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Abstract

Most existing Siamese-based tracking methods execute
the classification and regression of the target object based
on the similarity maps. However, they either employ a sin-
gle map from the last convolutional layer which degrades
the localization accuracy in complex scenarios or sepa-
rately use multiple maps for decision making, introduc-
ing intractable computations for aerial mobile platforms.
Thus, in this work, we propose an efficient and effective
hierarchical feature transformer (HiFT) for aerial track-
ing. Hierarchical similarity maps generated by multi-level
convolutional layers are fed into the feature transformer
to achieve the interactive fusion of spatial (shallow layers)
and semantics cues (deep layers). Consequently, not only
the global contextual information can be raised, facilitat-
ing the target search, but also our end-to-end architecture
with the transformer can efficiently learn the interdepen-
dencies among multi-level features, thereby discovering a
tracking-tailored feature space with strong discriminabil-
ity. Comprehensive evaluations on four aerial benchmarks
have proven the effectiveness of HiFT. Real-world tests on
the aerial platform have strongly validated its practicability
with a real-time speed. Our code is available at https:
//github.com/vision4robotics/HiFT.

1. Introduction
Visual object tracking1, aiming to estimate the location

of object frame by frame given the initial state, has drawn

considerable attention due to its prosperous applications es-

pecially for unmanned aerial vehicles (UAVs), e.g., aerial

cinematography [5], visual localization [48], and collision

warning [19]. Despite the impressive progress, efficient and

effective aerial tracking remains a challenging task due to

limited computational resources and various difficulties like

fast motion, low-resolution, frequent occlusion, etc.

In the visual tracking community, deep learning (DL)-

based trackers [44, 35, 9, 2, 31, 53, 18, 17, 6] stand out on
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1This work targets single object tracking (SOT).
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Figure 1. Qualitative comparison of the proposed HiFT with state-

of-the-arts [23, 8, 31] on three challenging sequences (BMX4,

RaceCar1 from DTB70 [34], and Car16 from UAV20L [39]). Ow-

ing to the effective tracking-tailored feature space produced by

the hierarchical feature transformer, our HiFT tracker can achieve

robust performance under various challenges with a satisfactory

tracking speed while other trackers lose effectiveness.

account of using the convolutional neural network (CNN)

with robust representation capability. However, lightweight

CNNs like AlexNet [30] can hardly extract robust features

which are vital for tracking performance in complex aerial

scenarios. Using a larger kernel size or a deeper back-

bone [31] can alleviate the aforementioned shortcoming yet

the efficiency and practicability will be sacrificed. In liter-

ature, the dilated convolution [49] proposed to expand the

receptive field and avoid the loss of resolution caused by

the pooling layer. Unfortunately, it still suffers from unsta-

ble performance while handling small objects.

Recently, the transformer has demonstrated huge poten-

tial in many domains with an encoder-decoder structure [1].

Inspired by the superior performance of the transformer in

modeling global relationships, we try to exploit its architec-

ture in aerial tracking to effectively fuse multi-level2 fea-

tures to achieve promising performance. Meanwhile, the

loss of efficiency caused by the computations of multiple

layers and the deficiency of the transformer in handling

2We use the hierarchical feature to denote the feature maps from mul-

tiple convolutional layers.
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small objects (pointed out in [52]) can be mitigated simul-

taneously.

In specific, since the target object in visual tracking can

be an arbitrary object, the learned object queries in the orig-

inal transformer structure hardly generalize well in visual

tracking. Therefore, we adopt low-resolution features from

the deeper layer to replace object queries. Meantime, we

also feed the shallow layers into the transformer to discover

a tracking-tailored feature space with strong discriminabil-

ity by end-to-end training, which implicitly models the re-

lationship of spatial information from high-resolution lay-

ers and semantic cues from low-resolution layers. More-

over, to further handle the insufficiency faced with low-

resolution objects [52], we design a novel feature modu-

lation layer in the transformer to fully explore the interde-

pendencies among multi-level features. The proposed hier-

archical feature transformer (HiFT) tracker has efficiently

achieved robust performance under complex scenarios, as

shown in Fig. 1. The main contributions of this work are as

follows:

• We propose a novel hierarchical feature transformer

to learn relationships amongst multi-level features,

thereby discovering a tracking-tailored feature space

with strong discriminability for aerial tracking.

