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Abstract

The popularization of intelligent devices including
smartphones and surveillance cameras results in more se-
rious privacy issues. De-identification is regarded as an
effective tool for visual privacy protection with the process
of concealing or replacing identity information. Most of
the existing de-identification methods suffer from some lim-
itations since they mainly focus on the protection process
and are usually non-reversible. In this paper, we propose a
personalized and invertible de-identification method based
on the deep generative model, where the main idea is in-
troducing a user-specific password and an adjustable pa-
rameter to control the direction and degree of identity vari-
ation. Extensive experiments demonstrate the effectiveness
and generalization of our proposed framework for both face
de-identification and recovery.

1. Introduction

The widespread use of handheld devices such as smart-

phones and digital cameras is conducive to image produc-

tion, and the development of social media promotes wide

dissemination and easy access to images along with the in-

creasingly common applications of computer vision tech-

nology and deep learning. The above factors lead to serious

threats to image privacy and security.

Most importantly, face images are generally considered

to contain abundant private information. The earliest tech-

niques obfuscated privacy-sensitive information by pixel-

level processing which have been proved vulnerable and

poor effects on utility [23]. Recent GAN-based meth-

ods like [10, 16] improve the quality and utility of de-

identification results remarkably. What’s more, the re-

search on disentangled representations [5, 18] contributes

to transforming the identity information without changing

the other facial attributes, which makes it possible that the

de-identified results keep visual similarity with the original.

Most de-identification methods only focus on the protec-

tion phase, which can help to protect identity in surveillance

for normal situations or uploading images on social media.

Considering that when looking for the identity in criminal

investigations or sharing pictures with close friends, it is

hoped to use the original image instead of the de-identified.

Therefore, how to restore the original image is also a critical

task. Moreover, notice that the tradeoff between privacy and

utility poses a major challenge for all privacy-preserving

methods, and different levels of privacy are required in dif-

ferent scenarios. We believe that an ideal comprehensive

de-identification method should: a) avoid deteriorating non-

sensitive information like facial expression, behavior and so

on, b) control the degree of privacy protection according to

application, c) be able to restore the original image under

security conditions.

To achieve the above targets, this paper proposes a per-

sonalized and invertible face de-identification method. The

main framework can be summarized in the following three

stages: (1) extract disentangled identity and attributes and

ensure the attributes unchanged during the de-identification

process, (2) calculate the protected or restored identity with

the identity modification module based on the password p
and privacy level parameter d, (3) implement image recon-

struction. As shown in Fig. 1, compared with existing de-

identification methods, our approach can retain more sim-

ilarities with the original. Different from the generative

adversarial network conditioned on passwords proposed by

Gu et al. [8], which needs to retrain the network for differ-

ent passwords, our encryption process is relatively indepen-

dent of the deep generative network, so that the password

form can be defined more flexibly, the complexity will be

reduced greatly and the scope of identity changes can be in-

finitely expanded. Different from k-Same family algorithms

[6, 7, 17] which can provide privacy guarantees and control

3334



(a) Original (b) Blur (c) Pixelation (d) Noise (e)DeepPrivacy (f)Gu et al. (g)Ours(d=0) (h)Ours(d=9)

Figure 1: De-identification results compared with existing methods, where (b),(c),(d) are traditional methods and (e),(f) are

based on deep learning. From left to right: the original image, Gaussian Blur (s=8), pixelation (8×8), Gaussian noise (σ=15),

DeepPrivacy [10], Gu et al. [8] and our de-identified results with the minimum and maximum privacy level d.

privacy protection levels for the entire datasets, our method

can control the extent of identity variation for each image.

In summary, our main contributions are as follows:

• A general framework that can transform identity of the

input while ensuring the other attributes keep similar.

• Personalized de-identification results can be generated

with the user-specific password and the degree of iden-

tity variation can be controlled.

• The original image can be restored if and only if the

corresponding encryption parameters are provided.

• Experimental results show that compared with existing

methods, our approach can generate de-identified re-

sults with better performance of both privacy and util-

ity, in addition to better-quality recovery results.

2. Related work

In this section, we discuss related work that constitutes

the foundations and the motivations of our present work.

