
the road network structure and the other traffic agents in
the surrounding. Currently, the go-to solution is offline
generated HD-maps combined with a modular perception
stack [22, 41, 30, 36, 8]. For existing solutions to work,
not only the precise localization in the HD-map but also
understanding the dynamic parts of the scene is neces-
sary [30, 44]. To achieve these requirements, most solutions
use several sensors, including cameras and LIDAR. How-
ever, using expensive sensors and offline HD-maps limit the
scalability of autonomous driving as they increase the cost
of operation and limit self-driving cars to operate in geo-
graphically restricted areas.
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Figure 1. Our method extracts a directed graph that represents the
local road network from a single frontal image. First, centerlines
are estimated alongside a directed graph where vertices are center-
lines, and edges show the connectivity. Then the existence and di-
rection of the edges are estimates. Green dots indicate start points,
and red dots indicate end points of centerlines. Traffic flows from
green to red. This representation can be achieved thanks to the
directional nature of the proposed method.

In this work we proposes an end-to-end vision method
that performs lane-graph extraction and object detection
given only a front-facing camera image. Our method di-
rectly estimates the graph structure of the road network and
spline curves representing centerlines of individual lanes,
as shown in Fig. 1. Besides estimating the road graph, our
model can also detect objects such as cars, pedestrians, and
others, directly on the BEV plane, as shown in Fig. 2. The
output format of our method is ideal for downstream plan-
ning [2, 9] and prediction [12, 45, 20, 37] tasks, which re-
quire both the lane-graph and the location and class of ob-
jects. In fact, such a requirement can also be understood
simply by observing the provided labels of existing datasets,
such as [4], which provide the labels in a structured form.
Often, existing approaches map the structured labels into
other forms, such as semantic masks, to perform scene un-
derstanding [14]. The downstream tasks, however, require
the structured form of these understandings [26, 34, 25, 19].

Understanding HD-maps is a challenging problem,
mainly due to the complex topological changes. Recovering
such topological structure coherently from a single image
remains to be an unexplored problem. This work addresses
this challenging problem for the first time while also de-
tecting objects in the scene directly in the BEV coordinates.
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Existing works either focus on (i) HD-map extraction from
dense 3D points [19] or (ii) the detection of road lanes from
a single image [21]. Other variants, such as BEV semantic
understanding, also exist [40, 29, 32]. Note that the HD-
map reconstruction of [19] is much more topologically chal-
lenging than the lane detection problem of [21]. Our work
aims to achieve results similar to [19] using the image input
setup of [21]. Additionally, we aim to detect objects using
the same model as for structured HD-map predictions.

We represent the HD-map as a directed graph in BEV
coordinates, whose edges are the road segments and the di-
rection represents the traffic flow. We model each road seg-
ment using a Bezier curve, with starting and end points. The
connections between the predicted segments are modeled
using an assignment matrix. For the prediction, we make
use of a transformer network, which is supervised by using
the Hungarian algorithm at the output end. The predicted
segments, along with their connectivity, defines a full lane
graph HD-map. Our transformer network further predicts
the parameters of 2D BEV objects. The object prediction
branch is supervised, similar to the road segments. Two ex-
ample outputs of our method for both lane graph HD-map
and object estimation are shown in Fig. 2. To this end, our
major contributions can be summarized as follows.

• We propose a unified method for structured BEV road
network graph estimation and object detection from a
single onboard monocular camera image.

• The results obtained by the proposed method are sig-
nificantly superior to the compared baselines.

2. Related Works
Road network extraction: Early works on road network
extraction use aerial images [13, 39]. Building upon the
same setup, recent works [3, 42, 43] perform the network
extraction more effectively. However, aerial imaging-based
approaches only provide coarse road networks. Such pre-
dictions may be useful for routing, however, they are not
accurate enough for action planning.
High definition maps: In the literature, HD-maps are often
reconstructed offline using aggregated 2D and 3D visual in-
formation [25, 18, 26]. Although these works are the prime
motivation behind our work, they require 3D point clouds
for accurate HD-map reconstruction. More importantly, the
offline methods recover the HD-maps in some canonical
frame. Thus, using the recovered maps requires accurate lo-
calization, in many cases. In this regard, our work is similar
to [17], where the lane boundaries are detected on highways
in the form of polylines. An extension of this work [17]
uses a recurrent neural network to generate initial boundary
points in 3D point clouds. The initial points are then used as
seeds for a Polygon-RNN [1] that predicts lane boundaries.
Our method differs from [17] in two major aspects: (i) point
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Figure 2. Our method can handle very complex cross roads scenes
as well multiple object instances. Pedestrian is marked with circle.

