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Figure 1: Results of (b) Exemplar-based inpainting [2], (c) GateConv [43], (d) EdgeConnect [28], and (e) our method, with
the inpainted areas highlighted by red dot box. Our method makes better inpainting without artifacts.

Abstract
This paper studies the task of inpainting man-made

scenes. It is very challenging due to the difficulty in preserv-
ing the visual patterns of images, such as edges, lines, and
junctions. Especially, most previous works are failed to re-
store the object/building structures for images of man-made
scenes. To this end, this paper proposes learning a Sketch
Tensor (ST) space for inpainting man-made scenes. Such a
space is learned to restore the edges, lines, and junctions
in images, and thus makes reliable predictions of the holis-
tic image structures. To facilitate the structure refinement,
we propose a Multi-scale Sketch Tensor inpainting (MST)
network, with a novel encoder-decoder structure. The en-
coder extracts lines and edges from the input images to
project them into an ST space. From this space, the decoder
is learned to restore the input images. Extensive experi-
ments validate the efficacy of our model. Furthermore, our
model can also achieve competitive performance in inpaint-
ing general nature images over the competitors.

1. Introduction
As a long-standing problem, image inpainting has been

studied to address the problem of filling in the missing parts
of the images being semantically consistent and visually re-

alistic with plausible results. Thus, image inpainting is use-
ful to many real-world applications, e.g. image restoration,
image editing, and object removal [6].

Intrinsically as an inverse problem, the inpainting is chal-
lenging in both restoring the missed global structure (se-
mantically consistent), and generating realistic regions lo-
cally coherent to unmasked regions (visually consistent).
Especially, it is hard to reconstruct the missed image re-
gions from the complex man-made scenes and structures,
due to the difficulty in preserving the prominent low-level
visual patterns, such as edges, line segments, and junctions,
as shown in Fig. 1. To this end, this paper particularly fo-
cuses on learning to reconstruct these visual patterns for im-
age inpainting, and proposes a method of the best merits in
repairing the masked regions of man-made scene images,
such as images with indoor and outdoor buildings.

Both traditional approaches [2, 8, 19] and deep learn-
ing methods [24, 44, 40, 17, 43, 21] had made great ef-
forts on reconstructing the structures of images in produc-
ing visually realistic results. However, these methods are
still challenged by producing structurally coherent results,
especially in the inpainting of man-made scenes. Typi-
cally, inpainting approaches may suffer from the follow-
ing problems. (1) Missing critical structures. Traditional
synthesis-based approaches are normally unable to model
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the critical structures as in Fig. 1(b). On the other hand,
recent learning-based inpainting methods utilize auxiliary
information to support the inpainting, e.g., edges [28, 20],
and segmentation [32, 22], predominantly inpainting lo-
cal visual cues, rather than holistic structures of man-made
scenes. For example, the results of EdgeConnect [28] with
canny edges [5] in Fig. 1(d) suffer from broken and blurry
line segments and lose connectivity of building structures.
(2) Unreliable pattern transfer. The learning-based auxil-
iary detectors will transfer and magnify the unreliable im-
age priors or patterns to the masked image regions, which
causes degraded inpainting results [22]. (3) Trading off
performance and efficiency. The auxiliary-based inpainting
methods usually consume more computation, due to addi-
tional components or training stages [28, 20, 39]. But these
methods still have artifacts in junction regions as framed
with red dotted lines in Fig. 1(c)(d). Therefore, the design
of a more effective network is expected to efficiently en-
hance the inpainting performance.

To address these issues, our key idea is to learn a Sketch
Tensor (ST) space by an encoder-decoder model. (1) The
encoder learns to infer both local and holistic critical struc-
tures of input images, including canny edges and composi-
tional lines. The image is encoded as the binarized ‘sketch’
style feature maps, dubbed as sketch tensor. The decoder
takes the restored structure to fill in holes of images. (2)
For the first time, the idea of parsing wireframes [14] is re-
purposed to facilitate inpainting by strengthening the holis-
tic structures of man-made scenes with more effective and
flexible holistic structures. We propose a Line Segment
Masking (LSM) algorithm to effectively train the wireframe
parser, which alleviates unreliable structure guidance from
corrupted images and the heavy computation of auxiliary
detectors during the training phase. Besides, LSM also
leverage the separability of line segments to extend the pro-
posed model to obtain better object removal results. (3)
Most importantly, we significantly boost the training and in-
ference process of previous inpainting architectures. Thus,
a series of efficient modules are proposed, which include
partially gated convolutions, efficient attention module, and
Pyramid Decomposing Separable (PDS) blocks. Critically,
we present PDS blocks to help better learn binary line and
edge maps. Our proposed modules make a good balance of
model performance and training efficiency.