2.1. Face De-identification

Traditional face de-identification methods simply use

blurring, masking, or pixelation. These methods mainly

focus on obfuscating sensitive information directly, which

may bring unpleasant artifacts and great harm to image

utility. The k-Same family algorithms, based on the k-

anonymity [21], can guarantee that each de-identified image

is associated with k images to limit the probability of being

recognized to 1/k. There are some improvements based

on k-Same [17], for example, k-Same-Select [6] aimed at

preserving facial attributes and k-Same-M [7] tried to re-

move displeasing artifacts owing to misalignment by in-

troducing the Active Appearance Model (AAM). Thanks

to the advances in deep generative models, more novel

GAN-based de-identification methods have been proposed

to produce higher-quality images. DeepPrivacy [10] gen-

erates the whole face region to protect full of sensitive in-

formation. Recently, there have been some recoverable de-

identification methods. Yamac et al. [25] introduces a re-

versible privacy-protection compression method combined

with a multi-level encryption scheme for video surveillance

applications. Gu et al. [8] described a generative adversar-

ial network trained with both images and pre-defined pass-

words, which can reconstruct the original using the inverse

password. A reversible de-identification method for low-

resolution video was proposed in [19], which can generate

a realistic de-identified stream that contains all the infor-

mation required in reconstruction. Due to these recover-

able methods are mainly based on conditional information,

trained for specific passwords, or required additional infor-

mation about the protection process, the application flex-

ibility and protection security will be affected, while our

method can lift such restrictions.

2.2. Disentangled Representation

Many different levels of supervised learning methods

have been proposed to learn disentangled representations.

Hu et al. [9] used two feature blocks mixing and unmix-
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ing autoencoders to learn image representations without any

data domain knowledge. The research on disentangling

identity and attributes has also received extensive attention

in the task of de-identification [1] and face-swapping [13]

in the hope to focus on identity transform while keeping

other attributes unaffected. Most of them follow a similar

manner that using a pre-trained face recognition network to

infer identity representations and guide the training of gen-

erator. Cho et al. [3] proposed a network that disentangles

latent vectors to identity representations and facial features.

Chen et al. [2] constructed a variational generative adver-

sarial network VGAN-based disentanglement network for

identity switching and expression consistency. Nitzan et
al. [18] designed a method to disentangle identity-related

embeddings and generate synthesis results based on both

identity-reference image and attribute-reference image with

StyleGAN. Gong et al. [5] established a twofold architec-

ture called replacing and restoring variational autoencoders(
R2VAEs

)
and based on the strategy of factor invariantion

to ensure the identity-independent information can be com-

pletely disentangled.

3. Problem Formulation

Our identity conversion algorithm mainly possesses de-

identification F and restoration F−1, which both require

the input of source face image X , the user-specific pass-

word p, and a privacy level parameter d. The password can

determine the direction of identity variation and d can con-

trol the variation degree. Inspired by Gu et al. [8], we math-

ematically formulate our problem in this section.

De-identification. In order to achieve the effectiveness

of identity protection, we aim that the protected image will

have different identity information from the original, which

can be formulated as,

I(F(X, p, d)) �= I(X), (1)

where F(X, p, d) indicates the de-identified X with param-

eters p and d, I(X) represents the identity of image X .

Considering the utility of de-identified results, we hope that

F(X, p, d) looks similar to X as well as the face region and

keypoints can still be detected by face detector.

Diversity. We can set different passwords p to gener-

ate diverse de-identification results, which can promote the

security of identity-protection.

I(F(X, p1, d)) �= I(F(X, p2, d)), p1 �= p2. (2)

Controllability. We can control the similarity between

de-identified image and the original by the adjustable pa-

rameter d as,

D(F(X, p, d1), X) > D(F(X, p, d2), X), d1 > d2, (3)

Generator

Multi-level Attributes Encoder

Identity Encoder

Identity

...

...

...

...

Training Process

Figure 2: The framework of training process, which in-

cludes the identity encoder, the multi-level attributes en-

coder and the generator.

where D(X,Y ) means the identity distance between image

X and Y , and the larger distance indicates lower similarity.

Recoverability. If the user takes the de-identified result

F(X, p, d), corresponding password p and d as input, the

origin image X can be restored successfully, which can be

formulated as,

F−1(F(X, p, d), p, d) = X̂, I(X) = I(X̂). (4)

However, If the attacker tries to restore without the right

identity encryption password, he can only get the image

with another identity instead of the original one.

F−1(F(X, p1, d1), p2, d2) = Ŷ , I(X) �= I(Ŷ ), (5)

where p1 �= p2, d1 �= d2. In addition to the above, we also

expect that both the de-identified and the restored results

have high image quality and satisfactory visual perception.