clouds vs. single image input, (ii) highway lane boundaries
vs. lane centerlines in an unrestricted setting.
BEV semantics understanding: Because of its practical
use, scene understanding in BEV using images has recently
gathered significant attention [40, 35, 5]. Some methods
also combine images with LIDAR data [33, 16]. In this
regard, methods developed in [40, 31] use a single image
to understand the BEV HD-map semantics. Similarly, the
method proposed in [5] uses video data for the same task.
Methods in this category do not offer structured output suit-
able for many downstream tasks. These methods may be
used for general scene understanding. However, their usage
for the task of motion planning and navigation is not triv-
ial. Furthermore, up to our knowledge, no existing method
provides instance-level predictions on the BEV using single
image input. Note that the method proposed in this paper
predicts both HD-map and the road objects simultaneously,
using one input image and a single neural network.

3. The Proposed Method
The core task of our model is to produce a directed graph

that represents the road network in a BEV coordinate sys-
tem, given only a single image from a front-facing camera
mounted on a vehicle. For the complete traffic scene under-
standing, our model also outputs objects’ instances in the
form of BEV bounding boxes. Both these tasks require rea-
soning about the 3D space and projecting all the information
on the BEV ground plane where the vehicle is moving.

In this section, we first introduce our trainable lane graph
structure and describe the object representation. Given
these building blocks, we introduce our transformer based
model and explain how the neural network is trained.

3.1. Lane graph representation

In order to have a structured representation of the lo-
cal road network, we build a directed graph of lane center-
line segments, often called the lane graph. Let this directed
graph be G = (V,E) where V are the vertices of the graph
(the centerlines) and the edges E ⊆ {(x, y) | (x, y) ∈ V 2}
represent the connectivity among those centerlines. The
connectivity can be summarized by the incidence matrix I
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Figure 3. The core architecture of our neural network is a transformer [7] that processes learned centerline and object queries together. The
processed line queries are used to output detection probability, control points, and centerline association features. The object queries are
used to calculate the class probability and the oriented box parameters.

of the graph G = (V,E). Thus, let us define when two cen-
terlines x and y are connected; A centerline x is connected
to another centerline y, i.e. (x, y) ∈ E if and only if the cen-
terline y’s starting point is the same as the end point of the
centerline x. Given this definition, an entry of the incidence
matrix I[x, y] = 1 if the centerlines x and y are connected.
Note that we do not apply a hard requirement to generate
acyclical graphs, but cycles rarely occur due to our focus
on a single image with a limited field-of-view (FOV). Thus,
the incidence matrix often has the structure of an acycli-
cal graph, where the main diagonal is zero and the sum of
symmetric entries is at most one. Finally, the resulting in-
cidence matrix also contains crucial information about the
traffic flow directions, which is fundamental to understand
a lane network.

With the graph established, we need to model each cen-
terline (vertex of the graph) mathematically. In this work,
we consider each centerline as a Bezier curve. A Bezier
curve maps a scalar parameter t ∈ [0, 1] to a point inR∆.
We are interested in 2D curves for our lane graph, thus
∆ = 2. The curve can be written as the weighted sum of
control pointsP = {P0, P1, ..., Pn} where Pi ∈R2. Given
the control points, the curve B parameterized by t is de-
fined as B(t) =

∑n
k=0

(
n
k

)
(1 − t)n−ktkPk. A more com-

pact matrix-based formulation is simply B(t) = Γ(t, n)P ,
where Γij(t, n) =

(
n
j

)
(1 − ti)

n−jtji represents the weight
matrix, and P = [P0, P1, ..., Pn] is the vector of all control
points. With this representation, finding the optimal con-
trol points given some observed points Y = [Y0, Y1, ..., YT ]
amounts to solving a least square problem, i.e., P ∗ =
argminP ∥Γ(t)P − Y ∥. Bezier curves are a good fit for
centerlines since it allows us to model a curve of arbitrary
length with a fixed number of 2D points. Thus, given our
graph and centerline representation, the whole lane graph
has a fixed-sized learnable representation, where the net-
work can learn the centerlines in terms of Bezier control
points, and the connectivity of the graph.