Formally, this paper proposes a novel Multi-scale Sketch
Tensor inpainting (MST) network with an encoder-decoder
structure. The encoder employs LSM algorithm to train an
hourglass wireframe parser [38] and a canny detector to ex-
tract line and edge maps. These maps concatenated with
input images are projected into ST space by Pyramid Struc-
ture Sub-encoder (PSS), which is sequentially constructed
by 3 partially gated convolution layers, 8 dilated residual
block layers with an efficient attention module, and 3 pyra-

mid decomposing block layers as in Fig. 2. The image is
encoded as a third-order sketch tensor in ST space, repre-
senting local and holistic structures. Finally, the decoder is
stacked by two groups of 3 partially gated convolution lay-
ers for both ends with 8 residual block layers, which will
re-project the sketch tensor into the restored image.

We highlight several contributions here. (1) We propose
learning a novel sketch tensor space for inpainting tasks.
Such a space is learned to to restore the critical missed struc-
tures and visual patterns, and makes reliable predictions of
the holistic image structures. Essentially, the skech ten-
sor has good interpretability of input images, as empirically
shown in experiments. (2) For the first time, the wireframe
parsing has been re-purposed to extract lines and junctions
for inpainting. A novel line segment masking algorithm
is proposed to facilitate training our inpainting wireframe
parser. (3) We introduce the novel partially gated convolu-
tion and efficient attention module to significantly improve
model performance without incurring additional expensive
computational cost than competitors, such as EdgeConnect.
(4) A novel pyramid decomposing separable block is pro-
posed to address the issue of effectively learning sparse
binary edge and line maps. (5) Extensive experiments on
the dataset of both man-made and natural scenes, including
ShanghaiTech [14], Places2 [48], and York Urban [4]. show
the efficacy of our MST-net, over the competitors.

2. Related work
Image Inpainting by Auxiliaries. The auxiliary infor-
mation of semantics and structures have been utilized to
help inpainting tasks in traditional methods, such as lines,
structures [13, 1], and approximation images [10]. Re-
cently, deep learning based approaches take auxiliary in-
formation as the important prior, such as canny edges [28,
20], smoothed edges [29, 12], edge and gradient infor-
mation [39], and semantic segmentation [32, 22]. Aux-
iliary information has been also utilized in image edit-
ing [47, 30, 15, 18]. Particularly, EdgeConnect [28] and
GateConv [43] both leverage edges to inpaint masked areas
with specific structural results. However, there is no holis-
tic structure information for man-made scenes that has been
explicitly modeled and utilized as auxiliary information in
previous work. Such information is crucial to inpaint the
images of complex structures, such as buildings, or indoor
furniture. To this end, our method utilizes the separability
and connectivity of line segments to help improve the per-
formance of inpainting.
Line Detection Approaches. Line detection enjoys im-
mense value in many real-world problems. Therefore, it
has been widely researched and developed in computer vi-
sion. Many classic graphics algorithms are proposed to ex-
tract line segments from raw images [9, 34, 26]. However,
these traditional methods suffer from intermittent and spu-
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Figure 2: The overview of MST, which is consisted of encoder, sketch tensor space, and decoder.
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Figure 3: The illustration of (a): Pyramid Decomposing
Separable (PDS) block, (b): Efficient Attention block.

rious line segments. Moreover, the extracted lines lack po-
sitions of junctions which causes poor connectivity. Huang
et al. [14] propose a deep learning based wireframe pars-
ing to improve the line detection task, which uses DNNs
to predict heatmaps of junctions and line segments as the
wireframe representation. LCNN proposed in [49] lever-
ages heuristic sampling strategies and a line verification
network to improve the performance of wireframe parsing.
Furthermore, Xue et al. [38] utilize the holistic attraction
field to enhance both efficiency and accuracy for the wire-
frame parser. Although wireframe parsing based models
enjoy distinctive strengths, to the best of our knowledge, no
previous work has considiered utilizing wireframe parser to
help preserve line structures for downstreaming inpainting
task. Critically, for the first time, our method first repur-
poses the wireframe parser to facilitate image inpainting,
which leverages connectivity and structural information of
wireframes to achieve better inpainting performance.