• We design a neat feature modulation layer and classifi-

cation label to further exploit the hierarchical features

in Siamese networks and improve the tracking accu-

racy in handling the small objects.

• Comprehensive evaluations on four authoritative aerial

benchmarks have validated the promising performance

of HiFT against other state-of-the-art (SOTA) trackers,

even those equipped with deeper backbones.

• Real-world tests are conducted on a typical aerial plat-

form, demonstrating the superior efficiency and effec-

tiveness of HiFT in real-world scenarios.

2. Related Works
2.1. Visual Tracking Methods

After MOSSE [4], a variety of achievements have been

witnessed in handcrafted discriminative correlation filter

(DCF)-based trackers [21, 36, 29, 9]. By calculating in

the Fourier domain, DCF-based trackers can achieve com-

petitive performance with high efficiency [20]. Neverthe-

less, those trackers hardly maintain robustness under vari-

ous tracking conditions due to the poor representation abil-

ity of the handcrafted feature. To improve the tracking per-

formance, several works introducing deep learning to DCF-

based methods have been released [9, 50, 35]. Despite the

great progress, they are still faced with inferior robustness

and efficiency for aerial tracking.

Another outstanding branch in the SOT community is the

Siamese-based methods [2, 24, 32, 53, 31], which benefit

from massive offline training data and end-to-end learning

strategy. As one of the pioneering works, SiameseFC [2] ex-

posed the advantage of the Siamese framework, formulating

the tracking task as the similarity matching process of tem-

plate and search patches. Based on SiameseFC, DSiam [24]

was proposed to effectively handle the object appearance

variation and background interference. Inspired by region

proposal network (RPN) [40], SiamRPN [32] considered

tracking as two subtasks, applying the classification and

regression branches respectively. DaSiamRPN [53] intro-

duced a novel distractor-aware module and an effective

sampling strategy, further promoting its robustness. More

recently, the potential of adopting very deep networks as

the backbone is extensively tapped [31], while the effi-

ciency is sacrificed largely. Obviously, RPN-based track-

ers [32, 53, 31] provide an effective tracking strategy. How-

ever, the hyper-parameters associated with anchors signif-

icantly decrease the generalization of trackers. In order to

eliminate such a drawback, the anchor-free method is pro-

posed [23, 8].

In Siamese-based trackers, robust features make a vi-

tal influence on tracking performance. However, the

trackers [2, 32, 53, 18] with lightweight backbone like

AlexNet [30] suffer from the lack of global context while

the trackers [31, 8, 23] utilizing deep CNN like ResNet [25]

are far from real-time requirements onboard UAV. Al-

beit several works proposed to explore multi-level features

in visual tracking [31, 16], they introduce cumbersome

computation inevitably which is unaffordable for mobile

platforms. Differently, this work proposes a brand-new

lightweight hierarchical feature transformer (HiFT) for ef-

fective and efficient multi-level feature fusion, achieving ro-

bust aerial tracking efficiently.

2.2. Transformer in Computer Vision

Vaswani et al. [1] firstly proposed the transformers

for machine translation based on the attention mecha-

nism. Benefiting from its high representation ability, the

transformer structure is expanded to the domain of com-

puter vision such as video captioning [51], image enhance-

ment [47], and pose estimation [27]. After DETR [7] ini-

tiates the research of transformer in object detection, de-

formable DETR [52] proposed the deformable attention

module for efficiently convergence, providing inspirations

about the combination of transformer and CNN. Some stud-

ies attempted to introduce the transformer to multi-object

tracking and achieved promising performance [38], while

the study of transformer in SOT is still blocked so far.

Although the attention mechanism in the transformer

shows good performance in extensive visual tasks, its su-

periority struggles to be extended to SOT, since predefined
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Figure 2. Overview of the HiFT tracker. The modules from the left to right are feature extraction network, hierarchical feature transformer,

and classification & regression network. Three arrows with different colors represent the workflow of features from different layers

respectively. Note that only the input of the encoder is combined with position encoding. Best viewed in color. (Image frames are from

UAV20L [39].)

(or learned) object queries hardly maintain effectiveness

when facing an arbitrary object. Moreover, the transformer

hardly deals with the low-resolution object which is fre-

quently encountered in aerial tracking. In this work, in-

stead of redesigning object queries and related structures,

we propose a hierarchical feature transformer to construct-

ing a novel as well as robust tracking-tailored feature space.