3.2. Object representation

Our method also produces object instance detections to
complement the lane graph and give a complete traffic scene

understanding. Different than semantic segmentation, in-
stance outputs localize and identify individual objects. We
represent each instance as a 2D box in normalized BEV co-
ordinates. In order to fully specify such a box, one needs
five parameters: location of the center point, short and long
side length, and the heading angle. From these parameters,
it is a simple conversion to the four corner point locations
and vice versa. Apart from the localization and orienta-
tion of the instances, we also produce their semantics/object
class using a one hot representation. Given this representa-
tion, an instance is fully identified.

3.3. Architecture

We have modeled each centerline and object instance as
a fixed size vector. Thus, we can work within the frame-
work of proposal generation and classification. This has
been widely used in the fields of instance segmentation and
object detection [38, 15, 7]. One crucial property of our
formulation is the strong relationship among different cen-
terlines as they form the lane graph. However, there is also
a strong relation between centerlines and objects since, in
traffic scenes, objects follow centerlines. In order to fully
exploit this dependency, we adapt the transformer-based
model proposed in [7], which allows us to train one joint
model for lane graph and object understanding.

The transformer-based object detector proposed in [7]
uses image backbone features and learnable query vectors
to generate object proposals. We follow a similar approach,
but we use two sets of learned query vectors Q ∈RC : one
set for centerlines and one for objects. The number of these
vectors is higher than the maximum centerlines/objects that
can occur in any scene. These query vectors are processed
jointly by the transformer, which outputs a proposal vec-
tor for each query. These vectors encode all the informa-
tion needed to fully identify a centerline or object. Each
of these proposal vectors is further processed to generate an
output. This processing is done in a separate lane and object
branch, which output the lane graph and object detections.
The overall architecture is given in Fig. 3.
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3.3.1 Lane branch

The first of the two branches processing the output vectors
of the transformer is the lane branch, which has four parts:
Detection head: The transformer output is processed by a
multi-layer perceptron (MLP) with an output softmax layer.
This output gives the probability that the centerline encoded
by the corresponding query vector exists.
Control head: An MLP + sigmoid layer with 2×R output
neurons, encoding the R Bezier curve control points.
Association head: An MLP that outputs a δ-dimensional
association feature vector for each of the centerline vectors,
where δ < C. The classifier uses these association features
to establish the connectivity of the estimated centerlines.
Association classifier: An MLP + sigmoid layer, which
takes two δ dimensional association feature vectors corre-
sponding to two centerlines as an input. This layer outputs
the probability of the input centerline pair being associated.

As a first step of estimating the graph, we extract indi-
vidual centerlines. This is done by the detection and control
heads. These lines form the vertices V of the graph G =
(V,E). Given that N centerlines are selected, the feature
vectors of the corresponding centerlines are processed by
the association head to produce lower-dimensional associa-
tion feature vectors F ∈RN×δ . Then, we obtain the associ-
ation inputs A ∈RN×N×2δ , where Aij = concat([Fi, Fj ]).
This input encodes the directional nature of the graph. An
MLP processes the matrix A to produce the incidence ma-
trix probabilities. Note that the MLP has an input dimen-
sion of 2δ, and N × N is the batch size. Thus there is no
constraint on the number of proposed centerlines.

During training, we first output centerline control points
and detection probabilities and apply the Hungarian match-
ing algorithm among the estimated and the ground truth
(GT) centerlines. The association step is carried out on the
matched estimates. During inference, we threshold the de-
tection probability of the centerlines and carry out the asso-
ciation step on the active lines.

3.3.2 Object branch

The second branch that processes the transformer proposal
vectors is the object branch. The branch consists of two
modules and an optional post-processing network.
Detection head: The transformer output is processed by an
MLP with a softmax output layer to produce class probabil-
ity distribution, including a “no detection” class.
5-params head: An MLP + sigmoid layer that produces
the normalized parameters of the oriented object boxes.
Refinement net: While the instance outputs are suitable for
many tasks, it is also beneficial to produce semantic seg-
mentation maps of the scene. This is especially true for
small objects like pedestrians, and bikes, where the local-
ization in the BEV from a single onboard camera is dif-

ficult. Therefore, we propose an optional post-processing
network that converts the instance estimations to semantic
segmentations using our refinement net. The structure of the
refinement net is similar to the BEV decoder of [6], where a
lower resolution input is upscaled to provide a fine-grained
segmentation map. The network operates as follows: there
are C + 1 classes including the background, and the re-
gion of interest is H × W dimensional. We first convert
the 5-params output to a box and multiply this box with the
class probabilities. This results in a matrix M of dimension
H×W×(C+1) where