3. Multi-scale Sketch Tensor Inpainting
Overview. The MST network is shown in Fig. 2. Given
the input masked image Im ∈ Rh×w×3 and correspond-
ing binary mask M, MST has three key components, i.e.,
encoder Φ : [Im,M] → S , decoder Ψ : S → Ĩm, and
Sketch Tensor (ST) space of a third-order tensor denoted by
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Figure 4: LSM Illustration. In training, lines segments are
denoted by Eq. (1). Black solid lines, blue and green dotted
lines indicate the retained, masked, and masked by probably
m lines. Only in inpainting training process or object re-
moval task, the ground-truth images are known in advance.

S ∈ Rh×w×3. Particularly, the encoder firstly employs the
improved wireframe parser LSM-HAWP and canny detec-
tor [5] to extract line Il and edge maps Ie; then the con-
catenated image and maps [Il; Ie; Im;M] is processed by
Pyramid Structure Sub-Encoder (PSS) to produce the ST
space S. The decoder predicts inpainted image Ĩm, closer
to ground-truth image I.

In this section, Sec. 3.1 will introduce the LSM algo-
rithm. Details about the PSS and ST space are specified in
Sec. 3.2. Finally, the decoder will be discussed in Sec. 3.4.

3.1. Line Segment Masking Algorithm

The wireframe parser HAWP [38] is adopted to ex-
tract lines from images. Specifically, it extracts the junc-
tion set J =

{
p = (x, y) ∈ R2

}
, and line set L =

{l = (pa,pb) = (xa, ya, xb, yb)} paired by junctions in J.
Unfortunately, if lines are corrupted by the mask M, the re-
sults of naive HAWP [38] will be largely degraded as shown
in the inference stage of Fig. 4 with broken structures.

To this end, we propose an LSM algorithm to infer
missed line segments with the flexible wireframe pars-
ing, which is composed of two parts. 1) Learning an
LSM-HAWP network by retraining HAWP with the irregu-
lar [43] and object segmentation [45] masks. This not only
improves the stability for the corrupted images, but also
achieves superior results in trivial wireframe parsing tasks
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(Sec. 4.2). 2) Introducing an indicator function to denote
the masking probability of each line segment l according to
the mask M as the post-processing for LSM-HAWP,

I(l) =


1 if pa ∈ M and pb ∈ M

0 if pa /∈ M and pb /∈ M

m otherwise

, (1)

where m (0 ≤ m ≤ 1) is a hyper-parameter between 0 and
1, and junction p ∈ M,p /∈ M means that p is masked
or not. Fig. 4 illustrates the LSM post-process in training
and inference stages. In training, we set m = 0.5 to train
the first half epoches, and m = 1 for training in the rest
epoches. In the object removal task, we use the unmasked
image with m = 0 to retain necessary structures.

Thus as one practical strategy of speedup the learning
process, we extract all wireframes beforehand and filter-
ing them by the post-process of LSM, rather than an end-
to-end training with LSM-HAWP, which dramatically im-
proves the training efficiency. Note that in the testing stage
for inpainting, corrupted images are used as the input to
make our results fair comparable to the competitors.