By virtue of the introduction of global context and interde-

pendencies among multi-level features, the discriminabil-

ity in the feature space is significantly raised to improve

the tracking performance. Meanwhile, HiFT possesses a

lightweight encoder-decoder structure which is desirable

for mobile platforms.

3. Proposed Method
The workflow of HiFT is presented in Fig. 2. It can be di-

vided into three submodules, feature extraction network, hi-

erarchical feature transformer, and classification & regres-

sion network. Note that we utilize features from the last

three layers to build the hierarchical feature transformation

in this paper.

3.1. Feature Extraction Network

Deep CNNs, e.g., ResNet [25], MobileNet [42], and

GoogLeNet [43], have demonstrated their surprising capa-

bility, serving as popular feature extraction backbones in

Siamese frameworks [31]. However, the heavy computa-

tion brought by the deep structure hardly be afforded by the

aerial platform. To this concern, HiFT adopts a lightweight

backbone, i.e., AlexNet [30], which serves in both template

and search branches. For clarity, the template/search images

are respectively denoted by Z and X. φk(X) represents the

k-th layer output of the search branch.

Remark 1: Despite the weaker feature extraction capabil-

ity of AlexNet compared with those deeper networks, the

proposed feature transformer can make up such a drawback

significantly, at the same time saving computation resources

for real-time aerial tracking.

3.2. Hierarchical Feature Transformer

The proposed hierarchical feature transformer can be

mainly divided into two steps: high-resolution features en-

coding and low-resolution feature decoding. The former

aims at learning interdependencies between different fea-

ture layers and spatial information to raise attention to ob-

jects with different scales (especially low-resolution ob-

jects). While the latter aggregates the semantic information

from the low-resolution feature map. Benefiting from the

abundant global context and interdependencies among hier-

archical features, our method discovers a tracking-tailored

feature space. Thus, the discriminability and representa-

tive capabilities of transformed features under various aerial

tracking conditions are raised significantly. Specifically,

features from the last three layers are utilized. The fea-

ture map from k-th layer is convoluted and reshaped to

Mi ∈ R
WH×C (C, W, H represents the channel, width,

and height of the feature map respectively) before being fed

into the feature transformer:

Mi = F(φi(Z) � φi(X)) , i = 3, 4, 5 , (1)

where F denotes the convolution layer and � represents the

cross-correlation operator. Then, M′
3 ∈ R

WH×C and

M′
4 ∈ R

WH×C can be obtained by supplementing with

a learnable positional encoding.

3.2.1 Feature Encoding

To fully explore the interdependencies between hierarchi-

cal features, we use the combination of M′
3 and M′

4 as

the input of multi-head attention module [1] as M1
E =

Norm(M′
3 +M′

4), where Norm represents the normaliza-

tion layer. Generally, the scaled dot-product attention Att
can be expressed by:

Att(Q,K,V) = Softmax(
QKT

√
c

)V , (2)
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where
√
c is the scaling factor to avoid gradient vanishment

in the softmax function. Then the calculation process of the

multi-head attention module mAtt is expressed as:

mAtt(Q,K,V) =
(
Cat(a1, ..., aN )

)
Wc

aj = Att(QWj
1,KWj

2,VWj
3)

, (3)

where Wc ∈ R
C×C , Wj

1 ∈ R
C×Cd , Wj

2 ∈ R
C×Cd ,

and Wj
3 ∈ R

C×Cd (Cd=C/N , N is the number of parallel

attention head) can all be regarded as fully connected layer

operation. Please note that Q,K,V are only mathemati-

cal symbols to clarify the function. Therefore, they do not

have practical meanings. Afterwards, the output of the first

multi-head attention module, i.e., M2
E ∈ R

WH×C , can be

obtained by:

M2
E = mAtt(M1

E ,M
1
E ,M

′
3) . (4)

As a result, the interdependencies between M′
3 and M′

4

are effectively learned to enrich the high-resolution feature

map M2
E . Besides, the global context in the two feature

maps is also introduced in M2
E . After that, we construct

the modulation layer to fully explore the potential of in-

terdependencies between M3
E and M′

4 whose structure is

shown in Fig. 3. Specifically, the input of modulation layer

M3
E is obtained by normalization of M′

3 and M2
E , i.e.,

M3
E = Norm(M′

3 + M2
E). After a feed-forward network

(FFN) and global average pooling operation (GAP), the out-

put of modulation layer M4
E can be formulated as:

W′ = F(Cat(M3
E ,M

′
4)) ∗ FFN(GAP(M′

4))

M4
E = M3

E + γ1 ∗W′ ∗M3
E

, (5)

where γ1 represents a learning weight.