∑
i Mh,w,i = 1 for all grid locations

(h,w) that fall in the bounding box and 0 otherwise. Then
we sum all these matrices and clip them to (0,1). The result
is again of dimension H ×W × (C +1). To inform refine-
ment net about the visual cues in the image, we also include
backbone features. Since the bounding box locations are in
the BEV coordinates, we warp the backbone features to the
BEV and use warped skip connections in the upsampling.

3.3.3 BEV positional embedding

Since transformers do not have a notion of position, posi-
tional embeddings (PE) are used to add spatial awareness.
We use two different positional embeddings for the trans-
former. The first one encodes the image domain spatial in-
formation where similar to [7], we use sinusoidal functions
on the normalized cumulative locations. The second set of
positional embeddings encode the corresponding BEV loca-
tion of a given pixel. For this purpose, we assume a flat sur-
face where every real world-point has height −Ch, where
Ch is the camera height. The resulting grid is very dense
in image coordinates that correspond to real-world points
close to the camera while it is sparse for further away posi-
tions. In order to provide more uniform location cues to the
network, we use the logarithm of BEV locations. To gen-
erate the positional encoding, we take the cumulative sum,
normalize, and convert it into a sinusoidal. We design the
two positional embeddings (image and BEV) such that they
are half of the channel size of the input feature map. Thus,
we can add the image positional embeddings to half of the
channels while BEV positional embeddings are added to the
other half. The main reason for this design choice is that
BEV coordinates are undefined for the upper half of the im-
age, but they still hold important cues for the network about
objects in this region. Simply adding these two positional
embeddings would result in duplicates and inconsistent val-
ues in the lower half of the image. We dubbed this use of
dual positional embeddings as split positional encoding.

3.3.4 Training

Since both the lane and object branches produce detection-
like outputs, we use Hungarian matching on the estimations
and the ground truth during training. The matching loss
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Figure 4. Some examples of precision-recall & detection (a,b,c)
and connectivity metric (d,e,f). Blue lines are true centerlines and
orange are estimations. Green/red dots represent starting and end
points, respectively. Yellow points indicate a connection, which
is only valid in the direction from green to red. H/L refers to
High/Low while P=Precision, R=Recall and D=Detection. a) 2
out of 4 lines are missed but the matched lines are accurate. b)
Matched true lines are longer than estimates creating false nega-
tives. c) All estimates are matched to one true line (note the end-
point colors on the leftmost estimate), leaving no room for false
negatives while creating false positives. d) and e) Show true pos-
itive and false negative connectivity, respectively. f) One connec-
tion is a true positive but the upmost connection is a false positive.

used for lanes and objects is similar. Both are of the form
Lm = LCE +λL1, where LCE is the cross-entropy loss on
the detection/class probability, and L1 is the 1-norm loss on
the Bezier control point locations/Box parameters for lines
and objects, respectively. For both the centerline and object
branch, the training detection loss is cross-entropy. Con-
trol point and object 5-params outputs are trained using L1

loss, except for the angle of objects. Since 180◦ object flips
are hard to distinguish, we predict only angles in the range
α ∈ [0, π] and train it using a smooth sin/cos L1 loss of the
form Langle = |cos(2α)− cos(2ϕ)|+ |sin(2α)− sin(2ϕ)|,
where ϕ is the GT angle. We train the refinement net inde-
pendently using the cross-entropy loss, not backpropagating
through the rest of the network.

4. Metrics

Since our problem setup is new, there is a lack of suit-
able metrics for performance evaluation. We wish to mea-
sure the performance in reproducing the real directed graph
faithfully. For this purpose, we use three metrics that aim to
highlight different aspects of the directed graph.