3.2. Pyramid Structure Sub-Encoder

The LSM-HAWP and canny detector extract the line and
edge maps Il, Ie ∈ Rh×w×1 respectively. Essentially, Ie is
binary map, and Il is got from connecting junction pairs
from LSM-HAWP with anti-aliased lines. The input to
PSS is the concatenation of the masked image and struc-
ture maps [Il; Ie; Im]. As shown in Fig. 2, the PSS is com-
posed of partially gated convolutions, dilated [41] residual
blocks, efficient attention, and pyramid decomposing sepa-
rable blocks, which will be explained next. For the detailed
structures, please refer to our supplementary.
Partially Gated Convolutions. We adopt the Gated Con-
volution (GC) layers to process the masked input features,
as it works well for the irregular mask inpainting tasks in
[43]. Unfortunately, GC demands much more trainable pa-
rameters than vanilla convolutions. To this end, as shown in
Fig. 2 and Fig. 3(a), we propose a partially GC strategy of
only utilizing three GC layers for the input and output fea-
tures in both encoder and decoder models. Essentially, this
is motivated by our finding that the outputs of GC mostly
devoting to filtering features of masked and unmasked re-
gions only in the encoder layers of the coarse network and
the decoder layers of the refinement network in [43]. In con-
trast, we do not observe significantly performance improve-
ment of using GC in the middle layers of backbones. Thus,
we maintain vanilla convolutions (i.e., residual blocks) in
the middle layers, to save parameters and improve the per-
formance as empirically validated in Tab. 4.
Efficient Attention Block. Intuitively, attention is impor-
tant to learn patterns crossing spatial locations in image in-
painting [42, 25, 21, 39]. However, attention modules are

expensive to be computed, and non-trivial to be parallelized
in image inpainting [42]. To this end, we leverage Effi-
cient Attention (EA) module among middle blocks of Fig.
2 and detailed in Fig. 3(b). Particularly, for the input feature
X ∈ Rh×w×d, and mask M ∈ Rh×w×1, we first reshape
them to Rhw×d and Rhw×1 as the vector data respectively.
Then, the process of efficient attention can be written as

Q = softmaxrow(WqX+ (M · −∞))

K = softmaxcol(WkX+ (M · −∞))

V = WvX, E = Q(KTV),

(2)

where Wq,k,v indicates different learned parameter matri-
ces; +(M · −∞) means masking the corrupted inputs be-
fore the softmax operation. Critically, softmaxrow and
softmaxcol means the softmax operations on the row and
column individually. Then, we achieve the output E ∈
Rhw×d, which will be reshaped back to Rh×w×d. Note that
Eq. (2) is an approximation to vanilla attention operation
as in [31]. Typically, this strategy should in principle, re-
duce significantly computational cost. Since E is computed
by KTV ∈ Rd×d, rather than standard QKT ∈ Rhw×hw.
In practice, the dimension d is much smaller than hw in
computer vision tasks. Furthermore, as in Fig. 3(b), we in-
troduce the multi-head attention [33] to further reduce the
dimension from d to d′ = d/nhead. Thus, KTV could ag-
gregate the query Q in feature level and obtain the global
context E. Note that EA module is inspired but different
from [31], as the attention scores of corrupted regions are
masked to aggregate features from uncorrupted regions.
Pyramid Decomposing Separable (PDS) Block. We have
found that GAN-based edge inpainting [35] suffers from
generating meaningless edges or unreasonable blanks for
masked areas as shown in Fig. 6, due to the nature of spar-
sity in binary edge maps. Thus, we propose a novel PDS
block in PSS as in Fig. 3(a). PDS leverages dilated lower-
scale structures to make up the sparse problem for ST space.
Particularly, assume the image feature X ∈ Rh×w×d, PDS
firstly decouples it as
Ele = feb(GateConv(X)), {El,Ee} = split(Ele),

Oe = σ(Conv(Ee)), Ol = σ(Conv(El)),
(3)

where σ is sigmoid activation. We project the feature into
two separated embedding spaces called line embedding El

and edge embedding Ee with the function feb, which is
composed with Conv2D → IN → ReLU. split is the opera-
tion of splitting the features into two respective tensors with
equal channels. Then, El and Ee are utilized to learn to
roughly reconstruct the image Oim without corruption as

A = fab(Ele) ∈ Rh×w×1

E′
le = El ⊙ (1−A) +Ee ⊙A

Oim = tanh(Conv(E′
le)),

(4)

where fab is Conv2D → IN → ReLU → Conv2D → Sigmoid.
⊙ denotes the element-wise product. The prediction of
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coarse Oim gives a stronger constraint to the conflict of El

and Ee, and we expect the attention map A can be learned
adaptively according to a challenging target. Furthermore, a
multi-scale strategy is introduced in the PDS. For the given
feature X(1) ∈ R64×64×d from dilated residual blocks of
PSS, PDS predicts lines, edges, and coarse images with
different resolutions as follow