4. Our Approach
The framework of training process is shown in Fig. 2 and

that of protection process and recovery process is presented

in Fig. 3, which mainly consists of two encoders Eid and

Eattr, an identity modification module M and a generator

G. In the first stage, we extract the image representations

and disentangle them into identity zid and attributes zattr.

Secondly, we calculate the protected identity znew or the re-

stored ẑid by the identity modification module M . Finally,

G generates de-identified results based on znew and zattr

(or the restored based on ẑid and ẑattr). Each part will be

described in detail in this section.

4.1. Network Architecture

Identity Encoder. Similar to most researches on disen-

tangled representations of identity and attributes, we use a

pre-trained face recognition model as the identity encoder

Eid and the identity representation zid = Eid(X) for the

given image X is taken from the last feature vector before

the final Fully Connected layer.
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Attribute Encoder. In order to retain better details of

attributes like expression, pose, illumination and so on, we

employ a U-Net-like structure and represent the attributes

representations as multi-level feature maps which can be

formulated as,

zattr =
{
z1
attr, z

2
attr, · · · zn

attr

}
, (6)

where zk
attr(k = 1, 2, · · · , n) means the k-th attributes em-

bedding obtained from k layer of the U-Net decoder.

Identity Modification Module. The identity modifica-

tion module mainly edits the identity embedding with la-

tent space manipulation. As most of the state-of-the-art

face recognition or verification models such as ArcFace [4],

CosFace [24], and SphereFace [14] all convert identity fea-

tures to the hyperspherical space, and use cosine similarity

based on angles, which motivates us that rotating the iden-

tity vector is a more effective way to change identity in-

formation compared with other vector operations like trans-

lation. Considering the feasibility of restoration, we hope

to introduce a definite process instead of introducing ran-

domness like Gaussian noise. Therefore, we realize de-

identification process znew = M(zid, p, d) or restoration

process ẑid = M−1(ẑnew, p, d) by changing the phase of

identity embedding. In more details, during the protection

process, we first extract a reference vector zr = f(p) from

the pre-defined reference identity vector library, where f in-

dicates the mapping relation between zr and the password

p. Each reference identity zr is obtained by randomly se-

lecting k different identities from the training set to com-

bine, which aims to ensure that there is no real correspond-

ing identity and avoid identity leakage. The new identity

representation znew after zid rotation with the degree of θ
on the hyperplane can be formulated as,

znew = zid cos θ + z90 sin θ, (7)

where z90 is the component vector decomposed from zr

and form a set of orthogonal bases with zid, which deter-

mines the direction of rotation and znew may correspond to

the identity of an unreal person. The function θ = g(d) is

designed to control of the degree of identity variation with

privacy level d. In recovery phase, we can calculate the

original identity with the inverse operations and more de-

tailed calculations will be introduced in Section 4.4.

Generator. The generator is required to implement im-

age reconstruction based on zid and zattr. Previous re-

searches [1] have shown that simple embedding concate-

nation may result in relatively fuzzy results. To solve the

problem, the novel Adaptive Attentional Denormalization
(AAD) layers [13] have been proposed to improve feature

integration in multiple levels. We employ cascaded n-AAD

Residual Blocks in the generator to adjust attention regions

of zid and zattr so that they can participate in synthesizing

different parts.

4.2. Training Process

In training process, the identity encoder Eid is frozen

while the others are trainable, where attributes encoder

Eattr is trained to embed attributes representations disen-

tangled from zid and the generator G is trained to recon-

struct the original image with zid and zattr.

We use identity consistency loss Lid to make sure the

identity of generated image X ′ = G(zid, zattr) still keeps

the same.

Lid = 1− Eid(X
′) · Eid(X)

‖Eid(X ′)‖2 · ‖Eid(X)‖2 (8)

We also define attributes consistency loss Lattr which

can be formulated as,

Lattr =
1

2

n∑
k=1

∥∥zk
attr(X

′)− zk
attr(X)

∥∥2
2
. (9)

If the restored result X ′ is generated with the same zid

and zattr, it should be similar to the original image as pos-

sible. We set pixel-level L2 distance as reconstruction loss,

Lrec =
1

2
‖X ′ −X‖22. (10)

We take advantage of adversarial learning to train the

framework and introduce adversarial loss Ladv to constrain

the generated results indistinguishable from real images. To

promote the image quality, it is necessary to expand the per-

ception range of the discriminator, so we adopt m multi-

scale discriminators [22] with hinge loss functions for dif-

ferent resolution versions of the generated image.

