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Figure 1: Reconstructions in the wild. For each row, we show the input image (top), the reconstructed hand and object in two different
viewpoints (bottom). Our method can achieve compelling results for a variety of object categories, grasp types, and interaction scenarios.

Abstract

We study the problem of understanding hand-object in-
teractions from 2D images in the wild. This requires recon-
structing both the hand and the object in 3D, which is chal-
lenging because of the mutual occlusion between the hand
and the object. In this paper we make two main contribu-
tions: (1) a novel reconstruction technique, RHO (Recon-
structing Hands and Objects), which reconstructs 3D mod-
els of both the hand and the object leveraging the 2D image
cues and 3D contact priors; (2) a dataset MOW (Manipu-
lating Objects in the Wild) of 500 examples of hand-object
interaction images that have been ”3Dfied” with the help
of the RHO technique. Overall our dataset contains 121
distinct object categories, with a much greater diversity of
manipulation actions, than in previous datasets.

1. Introduction
Our hands are the primary way we interact with objects

in the world. In turn, we designed our world with hands
in mind. Therefore, understanding hand-object interactions

*Equal contribution. More examples available at this project page.

is an important ingredient for building agents that perceive
and act in the real world. For example, it can allow them to
learn object affordances [10], infer human intents [27], and
learn manipulation skills from humans [34, 26, 33].

What does it mean to understand hand-object interac-
tions? We argue that fully capturing the richness of hand-
object interactions requires 3D understanding. In gen-
eral, recovering 3D from a single RGB image is an under-
constrained problem. In the case of hand-object interac-
tions, the problem is even more challenging due to heavy
occlusions that occur during object manipulation, a wide
range of small daily objects that are not even present in
labeled recognition datasets, and fine-grained interactions
with complex contacts that are difficult to model.

Overall, our community has made substantial progress
toward this goal. However, due to the difficulty in obtaining
3D annotations in the wild, the data collection efforts have
focused mainly on in-the-lab setting [12, 61, 9, 2, 47]. As
shown in Figure 2, there is a large reality gap between the
existing in-the-lab settings and the richness of environments
and interactions found in images in the wild. Indeed, as
shown in Table 1, existing datasets have a limited number
of participants and objects.
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Figure 2: Images from existing hand-object dataset. The
reality gap between the existing in-the-lab datasets with 3D
annotations (left) and in-the-wild images (right) is large.

In this paper, we make two main contributions: (1) we
develop a new technique for reconstructing 3D hands and
objects from single images in-the-wild, called RHO for Re-
constructing Hands and Objects and (2) we use this tech-
nique in conjunction with human intervention to create a
new 3D dataset of humans Manipulating Objects in-the-
Wild, that we call MOW.

Specifically, RHO is a new optimization-based method
for reconstructing hand-object interactions in the wild. The
core idea is to leverage 2D image cues and 3D contact pri-
ors to provide constraints. RHO consists of four steps: hand
pose estimation using 2D hand keypoints, object pose esti-
mation using 2D object mask and depth via differentiable
rendering, joint optimization for hand-object configuration
in 3D, and pose refinement using 3D contact priors.

A nice property of our method is the ability to deal with
a wide variety of objects in the wild—an order of mag-
nitude more than previous work in areas of human-object
or hand-object reconstruction. This required several inno-
vations. First, an observation that segmentation masks for
unknown object categories can be obtained using available
recognition models. Second, a scalable data-driven way to
enforce contact priors that is learned from 3D MoCap data
recorded in the lab with instruments.

We compare RHO to existing approaches quantitatively
in the lab settings where ground truth annotations are avail-
able and qualitatively on in-the-wild images. We find that
RHO performs better or on par with the state-of-the-art
method on in-the-lab datasets. Moreover, we show that the
existing approaches struggle on challenging in-the-wild im-
ages reinforcing the need for the dataset we collect.