X(i+1),O
(i)
im,O

(i)
l ,O(i)

e = PDS(i)(X(i)), (5)

where i = 1, 2, 3 indicate that the output maps with 64×64,
128×128, and 256×256 resolutions respectively. Various
scales of images can be in favor of reconstructing different
types of structure information.
Loss Function of PSS. We minimize the objectives of PPS
with two spectral norm [27] based SN-PathGAN [43] dis-
criminators Dl and De for lines and edges respectively. And
the Lenc

D and Lenc
G are indicated as

Lenc
D =LDl

+ LDe ,

Lenc
G =λaLenc

adv + λfLfm +

3∑
i=1

∥O(i)
im − I(i)∥1,

(6)

where O
(i)
im, I(i) are the multi-scale outputs (Eq. 5) and

ground-truth images varying image size 64×64 to 256×256

respectively. Lfm is the feature matching loss as in [28] to
restrict the l1 loss between discriminator features from the
concatenated coarse-to-fine real and fake sketches discussed
below. And the adversarial loss can be further specified as

Lenc
adv = −E

[
logDl(Ôl)

]
− E

[
logDe(Ôe)

]
,

LDl
= −E

[
logDl(Îl)

]
− E

[
1− logDl(Ôl)

]
,

LDe = −E
[
logDe(Îe)

]
− E

[
1− logDe(Ôe)

]
,

(7)

where Ôl, Ôe ∈ R256×256×3 are got from the multi-scale
PSS outputs of lines and edges, which are upsampled and
concatenated with Ôl = [up(O

(1)
l ); up(O

(2)
l );O

(3)
l ] and

Ôe = [up(O
(1)
e ); up(O

(2)
e );O

(3)
e ]. To unify these outputs

into the same scale, the nearest upsampling up() is utilized
here. Accordingly, Îl, and Îe are the concatenation of multi-
scale ground-truth edge and line maps, respectively. Note
that, we firstly dilate the ground-truth edges and lines with
the 2 × 2 kernel, and then subsample them to produce the
low resolution maps at the scale of 64×64, 128×128. The
hyper-parameters are set as λa = 0.1, λf = 10 .

3.3. Sketch Tensor (ST) Space

The last outputs O
(3)
l ,O

(3)
e ∈ R256×256×1 of Eq. 5 is

used to compose the ST space as

S =
[
O

(3)
l ;O(3)

e ; clip(O
(3)
l +O(3)

e )
]
. (8)

Generally, lines represent holistic structures, while edges
indicate some local details. They provide priors of struc-
tures in different manners to the inpainting model. We also

combine and clip them within 0 and 1 to emphasize overlaps
and make an intuitive expression of the whole structure.

3.4. Decoder of MST Network

The structure of the decoder is the same as PSS except
that the decoder has no attention blocks and PSD blocks.
Because we find that the generator in [28] is sufficient to
generate fine results with reasonable structure information.
But we still add gated mechanism to the leading and trail-
ing three convolutions to improve the performance for the
irregular mask. As the encoder has provided the ST space
S ∈ Rh×w×3 in Eq. 8, we can get the inpainted image Ĩm
with the masked input Im and mask M as

Ĩm = Ψ([Im;M;S]). (9)

We use SN-PathGAN [43] based discriminator Dim for the
decoder, and the objectives to be minimized are

Ldec
D = −E

[
logDim(I)

]
− E

[
1− logDim(Ĩm)

]
,

Ldec
G = Ll1 + λaLdec

adv + λpLper + λsLstyle,
(10)

Ldec
adv = −E

[
logDim(Ĩm)

]
, (11)

where I is the origin undamanged image for training. We
adopt the l1 loss Ll1 , VGG-19 based perceptual loss [16]
Lper, and style-loss [7] Lstyle to train our model, with
the empirically setted hyperparameters λp = 0.1, λs =
250 [28, 12]. We propose using the balanced loss form [3]
to implement reconstruction losses Ll1 and Lper, normal-
izing by the weights of masked region M and unmasked
region 1 − M. The balanced loss form can settle the in-
painting task with imbalanced irregular masks properly.