Owing to the modulation layer, the internal spatial in-

formation between M′
4 and M3

E are exploited efficiently,

thereby effectively distinguishing the object from the com-

plex background. Eventually, the encoded information can

be calculated through FFN and normalization.

Remark 2: Attributing to the feature encoder, the global

context and interdependencies between M′
3 and M′

4 are

fully explored. Additionally, to overcome the deficiency

of handling small objects, the modulation layer is proposed

to further explore spatial information for enriching the en-

coded information. Finally, based on it, the decoder can

build an effective feature transformation for robust tracking.

3.2.2 Feature Decoding

Before decoding, the low-resolution feature map is firstly

reshaped to M5 ∈ R
WH×C in Eq. (1). The feature decoder

follows the similar structure of standard transformer [1].

Differently, we build the effective feature decoder without

position encoding. Since we treat the number of locations as

Multi-Head Attention
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Add & Norm

Cat & Conv

Add & Norm
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Add & Norm

Multi-Head Attention

QKV

Add & Norm

FFN
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Element-wise sumChannel-wise multiplication

QKV
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Figure 3. Detailed workflow of HiFT. The left sub-window illus-

trates the feature encoder. The right one shows the structure of the

decoder. Best viewed in color.

the sequence length in our method, the position encoding is

introduced to distinguish each location on feature maps. For

avoiding the direct influence on the transformed feature, we

decide to introduce the position information through the en-

coder implicitly. Analysis of the positional encoding strat-

egy is conducted later in Sec. 4.3.3. The structure of the

decoder is exhibited in Fig. 3.

Remark 3: By the hierarchical feature transformer, the spa-

tial/semantic information in the high-/low-resolution fea-

tures is fully utilized to improve the discriminability of the

final transformed feature. Meanwhile, the modulation layer

achieves the aggregation of interdependencies among dif-

ferent feature layers, enhancing the robustness of tracking

objects with various scales.

3.3. Definition of Classification Label

The structures of classification and regression are imple-

mented by several convolution layers. To achieve accurate

classification, we apply two classification branches. One

branch aims to classify via the area involved in the ground

truth box. The other branch focuses on determining the pos-

itive samples measured by the distance between the center

of ground truth and the corresponding point. Besides, to

accelerate the convergence, we use pseudo-random number

generators denoted as T to constrain the number of negative

labels.

Remark 4: The detailed calculation process of classification

and regression can be found in the supplementary material.

Therefore, the overall loss function can be determined

as:

Loverall = λ1Lcls1 + λ2Lcls2 + λ3Lloc , (6)

where Lcls1, Lcls2, Lloc represent the cross-entropy, binary

cross-entropy, and IoU loss. λ1, λ2, and λ3 are the coeffi-

cients to balance the contributions of each loss.
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4. Experiments

4.1. Implementation Details

During the training of 70 epochs, the last three layers

of AlexNet are fine-tuned in the last 60 epochs while the

first two layers are frozen. The learning rate is initialized as

5×10−4 and decreased in the log space from 10−2 to 10−4.

Besides, the sizes of Z and X are set to 3× 127× 127 and

3×287×287 respectively. The feature transformer consists

of one encoder layer and two decoder layers. We use image

pairs extracted from COCO [37], ImageNet VID [41], GOT-

10K [28], and Youtube-BB [15] to train HiFT. In addition,

the stochastic gradient descent (SGD) is adopted, and batch

size, momentum, and weight decay are set to 220, 0.9, and

10−4, respectively. Our tracker is trained on a PC with an

Intel i9-9920X CPU, a 32GB RAM, and two NVIDIA TI-

TAN RTX GPUs. More experimental results can be found

in the supplementary.