4.1. Precision-Recall

Following [24, 17], we calculate precision-recall on
matched centerlines at different distance thresholds. We
first match each estimation to the target with the minimum
L1 loss on Bezier coefficients. Thus, similar to [24], multi-
ple estimations can be matched with the same target while
each estimation can only be matched with one target. Then
we interpolate the estimated coefficients to get dense cen-
terlines. Note that using control points during matching is
fundamentally different from using interpolated points be-
cause the control point based matching takes direction into
account. Thus, two centerlines where only the order of con-
trol points is reversed (start and end points are swapped)
are identical if interpolated points are matched. However,
they are far apart in our control point matching approach.
After matching based on the control points and then inter-
polation, a true positive is an estimated interpolation point
within a threshold distance to the matched GT line and a
false positive otherwise. A false negative is a point on a GT
line that is not within the threshold distance of any of the
matched estimated lines. Note that this metric does not pe-
nalize the missed centerlines, i.e., true centerlines that are
not matched with any estimation. This is intentional since
the focus of this metric is measuring how well the estimates
fit the matched GT centerlines and how accurately the cap-
tured subgraph is represented.

4.2. Detection ratio

In order to measure the aforementioned issue of missed
centerlines present in the precision-recall metric, we calcu-
late the detection ratio. This is simply the number of unique
GT centerlines that at least one estimated line is matched
to over the total number of GT centerlines. High scores in
precision-recall and a low detection score mean that the es-
timated centerlines are close to the matched true ones, but
a substantial part of the GT centerlines is not detected. The
inverse implies that the estimated centerlines cover the true
road network but do not faithfully represent the structure.
These two metrics summarize the performance on the ver-
tices of the total graph G. However, we still lack a metric
to evaluate performance on the edges of the graph, i.e., the
connectivity.

4.3. Connectivity

In order to measure how well the estimated centerlines
are associated, we propose a precision-recall-based metric,
called connectivity metric. Let the estimated binary inci-
dence matrix be E, and the GT incidence matrix be I . Let
M(i) be the index of the target that the ith estimation is
matched to and S(n) be the set of indices of estimations that
are matched to target n. A positive entry Eij is a true pos-
itive if (M(i) == M(j)) | (I(M(i),M(j)) == 1), and a
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false positive otherwise. On the other hand, a false nega-
tive is a positive entry of the incidence matrix Im,n where
∄ (i, j) : ((i ∈ S(m)) & (j ∈ S(n)) & (Ei,j == 1)).

This metric captures how close the connectivity pattern
of the estimated graph is to the GT graph. With this met-
ric, fragmenting a true centerline into multiple estimations
is not a problem as long as they are associated. Some graph-
ical illustrations of the three metrics are given in Fig. 4.

5. Experiments

5.1. Dataset

We use the NuScenes [4] dataset consisting of 1000 se-
quences recorded in Boston and Singapore. The sequences
are annotated at 2Hz, and the dataset provides HD-Maps
in the form of centerlines. The dataset also provides 3D
bounding boxes of 23 object classes. For our experiments,
we select the most frequent classes: car, truck, bus, pedes-
trian, bike, and motorcycle. We only use the front camera
both for training and evaluations.

Given the set of real-world coordinates of a particular
centerline, we first convert these coordinates to the camera
coordinate system of the current reference frame. We re-
sample these points with the target BEV map resolution and
discard any point outside the region-of-interest (ROI). The
points are then converted to normalized coordinates given
the bounds of the ROI. This results in a set of points be-
tween [0,1], from which we extract the control points of the
Bezier curve. The ground truth labels and the estimates are
in normalized control point coordinates.

5.2. Implementation

We use images of size 448x800, and the target BEV
area extends from -25 to 25m in x-direction and 1 to 50m
in z-direction. BEV resolution is set to 25cm. Given the
common structure of roads, the possible complexity of the
curves that represent the centerlines segments is limited.
Thus, we use three Bezier control points. We use two sets
of 100 query vectors for centerlines and objects: one for
right (Boston) and one for left-sided traffic (Singapore).
The backbone network is Deeplab v3+ [10] pretrained on
Cityscapes dataset [11]. The implementation is in Pytorch.
The method runs with 11FPS without batching and includ-
ing all association and refinement steps.

5.3. Baselines

Since there does not exist any method that deals with
structured BEV road network estimation from a monocular
image, we have generated two baselines. The first baseline
is based on [17], where the authors generate lane boundaries
from point clouds. We adapt their method to work with im-
ages and to output centerlines rather than lane boundaries.
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Figure 5. Polyline-RNN based method first extracts initial point
estimations. Polygon-RNN uses the backbone features and initial
point estimations to form the centerline curves.