We use our method as a tool for data annotation and in-
volve human intervention for two reasons. First, to find and
prepare the appropriate 3D model for the object being ma-
nipulated in the image. Second, to ensure high quality anno-
tations by verifying and adjusting the results of our method
in an iterative fashion. Using this procedure, we annotate
500 images from the EPIC Kitchens [8] and the 100 Days

HO3D [12] CP [2] GRAB [47] Ours
setting lab lab lab wild
data type video video MoCap image
particip. 10 50 10 450
objects 10 25 51 121

Table 1: Existing 3D hand-object datasets. Our dataset
contains in-the-wild images, as shown in Figure 2 right, and
a large number of different participants and objects.

of Hands [40] datasets. These depict a rich diversity of ma-
nipulation actions, which we augment with newly collected
3D object models from 121 object categories, 3D object
poses, and 3D hand poses.

The resulting dataset can be used in a number of ways.
We highlight two potential use-cases next. First, the dataset
can be used to evaluate hand-object reconstruction methods
on challenging in-the-wild data. Second, it can be used to
learn more about human manipulation from images in the
wild. For example, we present initial analysis of our data
and observe interesting trends (Figure 8).

In summary, our key contributions are: (1) We present
a novel optimization-based procedure, RHO, that is able to
reconstruct hand-object interactions in the wild across di-
verse object categories; (2) We show quantitative and qual-
itative improvements over existing methods, especially on
in-the-wild setting; (3) We contribute a new 3D dataset,
MOW, of 500 images in the wild, spanning 121 object cate-
gories with annotation of instance category, 3D object mod-
els, 3D hand pose, and object pose annotation.

We encourage the readers to see the extended version of
this work on arXiv which includes the supplementary mate-
rials, and also to check the project page.

2. Related Work

3D hand pose estimation. Many previous works on hand
pose estimation directly predict 3D joint locations from ei-
ther depth [41, 44, 46, 51, 55, 56, 29] or RGB [36, 30, 3, 54,
60] images. Some recent works predict 3D hand joint rota-
tions and shape parameters of parametric hand models such
as MANO [37]. Fitting-based approaches [32, 52, 19] fit
such parametric models to 2D keypoint detections to opti-
mize 3D hand parameters. Learning-based approaches [58,
38] utilize deep networks to directly predict the hand pa-
rameter from RGB image input. Recently, [20, 19] proposes
to use mesh convolution to directly predict 3D hand mesh
reconstruction. We use a learning-based method [38] to ob-
tain the initial hand pose estimation and further improve the
result by imposing constraints on 2D hand keypoints and
3D hand-object contact priors.

3D object pose estimation. There are many existing
works on estimating 3D object pose from a single im-
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Figure 3: Method. In this work, we propose an optimization-based method, called RHO, that leverages 2D image cues and 3D
contact priors for reconstructing hand-object interactions in the wild. It consists of four steps: (a) hand pose estimation by 2D
keypoints fitting, (b) object pose estimation via differentiable rendering, (c) joint optimization for hand-object configuration,
and (d) hand pose refinement using 3D contact priors learnt from MoCap data.

age. Some approaches [50, 21, 11, 22] utilize neural net-
work to predict the object shape, translation, and global
orientation in the camera coordinate. These methods are
trained with limited object categories and have difficulty
generalizing to new objects. On the other hand, some ap-
proaches [24, 28, 53, 57, 45, 39] assume known 3D object
model and focus on 6DOF object pose prediction. In this
work, we take a fitting-based approach similar to [45, 57].
Our main novelty is the usage of a depth loss term which
improves the results by imposing object shape constraints.

3D hand and object pose estimation. Early approaches
in modeling hand and object require the input of multi-
view image [31] or RGB-D sequence [51]. Recently, [15]
proposes a deep model trained on synthetic data to recon-
struct hand and object meshes from a monocular RGB im-
age. [48] designs a neural network to jointly predict 3D
hand pose and 3D object bounding boxes with a focus on
egocentric scenarios. [14] proposes to leverage photometric
consistency from temporal frames as additional signal for
training the model with sparse set of annotated data. All
these approaches were trained and tested on in-the-lab or
synthetic datasets. In this work, we propose an approach
without 3D supervision and we are the first to achieve good
hand-object results in the wild from a single image.