Ladv(X
′
m, Xm) = log (D(Xm)) + log (1−D(X ′

m)) ,
(11)

where Xm indicates the low-resolution image after m-th

downsampling.

The total loss function is the weighted sum of the above

losses, which can be formulated as,

Ltotal = λadvLadv+λidLid+λattrLattr+λrecLrec. (12)

where λadv , λid, λattr and λrec are the tradeoff parameters.

4.3. Protection Process

In the protection phase, our approach takes the original

image X , user-set password p and privacy level parameter d
as input. The goal is to generate a specific de-identification

image with p and d whose identity has been protected while

other attributes remain the same.

For the original image X , we firstly get identity em-

bedding zid = Eid(X) and attributes embedding zattr =
Eattr(X). The de-identification identity representation

znew = M(zid, p, d) can be formulated as,

M(zid, p, d) = z̄id · cos g(d) + z90 · sin g(d), (13)
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Figure 3: The framework of protection process and recovery process.

where

z90 = f(p)− (z̄id · f(p)) · z̄id, (14)

z̄id represents the normalized zid, and f(p) is the reference

identity corresponds to the password p.

Finally, we generate the de-identification result as,

F(X, p, d) = G(znew, zattr). (15)

4.4. Recovery Process

In the recovery phase, our approach can restore the de-

identified image F(X, p, d) to the original image X only

when the right password and privacy level are provided,

which mainly differs from the protection process in the

identity modification module M . For the de-identified

image F(X, p, d), we extract ẑnew and ẑattr with pre-

trained encoders. The restored identity embedding ẑid =
M−1(ẑnew, p, d) can be calculated as,

M−1(ẑnew, p, d) =
ẑnew − f(p) · sin g(d)
cos g(d)−A · sin g(d) , (16)

where

A =
cos2 g(d)− (ẑnew − f(p) · sin g(d)) · ẑnew

sin g(d) · cos g(d) (17)

and ẑnew = Eid(F(X, p, d)). The restored image X̂ can

be formulated as,

X̂ = G(ẑid, ẑattr). (18)

5. Experiments
5.1. Implementation Details

Datasets. We train the network using CelebA-HQ [11]

dataset, which is derived from CelebA [15] containing 30k

upscale images of celebrity faces. Randomly choose 27k

images for training while the others for test. Each image has

been aligned and cropped to 256×256 covering the whole

face region. In addition, we also test the generalization abil-

ity on FFHQ [12] and CASIA-WebFace [26].

Experimental Settings. We use the pre-trained ArcFace

[4] as identity encoder Eid, and set the number of attributes

representations n = 8 in Eq.(6). We train our network us-

ing Adam with β1 = 0, β2 = 0.999, and set the learn-

ing rate as 4 × 10−4. The tradeoff parameters in Eq.(12)

are set to λadv = 0.1, λid = 5 and λattr = λrec = 10.

We define p as a six-digit password, each reference identity

zr is calculated by random k = 10 different identities and

define f(p) as one-to-one mapping. Based on testing on

CelebA-HQ and considering both privacy protection effec-

tiveness and image quality, and it cannot be restored when

θ = 90◦, we define the relationship between θ and d as

g(d) =

{
70 + d× 5 d ∈ [0, 4),

70 + (d+ 1)× 5 d ∈ [4, 9].

5.2. Evaluation Results

5.2.1 De-identification

Different Passwords. We evaluate the diversity of our ap-

proach by generating different de-identification results with

different passwords. The qualitative results are shown in

Fig. 4. It can be seen that our method can transform the

identity into different identities in a large range which is de-

termined with the password p.

Different Privacy Level. We evaluate the controllability by

testing with different privacy levels d and present the quali-

tative results in Fig. 6. When d increases, the identity differ-

ence expands while the de-identified results can still share a

similar appearance with the original in general, and most of

them have successfully deceived the face verification model

which we will provide the quantitative evaluation in the fol-

lowing part.

Quantitative Evaluation. We evaluate the performance of

our approach from the perspectives of both privacy protec-

tion and image utility. Here we present the definition or

explanation of the metrics we use.

(1) Privacy Protection: Almost all face verification mod-

els judge whether two images have the same identity by

comparing identity embedding distance, so that we define
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Figure 4: Various de-identification results. The leftmost

column represents the original image and the last five

columns present diverse de-identified results with different

passwords. Particularly, the images of each column share

the same password.