To achieve this, we project Deeplabv3+ [10] backbone fea-
tures of the image to the BEV with a GT projection matrix.
We concatenate x-y grid locations with this backbone fea-
ture map, similar to [28]. A subnetwork with a fully con-
nected layer at its core takes this input and outputs a grid
of 49 × 50 points. We tested a convolutional RNN similar
to the original work but did not achieve satisfactory results
in our setting due to the restricted FOV. Note that the orig-
inal task of finding lane boundaries on highways from ag-
gregated LIDAR scans is significantly different from find-
ing initial centerline points in urban traffic scenes. More-
over, the RNN required prohibitively many iterations, es-
pecially considering that one frame contains more than 40
centerlines. Therefore, we used a fully connected layer sup-
ported by several residual blocks, see Fig. 5. Given the ini-
tial locations and the backbone features, Polygon-RNN [1]
produces the next control points of the centerline. We fix
the number of iterations of Polygon-RNN to the number of
spline coefficients used to encode centerlines. We use the
focal loss [27] for the initial point estimation and an L1 loss
to supervise the control point estimation of Polygon-RNN.
In training, Polygon-RNN uses GT initial points similar to
[17]. For testing, we threshold the initial point estimations
of the network and feed them to Polygon-RNN. To indicate
the direction of traffic, we feed a binary indicator variable
to the initial point estimator. The association estimation is
done using the final feature map of Polygon-RNN using the
same approach as in our network. For reference, we also
report results with Polygon-RNN using GT initial points.

For our second baseline, we extract lane boundaries with
the SOTA method of [23]. The extracted lane boundaries
are projected onto the BEV grid using the GT transfor-
mation. Given these lane boundaries, we form the closest
pairs and compute the centerlines using splines. Since this
method does not give us a direction, we use the predicted
and a flipped centerline version during evaluation, meaning
PINET matching is directionless. In a sense, PINET esti-
mates are manually assigned correct directions.

For the evaluation of our method’s instance estimations,
we compare against VED [29], VPN [32] and PON [40].
We use the same train/val split proposed in [40] for both
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Image PINET Poly(Est) OursPoly(GT) GT

Figure 6. Sample centerline estimates. PINET boundary estimations are shown on the image. Our method produces the best lane graph
representation. Statistical results for each sample are provided in the supplementary material.

Figure 7. Precision/Recall vs thresholds. Thresholds are uniformly
sampled in [0.01, 0.1] (normalized coordinates) with 0.01 incre-
ments. In our resolution, 0.01 corresponds to 50cm.

lane graph and object detection. We also follow [40] for
the object label generation procedure. To compare results,
we use the mIOU metric. Nevertheless, for future reference,
we also present precision-recall results.

6. Results
Since our method produces a road network graph as well

as dynamic object instance estimations, we divide the re-
sults into two subsections, studying those them individually.

6.1. Lane graph

The obtained results are provided in Tab. 1 and Fig. 7,
where our method achieves the best results in all met-
rics when compared to the baselines. The performance
of PINET is lower, as expected, since the centerlines are
obtained through processing lane boundaries. From the
Poly(Est) vs Poly(GT) results, it can be seen that the lo-
calization of initial points is very difficult. Our method
produces better precision-recall than Poly(Est), and the dif-
ference in detection and connectivity scores are significant.
It is not surprising that Poly(Est) suffers in the connectiv-
ity metric, particularly connectivity recall. This metric is
closely related to detection score, and missed centerlines
are penalized. Our method’s performance in connectiv-
ity precision against Poly(GT) combined with the detection
scores shows that our method produces much fewer false-
positive associations in the detected sub-graph and more ac-

curately estimates the graph. The superiority of Poly(GT)
in precision-recall and detection metrics is expected. Since
most centerlines are relatively short and divergence from the
initial point is limited, knowing GT initial points provides
a clear advantage. However, its performance validates the
strength of the chosen baselines.

Method M-Pre M-Rec Detect C-Pre C-Rec C-IOU
PINET 54.1 45.6 19.2 - - -

Poly(Est) 54.7 51.2 40.5 58.4 16.3 14.6
Ours 60.7 54.7 60.6 60.5 52.2 38.9

Poly(GT) 70.0 72.3 76.4 53.8 52.0 36.0

Table 1. Lane graph results. M-Prec and M-Recall indicate mean
of the sampled points of precision-threshold and recall-threshold
curves, see Fig. 7. C-Prec and C-Rec refer to connectivity preci-
sion and recall, while C-IOU is connectivity TP/(TP + FP + FN).