4.2. Evaluation Metrics

The one-pass evaluation (OPE) metrics [39] including

precision and success rate are applied to assess the track-

ing performance. Specifically, the success rate is measured

by the intersection over union (IoU) of the ground truth and

estimated bounding boxes. The percentage of frames whose

IoU is beyond a pre-defined threshold is drawn as the suc-

cess plot (SP). Besides, the center location error (CLE) be-

tween the estimated location and the ground truth is em-

ployed to evaluate the precision. The percentage of frames

whose CLE is within a certain threshold is drawn as the

precision plot (PP). Meanwhile, the area under the curve

(AUC) of the SP and the precision at a threshold of 20 pix-

els is adopted to rank the trackers.

4.3. Evaluation on Aerial Benchmarks

4.3.1 Overall Performance

For overall evaluation, HiFT is tested on four challenging

and authoritative aerial tracking benchmarks, and compre-

hensively compared with other 19 state-of-the-art (SOTA)

trackers including SiamRPN++ [31], DaSiamRPN [53],

UDT [44], UDT+ [44], TADT [35], CoKCF [50],

ARCF [29], AutoTrack [36], ECO [9], C-COT [13],

MCCT [45], DeepSTRCF [33], STRCF [33], BACF [21],

SRDCF [11], fDSST [12], SiameseFC [2], DSiam [24],

and KCF [26]. For fairness, all the Siamese-based track-

ers adopt the same backbone, i.e., AlexNet [30] pre-trained

on ImageNet [41].

UAV123 [39]: UAV123 is a large-scale UAV benchmark

including 123 high-quality sequences with more than 112K
frames which covers a variety of challenging aerial scenar-

ios such as frequent occlusion, low resolution, out-of-view,

etc. Therefore, UAV123 can help to exhaustively assess

tracking performance in aerial tracking. As illustrated in

Table 1, HiFT outperforms other trackers in both precision

and success. In terms of precision, HiFT gains first place

with a precision score of 0.787, surpassing the second-

and third-best SiamRPN++ (0.769) and ECO (0.752) by

2.3% and 4.7% respectively. As for the success rate, HiFT

(0.589) also improves over SiamRPN++ (0.579) and ranks

first place. In a word, HiFT demonstrates superior perfor-

mance in all kinds of aerial tracking scenarios.

UAV20L [39]: UAV20L is composed of 20 long-term track-

ing sequences with 2934 frames on average and over 58K
frames in total. In this paper, it is utilized to evaluate our

tracker in realistic long-term aerial tracking scenes. As pre-

sented in Table 2, attributing to the global contextual infor-

mation introduced by the feature transformer, our tracker

achieves competitive performance compared to other SOTA

trackers. Specifically, HiFT yields the best precision score

(0.763), surpassing the second-best SiamRPN++ (0.696)

and the third-best DaSiamRPN (0.665) by 9.6% and

14.7%. Similarly, in success rate, HiFT achieves the best

score (0.566), followed by SiamRPN++ (0.528) and DaSi-

amRPN (0.465). The extraordinary performance verifies

that HiFT could be a desirable choice in long-term aerial

tracking scenarios.

DTB70 [34]: Compared to the aforementioned two bench-

marks, DTB70 contains 70 challenging UAV sequences

with a large number of severe motion scenes. The robust-

ness of trackers in fast motion scenarios could be appropri-

ately evaluated on this benchmark. Experimental results are

shown in Fig. 4a, HiFT ranks first place in both precision

(0.802) and success rate (0.594), followed by SiamRPN++

Table 1. Quantitative evluation on UAV123 [39]. The top three

performances are respectively highlighted by red, green, and blue
color. Prec. and Succ. respectively denote precision score at 20

pixels and AUC of success plot.

Trackers Prec. Succ. Trackers Prec. Succ.

AutoTrack [36] 0.689 0.472 C-COT [13] 0.729 0.502

ARCF [29] 0.671 0.468 UDT+ [44] 0.732 0.502

STRCF [33] 0.681 0.481 UDT [44] 0.668 0.477

fDSST [12] 0.583 0.405 TADT [35] 0.727 0.520

SRDCF [11] 0.676 0.463 DeepSTRCF [33] 0.705 0.508

CoKCF [50] 0.652 0.399 MCCT [45] 0.734 0.507

KCF [26] 0.523 0.331 DSiam [24] 0.608 0.400

BACF [21] 0.662 0.461 ECO [9] 0.752 0.528
SiamRPN++ [31] 0.769 0.579 SiameseFC [2] 0.725 0.494

DaSiamRPN [53] 0.725 0.501 HiFT (ours) 0.787 0.589

Table 2. Overall evaluation on UAV20L [39]. The top nine track-

ers are reported.The top three trackers are respectively marked by

red, green, and blue color. Prec. and Succ. respectively denote

precision score at 20 pixels and AUC of success plot.