Figure 5: Identity Distance(Id-dis). Larger distance illus-

trates better de-identification effects. When identity dis-

tance exceeds the threshold, the face verification model be-

lieves the identity has been varied.

identity distance (Id-dis) and successful protection rate
(SR) for protection effects evaluation. Id-dis indicates the

distance between identity-vectors eid extracted from the

face recognition model, which can be formulated as

Id-dis = D(eid(X), eid(F(X, p, d)). (19)

SR means the proportion of successful de-identification as

SR = 1− 1

N

N∑
i=1

fver(X,F(X, p, d)), (20)

when Id-dis > τ , it considers two identities different as

fver = 0 and otherwise fver = 1, N is the number of

testing. We respectively use the Face Recognition library,

FaceNet trained on CASIA and FaceNet trained on VG-

GFace2 for evaluation where the specific forms of D are

all Euclidean distance.

Face Recognition FaceNet (CASIA) FaceNet (VGGFace2)

DeepPrivacy [10] 0.74623 / 0.939 1.19684 / 0.734 1.22889 / 0.816

Gu et al. [8] 0.82234 / 0.961 1.14419 / 0.704 1.16245 / 0.695

Ours 0.79195 / 0.975 1.24421 / 0.913 1.27270 / 0.928

Table 1: Privacy evaluation of de-identification results,

where the values in the table indicate identity distance and

successful de-identified rate Id-dis / SR. We choose the

threshold of Face Recognition Library as τ = 0.6 and the

threshold of FaceNet as τ = 1.1 according to [20].

DR↑ Pixel-dis↓
Face Landmarks Eyes Nose Mouth

DeepPrivacy [10] 1.0 5.005 2.506 1.502 1.799 3.288

Gu et al. [8] 0.8585 0.925 2.346 1.810 1.906 2.139

Ours 0.9973 0.225 1.969 1.236 1.546 1.900

Table 2: Utility evaluation of de-identification results. The

face region is detected with OpenCV and landmarks are de-

tected with dlib.

(2) Image Utility: We define the rate of the face in de-

identified images can be detected as face detectability (DR)
in Eq.(21) to measure the utility for computer vision tasks.

DR =
1

N

N∑
i=1

fdet(F(X, p, d)), (21)

if the face can be detected, fdet = 1 and otherwise fdet = 0.

We also detect face region and landmarks to calculate the

pixel-level distance (pixel-dis) from the original image.

We randomly select several images from CelebA-HQ

and de-identify them with random passwords p and privacy

levels d. The privacy evaluation compared with DeepPri-

vacy [10] and Gu et al. [8] represents in Table 1, which can

be concluded that our method is more effective for identity

protection with both larger identity distance and higher suc-

cessful rate. We also generate the de-identification results

using random passwords with each privacy level, and the

variation of identity distance with d is shown in Fig. 5.

In Table 2, we apply computer vision algorithms on the

de-identified images and compare the difference of pixel-

level in face region, landmarks, eyes, nose and mouth be-

tween the de-identification results and the original, as well

as the detection rate of the de-identified. Landmarks in-

dicates the mean distance of the total 68 keypoints while

Eyes/Nose/Mouth represents that of keypoints correspond-

ing to each facial area. The utility evaluation proves that

our method can guarantee the consistency of the face region

and landmarks better, and most de-identified faces can be

detected, which proves that it guarantees better utility for

identity-agnostic computer vision tasks. We also show the

tradeoff between privacy and utility in Fig. 7. Increasing the

level of privacy protection will increase the pixel difference,

which means the utility of the image will be reduced.
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X (a) d = 0 (b) d = 1 (c) d = 2 (d) d = 3 (e) d = 4 (f) d = 5 (g) d = 6 (h) d = 7 (i) d = 8 (j) d = 9

Figure 6: The leftmost column represents the original image and the rest indicate the de-identified results with different

privacy level (From left to right, the privacy level parameter d increases form 0 to 9).

Figure 7: The tradeoff between privacy and utility of the

de-identified results. The abscissa represents the identity

distance measured by the Face Recognition library, and the

ordinate is the pixel difference of face region and keypoints.

Face Recognition FaceNet (CASIA) FaceNet (VGGFace2)

Incorrect Recovery 0.794 / 0.904 1.243 / 0.854 1.257 / 0.879

Correct Recovery 0.228 / 0.035 0.368 / 0.035 0.401 / 0.035

Table 3: Id-dis/SR evaluation for incorrect/correct recovery.

5.2.2 Recovery

The restored results with correct or wrong passwords are

presented in Fig. 8. When the attacker tries to recover the

de-identified image with wrong passwords, he can still get

a good-quality face image but cannot obtain the original

identity information, which may confuse him and achieve

a more reliable protection.