Note that we learn the encoder and the decoder jointly
in the forward pass. The gradients of the decoder will not
be propagated to update the encoder, which not only saves
the memory but also maintains the interpretability of the
sketch tensor S. Generally, the total parameter number and
calculation costs of our model are comparable to [28].

4. Experiments and Results
Datasets. The proposed approach is evaluated on three
datasets: ShanghaiTech [14], Places2 [48], and York Ur-
ban [4]. ShanghaiTech contains 5000 training images and
462 test images consisted of buildings and indoor scenes
with wireframe labels. The LSM-HAWP wireframe detec-
tion model is trained on this dataset with the mask augmen-
tation. For Places2, we select 10 categories images accord-
ing to the number of line segments detected by HAWP as
man-made scenes (P2M). Moreover, we randomly select 10
Places2 classes with both natural and urban scenes as com-
prehensive scenes (P2C)1. For York Urban, it has 102 city
street view images for testing models trained with P2M.

1Details about Places2 are illustrated in the supplementary.
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Ground Truth Input GC EC RFR MED Ours Ours*

Figure 5: Qualitative results in ShanghaiTech and man-made Places2, where * means that our method works in the LMS ob-
ject removal mode with m = 0. Key parts are enlarged, and the complete generated pictures are shown in the supplementary.

GC EC RFR MED Ours Ours*

S.
-T

. P.↑ 25.54 26.51 26.30 26.14 26.90 27.20
S.↑ 0.893 0.871 0.863 0.886 0.876 0.880
F.↓ 26.06 24.84 25.95 30.02 21.16 20.05

P2
M

P.↑ 25.72 26.71 26.07 23.84 27.20 27.47
S.↑ 0.892 0.901 0.890 0.857 0.907 0.910
F.↓ 16.54 14.75 17.79 26.95 12.81 12.13

Y.
-U

. P.↑ 25.92 26.13 25.64 24.20 26.29 26.59
S.↑ 0.886 0.864 0.852 0.858 0.869 0.872
F.↓ 31.68 32.06 38.70 51.71 29.15 26.53

P2
C

P.↑ 27.87 28.35 – – 28.52 28.65
S.↑ 0.923 0.927 – – 0.928 0.929
F.↓ 15.05 13.68 – – 11.97 11.69

Table 1: The PSNR (P.), SSIM (S.) and FID (F.) results
on ShanghaiTech (S.-T.), man-made Places2 (P2M), York
Urban (Y.-U.), and comprehensive Places2 (P2C). ↑ means
larger is better and ↓ means lower is better. * indicates our
method working in object removal mode of LSM. Best re-
sults are bold except for object removal ones.

Implementation Details. Our method is implemented with
PyTorch in 256 × 256 image size. All models are trained
with Adam optimizer of β1 = 0 and β2 = 0.9, and the
initial learning rates are 2e−4 and 2e−5 for generators and
discriminators respectively. We train the model with 400k
steps in ShanghaiTech and 1000k steps in Places2. Besides,
Es is trained with 1/3 of the total steps, and then be fixed.
We decay the learning rate with 0.75 for each 100k steps.
For the structure information, line segments are extracted
by HAWP, and Canny edges are got with σ = 2. Our model
is trained in Pytorch v1.3.1, and costs about 2 days training

in ShanghaiTech and about 5 days in Places2 with a single
NVIDIA(R) Tesla(R) V100 16GB GPU.
Comparison Methods. We compare the proposed MST
with some state-of-the-art methods, which include Gated
Convolution (GC) [43], Edge Connect (EC) [28], Recur-
rent Feature Reasoning (RFR) [21], and Mutual Encoder-
Decoder with Feature Equalizations (MED) [12]. These
methods are all retrained with similar settings and costs
compared with ours.
Settings of Masks. To handle the real-world image inpaint-
ing and editing tasks, such as object removal, the random
irregular mask generation in [43, 37] is adopted in this pa-
per. Besides, as discussed in [45], real-world inpainting
tasks usually remove regions with typical objects or scenes
segments. So we collect 91707 diverse semantic segmenta-
tion masks with various objects and scenes with the cover-
age rates in [5%, 40%] from the COCO dataset [23]. Over-
all, the final mask will be chosen from irregular masks and
COCO segment masks randomly with 50% in both training
and test set. To be fair, all comparison methods are retrained
with the same masking strategy.