UDT+ ECO TADT DeepST- Siames- DSiam DaSiam SiamRP- HiFT
[44] [9] [35] RCF [33] eFC [2] [24] RPN [53] N++ [31] (ours)

Prec. 0.585 0.589 0.609 0.588 0.599 0.603 0.665 0.696 0.763
Succ. 0.401 0.427 0.459 0.443 0.402 0.391 0.465 0.528 0.566
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Figure 4. PPs and SPs of HiFT and other SOTA trackers on (a) DTB70 and (b) UAV123@10fps. Our tracker achieves superior performance

in the two benchmarks

Table 3. Average evaluation on four aerial tracking benchmarks. Our tracker outperforms all other trackers with an obvious improvement.

The best three performances are respectively highlighted with red, green, and blue color.

Trackers
HiFT SiamRPN++ DaSiamRPN AutoTrack ARCF C-COT SiameseFC UDT+ TADT DeepSTRCF MCCT ECO

(ours) [31] [53] [36] [29] [13] [2] [44] [35] [33] [45] [9]

Avg. Prec. 0.776 0.750 0.693 0.648 0.643 0.691 0.680 0.662 0.678 0.677 0.686 0.693

Avg. Succ. 0.581 0.563 0.480 0.445 0.448 0.479 0.463 0.461 0.488 0.489 0.472 0.494

with a precision of 0.795 and a success rate of 0.589. The

promising ability of HiFT in handling fast motion can be

attributed to the proposed hierarchical feature transformer

which is able to promote the discrimination ability of HiFT.

UAV123@10fps [39]: UAV123@10fps is created by down-

sampling from the original 30FPS recording. Consequently,

the issue of strong motion in UAV123@10fps is more se-

vere compared to UAV123. The PPs and SPs shown in

Fig. 4b demonstrate that HiFT can consistently obtain sat-

isfactory performance, achieving the best precision (0.754)

and success rate (0.574). To sum up, HiFT provides a more

stable performance comparing to other SOTA trackers, veri-

fying its favorable robustness in various aerial tracking sce-

narios.

Remark 5: Table 3 reports the average precision and suc-

cess rate of the top 11 trackers on four benchmarks. It

shows that HiFT has improved the second-best tracker

SiamRPN++ by 3.5% and 3.2% in precision and success

rate respectively.

Table 4. Attribute-based evaluation of top 6 trackers on four bench-

marks. The best two performances are respectively highlighted by

red and green color. HiFT keeps achieving the best performance

in different attributes. Δ denotes the improvement in comparison

with the second best tracker.

Attributes Low-resolution Scale variation Occlusion Fast motion

Trackers Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

SiamRPN++ 0.591 0.390 0.728 0.559 0.601 0.405 0.680 0.489
DaSiamRPN 0.592 0.347 0.678 0.482 0.583 0.361 0.617 0.409

C-COT 0.586 0.331 0.643 0.451 0.571 0.359 0.644 0.411

TADT 0.604 0.366 0.632 0.466 0.598 0.387 0.628 0.412

ECO 0.581 0.343 0.644 0.471 0.583 0.375 0.620 0.407

HiFT (ours) 0.626 0.416 0.772 0.584 0.638 0.431 0.751 0.537

Δ (%) 3.63 6.81 5.98 4.40 6.20 6.43 10.42 9.79

4.3.2 Attribute-based Comparison

To exhaustively evaluate HiFT under various challenges,

attribute-based comparisons are conducted, seen in Table 4.