Visual results for lane graphs are given in Fig. 6. Visual
inspection shows that our method generally produces better
results. In the last image, our method misses some center-
lines. Overall, our method produces more faithful repre-
sentations. On the other hand, Poly(GT) produces center-
lines that are somewhat close, in the Euclidean sense, to the
matched GT lines. However, the overall graph estimation is
worse than ours. This shows the power of the connectivity
metric where our method surpasses Poly(GT).

6.2. Objects

In Tab. 3, the refinement net outputs of our network are
compared against SOTA methods. Other methods usually
produce estimates for slightly more classes. However, con-
sidering that we produce structured instance outputs along
with lane graphs, we chose the most common yet compre-
hensive set of classes. Our method surpasses PON in half
of the classes and in the mean measure. Especially, the dif-
ference in the “car” category is rather significant.

The visual results for object estimates are given in Fig. 8.
The competing methods tend to blob segmentation and
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Figure 8. Visual results for object detection where we present the raw and refined estimates. We also show the road network estimates.

Method M-pre M-rec detec Con-IOU car truck bus ped motor bike obj-mean
Large 57.2 53.9 58.8 41.0 20.0 11.7 13.9 1.9 2.2 1.4 8.5

Large + Split 59.9 56.8 52.8 40.8 20.0 10.1 16.8 1.9 2.8 0.8 8.7
Large + Split Log 60.7 54.7 60.6 38.9 21.8 11.0 14.5 2.1 3.8 2.1 9.2

Small 58.2 54.2 61.2 41.9 22.0 10.7 15.1 2.0 2.9 1.7 9.1
Small+Split 57.5 54.2 60.9 41.3 20.6 10.1 14.0 2.0 4.1 2.3 8.9

Small+Split Log 58.9 53.6 61.5 37.8 22.6 10.9 17.6 2.4 3.2 2.9 9.9

Table 2. Ablations are carried out on six models that test the performance contribution of the model size and positional embeddings. Object
results are without refinement net and in the form of mIOU.

Method car truck bus ped motor bike mean
VED 8.8 0.2 0.0 0.0 0.0 0.0 1.5
VPN 25.5 17.3 20.0 7.1 5.6 4.4 13.3
PON 24.7 16.8 20.8 8.2 7.0 9.4 14.5
Ours 32.5 15.7 21.2 6.2 7.4 6.4 14.9

Table 3. Object results in mIOU of different methods.

Figure 9. Precision/Recall vs IOU thresholds for object detection.
We apply Hungarian matching with IOU to obtain corresponding
estimate-GT pairs. If IOU is above the threshold, it is a true pos-
itive. Other GT objects count as false negatives, and the other
estimates count as false positives.

making harder to separate instances. Our refinement net
outputs also suffer from the same phenomenon compared
to our raw estimates. Despite of which, our refined esti-
mates strike a good trade-off between mIOU maximization
and instance separation.

6.3. Ablation

We experimented with two transformer sizes. The small
model has two encoder layers and tree decoder layers, while
the large one has four encoder and four decoder layers. We
tried using vanilla positional embeddings and our split em-
bedding with and without taking the logarithm. The results

are given in Tab. 2, where the object results are in mIOU
without refinement net. We observe that our split embed-
ding with log helps with objects, precision and detection
scores while it causes a drop in connectivity IOU. Over-
all, the differences are rather low. Due to its good over-
all performance in object and lane results, we selected the
“Large+Split Log” model as the final one. When the object
results of the selected model are compared with and without
refinement net, the difference is rather significant. Refine-
ment net boosts the performance by 5.7 points in mIOU.

7. Conclusion
We proposed a novel learnable representation of lo-

cal road networks based on directed graphs and Bezier
curve centerlines. This representation is used to train a
transformer-based neural network architecture that predicts
a complete lane graph structure from a single onboard im-
age. We also proposed a set of metrics that are suitable to
evaluate the performance of the proposed graph represen-
tation based structured scene understanding. Additionally,
along with the lane graph, our model also provides BEV ob-
ject instances, thus offering a comprehensive understanding
of the local traffic scene. Our extensive experimental com-
parisons with powerful baselines demonstrate the superior
performance of the proposed method, in both lane graph
and object detection tasks.
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