4.1. Image Inpainting Results

For fair comparisons in image inpainting, we do not leak
any line segments of the uncorrupted images for the im-
age inpainting task and related discussions. The wireframe
parser LSM-HAWP is trained in ShanghaiTech, and it pre-
dicts the line segments for the other two datasets. Besides,
results from the object removal with m = 0 in Eq. (1) are
offered for reference only in this section.
Quantitative Comparisons. In this section, we evaluate
results with PSNR, SSIM [36], and FID [11]. As discussed
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Figure 6: (From left to right) Original image, masked im-
age, edges Oe generated from EC [28], edges and lines
clip(Ol +Oe) generated from our model, our inpainted re-
sults. Blue lines indicate the generated lines or edges.

in [46], we find that l2 based metrics such as PSNR and
SSIM often contradict human judgment. For example, some
meaningless blurring areas will cause large perceptual devi-
ations but small l2 loss [46]. Therefore, we pay more at-
tention to the perceptual metric FID in quantitative compar-
isons. The results on ShanghaiTech, P2M, and York Ur-
ban are shown in Tab. 1. From the quantitative results, our
method outperforms other approaches in PSNR and FID.
Especially for the FID, which accords with the human per-
ception, our method achieves considerable advantages. Be-
sides, our method enjoys good generalization, as it also
works properly in P2M, York Urban, and even P2C.
Qualitative Comparisons. Qualitative results among our
method and other state-of-the-art methods are shown in
Fig. 5. Compared with other methods, our approach
achieves more semantically coherent results. From the en-
larged regions, our schema significantly outperforms other
approaches in preserving the perspectivity and the struc-
tures of man-made scenes. Moreover, we show the edge
results of EC [28] and partial sketch tensor space (edges
and lines) results of our method in ShanghaiTech, P2M, and
P2C in Fig. 6. Results in Fig. 6 demonstrate that line seg-
ments can supply compositional information to avoid inde-
cisive and meaningless generations in edges. Furthermore,
line segments can also provide clear and specific structures

GC EC Ours

S.-T. 3.00 7.67 33.67
P2M 6.67 8.67 32.33

Table 2: Average user scores of ShanghaiTech (S.-T.) and
man-made Places2 (P2M).

in masked regions to reconstruct more definitive results in
man-made scenes. Besides, for the natural scene images in
P2C without any lines, our method can still outperform EC
with reasonable generated edges for the masked regions. As
discussed in Sec. 3.2, the proposed PDS works properly to
handle the sparse generative problem.
Results of Natural Scenes. In the last three rows of Tab. 1,
we present the results of ours method on the comprehensive
Places2 dataset (P2C) to confirm the generalization. They
are compared with GC and EC, which have achieved fine
scores in man-made Places2 (P2M). Note that all metrics
are improved in P2C compared with ones in P2M of Tab. 1,
which demonstrates man-made scenes are more difficult to
tackle. Our methods still get the best results among all com-
petitors, and the object removal results achieve superior per-
formance. Besides, the last two rows of Fig. 6 show that
our method can generate reliable edge sketches even with-
out lines in natural scenes. These phenomenons are largely
due to two reasons: 1) There is still a considerable quantity
of line segments in the comprehensive scenes, and these in-
stances are usually more difficult than others. 2) The pro-
posed partially gated convolutions, efficient attention, and
PDS blocks can work properly for various scenes.
Human Judgements. For more comprehensive compar-
isons, 50 inpainted images from GC [43], EC [28], and ours
are chosen from ShanghaiTech and P2M randomly. And
these samples are compared by 3 uncorrelated volunteers.
Particularly, volunteers need to choose the best one from
the mixed pool of the inpainted images with different meth-
ods, and give one score to the respective approach. If all
methods work roughly the same for a certain sample, it will
be ignored. The average scores are shown in Tab. 2. Ours
method is significantly better than other competitors.