HiFT ranks first place in terms of both precision and success

rate in comparison with other top 5 trackers. Specifically,

HiFT significantly exceeds the second-best performance in

attributes of low-resolution, scale variation, occlusion, and

fast motion. HiFT improves the second-best performance

by around 10% in fast motion scenarios. The satisfactory

results demonstrate that our hierarchical feature transformer

can help exploit the global contextual information to over-

come issues of severe motion. In addition, when the ob-

jects are severely occluded, HiFT can learn more robust fea-

tures to discriminate the occluded objects. Therefore, HiFT

also yields prominent improvement in the scenarios of oc-

clusion. Moreover, since the multi-scale feature maps are

utilized for building the feature transformation, our tracker

is endowed with the ability to track objects with various

scales, as verified by its performance in the attributes of

low-resolution and scale variation.

4.3.3 Ablation Study

To verify the effectiveness of each module of the proposed

method, detailed studies amongst HiFT with different mod-

ules enabled are conducted on UAV20L.

Symbol introduction: For clarity, we first introduce the

meaning of symbols used in Table 5. This work consid-

ers Baseline as the model with only feature extraction

and regression & classification network. OT denotes origi-

nal standard transformer (with object query). FT indicates

the original transformer with the feature map (instead of ob-

ject query) but without the proposed modulation layer. HFT
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Table 5. Ablation study of different components of HiFT. For the

detailed explanation of Baseline, OT, FT, HFT, PE, and RL, please

kindly refer to the text in Sec. 4.3.3. Δ denotes the improvement

compared with the Baseline tracker.

Trackers Precision Δpre (%) Success Δsuc (%)

Baseline 0.611 – 0.463 –

Baseline+OT 0.597 -2.29 0.446 -3.67

Baseline+FT 0.675 +10.47 0.496 +7.13

Baseline+HFT+PE 0.689 +12.77 0.523 +12.96

Baseline+HFT+RL 0.629 +2.95 0.486 +4.97

Baseline+HFT (HiFT) 0.763 +24.88 0.566 +22.25

denotes the full version of the proposed hierarchical fea-

ture transformer. PE represents direct positional encoding

to M5 (HiFT leaves out position encoding in M5 as demon-

strated in Sec. 3.2.2). RL represents the rectangle label used

in the traditional trackers. For fairness, each version of the

tracker adopts the same training strategy except for the in-

vestigated module.

Discussion on transformer architecture: As shown

in Table 5, adding the original transformer with object

queries (Baseline+OT) directly lowers the performance

of Baseline by about 2.29% on precision and 3.67% on

success rate, which proves that object queries hardly per-

form well in SOT with novel target objects. Replacing

object query with the feature map, Baseline+FT raises

tracking precision by 10.47%. Further adopting the modu-

lation layer, Baseline+HFT, yields the best performance

by 24.88%. All the aforementioned results can be com-

Frames Baseline Baseline+OT HiFT

Animal4

SpeedCar4

Motor2

group3

Yacht4

car8

Figure 5. Visualization of the confidence map of three track-

ing methods on several sequences from UAV20L [39] and

DTB70 [34]. The target objects are marked out by red boxes in

the original frames. HiFT gets more robust performance for visual

tracking in the air.

bined together to validate the efficacy of the elaborately de-

signed hierarchical feature transformer with the modulation

layer in aerial tracking.

Discussion on position encoding&classification label:
This part aims at proving the 2 strategies, position en-

coding in Sec. 3.2.2 and new classification label in

Sec. 3.3. For position decoding, in Table 5, the tracker

Baseline+HFT+PE hurts the performance of HiFT
tremendously (from 24.88% improvements to 12.77%),

proving that direct position encoding is indeed not proper

for feature M5. Considering the distance of ground

truth and sample points, the circular strategy utilized in

HiFT achieves a notable improvement (24.88%) compared

to the traditional rectangle label in Baseline+HFT+RL
(2.95%).

Remark 6: Please note that more ablation studies are re-

ported in supplement material.

4.3.4 Qualitative Evaluation

As shown in Fig. 5, the confidence map of our HiFT tracker

consistently focuses on the object under onerous challenges

in aerial tracking, e.g., fast motion in Motor2, low resolution

in SpeedCar4, and occlusion in group3 and Yacht4. Despite

that the Baseline and Baseline+OT are trained with

the same strategy as HiFT, they still fail to concentrate on

the target object in those complex tracking scenarios, which

proves the robustness of the proposed hierarchical feature

transformer.