While our framework is trained on CelebA-HQ, the gen-

eralization results tested on FFHQ and CASIA-WebFace

are shown in Fig. 10, and it comes to the conclusion that

our approach can apply to a wider images range. In order

(a)X (b)p1 (c)p2 (d)p2|p1 (e)p1|p2 (f)X̂

Figure 8: Recovery Results. X: the original image, p1,2:

two different de-identified results, pm|pn: use pn to restore

the image de-identified with pm, X̂: the correct recovery.

LPIPS↓ PSNR↑ SSIM↑ MAE↓
Blur 0.242 28.396 0.802 0.026

Pixelation 0.447 23.159 0.671 0.040

Noise 0.264 22.163 0.701 0.046

Gu et al. 0.186 27.602 0.827 0.029

Ours 0.062 27.501 0.902 0.031

Table 4: Comparison of the restored image quality.

to keep consistent with the model input, we first convert

all test images to the size of 256×256 before feeding the

model. The small artifacts are considered due to image dis-

tortion caused by interpolation or misalignment.

We compare de-identification results, wrong recovery

and correct recovery with [8] on both CelebA-HQ and CA-
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(a)p1 (b)p2 (c)Ŷ (d)X̂ (a)p1 (b)p2 (c)Ŷ (d)X̂

Figure 9: Compare results with Gu et al. [8]. The left are from CelebA-HQ while the right are from CASIA-WebFace. For

the same input image, the upper row is our results, and the lower row is the results generated by [8].

(a)X (b)p1 (c)p2 (d)p3 (e)Ŷ (f)X̂

Figure 10: FFHQ and CASIA generalization results with

the model trained on CelebA-HQ. The upper two lines are

from FFHQ while the lower are CASIA. X: original image,

p1,2,3: the de-identified results with three different pass-

words, Ŷ : wrong recovery, X̂: correct recovery.

SIA shown in Fig. 9, which shows our de-identified results

can retain more similarity with the original. Identity eval-

uation of incorrect and correct recovery are shown in Ta-

ble 3, where the recovery is effective when using correct

password while wrong passwords will generate a different

identity with a high probability. We evaluate the recovery

quality in Table 4 using LPIPS (Learned perceptual image

patch similarity) [27] distance to measure perceptual simi-

larity, PSNR (Peak signal-to-noise ratio) and MAE (Mean

absolute error) to measure distortion at the pixel level, and

SSIM (Structural similarity) to measure the structure simi-

larity. We compare to three traditional methods and Gu et
al. [8] as baselines, where we deblur by Wiener filter, re-

move pixelation by bilinear interpolation, and de-noise by

non-local averaging. Based on the comparison, the restored

images obtained by our method are closest to the original

with high image quality.

6. Conclusion

In this paper, we propose a personalized and invert-

ible de-identification method for privacy preservation. Our

method first disentangles the representations of identity and

attributes, encrypts or restores identity with latent space

manipulation based on the password and the privacy level

parameter, and finally reconstructs the de-identified or re-

covery image. In the protection phase, our approach can

generate personalized de-identification results with differ-

ent passwords and control the identity distance from the

original by the privacy level parameter. In the recovery

phase, our approach can restore if and only if the corre-

sponding password is given, while the image with another

identity will be generated when the attacker tries the wrong

passwords. Experiments demonstrate the satisfactory per-

formance in privacy protection and image utility of the de-

identified results, as well as the quality of the restored, com-

pared with the traditional or state-of-the-art methods. Gen-

eralizing the proposed framework to handle face images of

different resolutions and different poses is part of our fu-

ture work. Besides, the de-identification in videos is also a

problem worthy of research.
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[10] Håkon Hukkelås, Rudolf Mester, and Frank Lindseth.

Deepprivacy: A generative adversarial network for face

anonymization. In Advances in Visual Computing, pages

565–578. Springer International Publishing, 2019.

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of GANs for improved quality, stabil-

ity, and variation. In International Conference on Learning
Representations, 2018.

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[13] Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and Fang

Wen. Faceshifter: Towards high fidelity and occlusion aware

face swapping. arXiv preprint arXiv:1912.13457, 2019.

[14] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha

Raj, and Le Song. Sphereface: Deep hypersphere embedding

for face recognition. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6738–6746,

2017.

[15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), 2015.

[16] Maxim Maximov, Ismail Elezi, and Laura Leal-Taixé. Cia-
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