4.2. Other Applications and Ablation Study

Object Removal. From the last column in Fig. 5, we
show the inpainting results of our MST working in the post-
process of LSM with m = 0 for the object removal. These
refined images with more reasonable structures indicate that
the our model can strengthen the capability of image recon-
struction without redundant residues. From Fig. 7, some
object removal cases are shown to confirm the practicability
of the proposed method. Numerical results are presented in
the last columns of Tab. 1. So, our method can achieve fur-
ther improvements in all metrics compared with the vanilla
image inpainting schema for the object removal, and it can
correctly mask undesired lines. Therefore, the post-process
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Figure 7: Object removal examples. From left to right: ori-
gin image, masked image, and our inpainted image.

unmasked testset masked testset
Threshold 5 10 15 5 10 15

HAWP 62.16 65.94 67.64 35.39 38.47 40.15
LSM-HAWP 63.20 67.06 68.70 48.93 53.30 55.39

Table 3: Structural average precision scores [49] with dif-
ferent thresholds of parsers trained with (LSM-HAWP) and
without (HAWP) the mask augmentation on ShanghaiTech.

PSNR↑ SSIM↑ FID↓ Param

w/o GC 26.51 0.871 24.84 10.8M
Partially GC 26.78 0.874 22.68 12.1M

All GC 26.71 0.874 22.62 25.1M

Table 4: Ablation study of the gated convolution of our
model in ShanghaiTech, Param indicates the parameter
scale of the compared inpainting model.

w/o lines w/o EA w/o PDS Ours

PSNR↑ 26.78 26.77 26.63 26.90
SSIM↑ 0.874 0.875 0.873 0.876
FID↓ 22.68 21.39 21.88 21.16

Table 5: Quantitative ablation studies in ShanghaiTech.

of LSM can significantly improve the performance in the
object removal task with the separability of line segments .
Masked Wireframe Detection. As discussed in Sec. 3.1,
we retrain the HAWP with mask augmentation to ensure the
robustness for the corrupted data as LSM-HAWP in Shang-
haiTech dataset [14]. To confirm the effect of the augmenta-
tion, we further prepare another masked ShanghaiTech test-
set with the same images. The results are shown in Tab. 3.
The structural average precision (sAP) metric is proposed

(a) input (b) Ours w/o lines (c) Ours w/o PDS (d) Ours (e) Ground Truth

Figure 8: Ablation studies on line segments and PDS blocks
in ShanghaiTech. Blue and red lines indicate recovered and
ground truth in masked regions, respectively.

in [49], which is defined as the area under the PR curve of
detected lines with different thresholds. From Tab. 3, LSM-
HAWP performs better than vanilla HAWP significantly for
the masked testset. Moreover, HAWP can also gain im-
provements in the uncorropted testset with more than 1% in
sAP, which indicates the great generality of the mask aug-
mentation for the wireframe detection task.
Simplification of Gated Convolutions. The related abla-
tion study of GC are shown in Tab. 4. Only replacing vanilla
convolutions for input and output stages of the model with
partially GC gains satisfactory improvements. But replac-
ing all convolution layers with GC fails to achieve a further
large advance, while the parameters are doubled2.
Contributions of Lines, PDS, and EA. We explored the
effects of lines, Pyramid Decomposing Separable (PDS)
blocks and the Efficient Attention (EA) module in Tab. 5
in ShanghaiTech. Specifically, line segments, PDS blocks
and the EA module are removed respectively, while other
settings unchanged. As shown in Fig. 8, our method with-
out line segments causes severe structural loss, and the one
without PDS suffers from contradictory perspectivity. From
Tab. 5, we can see all line segments, PDS blocks and the EA
module can improve the performance in image inpainting.

5. Conclutions

This paper studies an encoder-decoder MST-net for in-
painting. It learns a sketch tensor space restoring edges,
lines, and junctions. Specifically, the encoder extracts and
refines line and edge structures into a sketch tensor space.
The decoder recover the image from it. Moreover, the LSM
algorithm is proposed to update the line extractor HAWP to
fit the inpainting and object removal tasks. Several effec-
tive network modules are proposed to improve the MST for
tough man-made scenes inpainting. Extensive experiments
validate the efficacy of our MST-net for inpainting.
Acknowledgment Yanwei Fu is the corresponding authour. This
project is supported by Huawei, and released on https://

ewrfcas.github.io/MST_inpainting.

2The visualization results of GC are shown in the supplementary.
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