4.3.5 Comparison to Trackers with Deeper Backbone

The proposed hierarchical feature transformer dedicates to

model effective feature mapping among multi-level fea-

tures, so as to achieve SOTA performance without intro-

ducing a huge computational burden. To further evaluate its

effectiveness, we employ the trackers equipped with deeper

backbones for comparison. The state-of-the-art track-

ers, including SiamRPN++ (ResNet-50) [31], SiamRPN++

(MobileNet) [31], SiamMask (ResNet-50) [46], ATOM

(ResNet-18) [10], DiMP (ResNet-50) [3], PrDiMP

(ResNet-18) [14], SiamCAR (ResNet-50) [23], SiamGAT

(GoogleNet) [22], and SiamBAN (ResNet-50) [8], are

involved in the comparison. As illustrated in Fig. 6,

HiFT achieves a satisfactory balance of tracking robust-

ness and speed. On UAV20L, adopting AlexNet as the

backbone, HiFT (0.763) surpasses the second-best tracker

SiamRPN++ ResNet-50 (0.749) in precision and achieves

a speed of 127 FPS, which is 1.8 times faster than the lat-

ter. Similarly, on DTB70, HiFT achieves comparable per-

formance compared to those deeper CNN-based trackers.

Eventually, the average precision and tracking speed are re-

ported in Table 6, HiFT yields the best average precision

(0.783) with a promising speed of 129.87 FPS, proving that
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127 FPS
71 FPS 133 FPS

74 FPS

Figure 6. Precision-speed trade-off analysis by quantitative comparison between HiFT and trackers with deeper backbone on UAV20L [39]

(left) and DTB70 [34] (right). Our method realizes an excellent trade-off on both two benchmarks.

Table 6. Average precision and tracking speed of HiFT and the trackers with deeper backbone. The proposed approach runs at a satisfactory

speed of ∼130 FPS, while achieving comparable tracking performance with those trackers equipped with a deeper backbone. The best

three performances are respectively highlighted with red, green, and blue color.

Tracker HiFT (ours) SiamGAT [22] SiamCAR [23] SiamBAN [8] PrDiMP [14] SiamRPN++ [31] SiamRPN++ [31] SiamMask [46] ATOM [10]

Backbone AlexNet GoogleNet ResNet-50 ResNet-50 ResNet-18 ResNet-50 MobileNet ResNet-50 ResNet-18

Avg. Prec. 0.783 0.751 0.739 0.763 0.741 0.774 0.748 0.740 0.738

Avg. FPS 129.87 90.01 71.74 73.25 25.94 71.59 115.03 77.30 34.94

HiFT achieves an excellent balance between tracking per-

formance and efficiency.

5. Real-World Tests
In this section, HiFT is further implemented on a typi-

cal UAV platform including an embedded onboard proces-

sor, i.e., NVIDIA AGX Xavier, to testify its practicability

in real-world applications. Figure 7 presents three tests in

the wild, including day and night scenes. The main chal-

lenges in the tests are partial occlusion, viewpoint change

(the first row), low-resolution, camera motion (the second

row), small object, and similar object around (the third

row). Attributing to the effective feature transformer, HiFT

maintains satisfying tracking robustness in various chal-

lenging scenarios. Moreover, our tracker remains at an av-

erage speed of 31.2 FPS during the tests without using Ten-

sorRT. Therefore, the real-world tests onboard the embed-

ded system directly validate the superior performance and

efficiency of HiFT under various UAV-specific challenges.

6. Conclusion
In this work, a novel hierarchical feature transformer

for efficient aerial tracking is proposed for streamlining the

process of exploiting the global contextual information and

multi-level features. By virtue of both low-resolution se-

mantics information and high-resolution spatial details, the

transformed feature can achieve promising performance in

discriminating the object from clutters via a lightweight

structure. Meanwhile, attributing to the modulation layer

and the new classification label, the effectiveness of the fea-

ture transformer can reach its full potential. Comprehensive

experiments have validated that HiFT can achieve an ex-

cellent precision-speed trade-off and can be utilized in real-

world aerial tracking scenarios. Moreover, even compared
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Figure 7. Visualization of real-world tests on the embedded plat-

form. The tracking results and ground truth are marked with red

and green boxes. The CLE score below the blue dotted line is

considered as the success tracking result in the real-world tests.

to the trackers with deeper backbones, HiFT can achieve

comparable performance. We are convinced that our work

can advance the development of aerial tracking and promote

the real-world applications of visual tracking.
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