3D hand-object datasets. Datasets of hand grasping sce-
nario usually require manual annotations [43, 6] or depth
tracking [51] to obtain the ground truth. To avoid the
manual efforts, [9] uses motion capture system with mag-
netic sensors to collect annotations. [15] uses simulation
to collect a synthetic hand-object dataset. [61, 12] in-
troduces large-scale dataset with 3D annotation optimized
from multi-view setups. Some recent datasets [1, 2, 47]
also provide annotation for hand-object contact area in ad-
dition to 3D hand pose and object pose. The contact area

is collected from either thermal sensor [1, 2] or marker-
based MoCap system. All these datasets are of great efforts
in modeling 3D hand-object interaction, however, they can
only be collected in the lab setting due to the specific cam-
era setup. As a result, limited number of participants and
objects are present in them (as in Table 1). In this work,
we contribute a dataset with in-the-wild images and diverse
object categories. 3D annotations are obtained by running
our optimization-based method and human intervention to
achieve high quality.

Optimizing 3D interactions. Our method is in line with
recent optimization-based approaches for modeling 3D in-
teractions between human and scene [13], human and ob-
jects [57], and among multiple persons [16]. To obtain
good 3D reconstructions, these methods require extra 3D
input. For example, [13] requires the input of full 3D recon-
structed scene mesh to impose geometry constraints. [57]
requires manually labeling human-object mesh vertices for
fine-grained interaction pairs and is only applied to 8 ob-
ject categories in COCO [25]. In this work, we focus on
modeling hand-object interactions. Our key advantage is
the ability to deal with diverse objects in the wild without
extra input. We propose to model contact priors using a
scalable data-driven approach that levarages the available
3D MoCap data. Together with a new method to obtain ob-
ject masks, our approach is shown to be able to reconstruct
hand interactions with 121 different object categories.

3. Method

We first describe our method for reconstructing hand-
object interactions in the wild, called RHO. As shown in
Figure 3, it involves 4 steps: estimating the hand pose, the
object pose, their 3D configuration jointly, and finally refin-
ing the pose using 3D contact priors. Intermediate results
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Figure 4: Intermediate results. Top row: input images.
2nd row: results from individually optimizing hand and ob-
ject. 3rd row: results from joint optimization (two view-
points per example). Bottom row: results after refinement.

from each step are shown in Figure 4. We describe each step
next. We note that while RHO can be applied to multiple
hands and objects, we assume a single pair for brevity. We
will evaluate RHO, discuss how we curate our new dataset
MOW, and present analysis in the following sections.

3.1. Hand Pose Estimation

The first step of RHO involves hand pose estimation
(Figure 3a). Given an input image, we aim to reconstruct
the full 3D hand mesh. We use a learning-based method to
obtain the initial result and further improve the estimation
by fitting it to 2D hand keypoints.

In particular, we represent the hand using a parametric
model defined by MANO [37]: V h = H(θ,β), where θ ∈
R3×15 and β ∈ R10 are the pose and shape parameters,
respectively. Taking a single RGB image as input, we use
FrankMocap [38] to estimate the weak-perspective camera
model Πh = (tx, ty, sh), and initial 3D hand parameters θ
and β. We further optimize the hand pose by fitting to 2D
hand keypoints obtained from [5, 42].

The hand pose optimization objective is to minimize the
difference between 2D keypoints detection and 2D projec-
tion of 3D hand keypoints:

θ∗,β∗ = argmin
θ,β

Ljoints + Lreg, (1)

consisting of a 2D keypoints distance term Ljoints and a
regularization term Lreg for hand shape β.

We convert the weak-perspective to perspective camera
by assuming a fixed focal length f . The depth of the hand
is approximated by the focal length divided by the camera
scale sh. We obtain the final hand vertices by:

V ∗h = H(θ∗,β∗) + [tx, ty, f/sh], (2)

3.2. Object Pose Estimation

In the next step of our method, Figure 3b, we recover the
object pose using an analysis-by-synthesis approach. Given
an input image and 3D model, we want to optimize the ob-
ject scale s ∈ R, 3D rotation R ∈ SO(3), and translation
T ∈ R3. We use a differentiable renderer [17] to render
3D model into 2D mask and depth maps. By comparing
the rendered mask/depth with the targets, we compute the
gradients to update the object parameters.

Object mask estimation. How can we obtain good objects
masks for diverse objects in images in the wild? Modern
2D recognition models trained on large labeled datasets can
provide reasonable predictions on real-world data. How-
ever, in our case, we require instance masks for a range of
object categories that are not even present in the available
labeled datasets (e.g., spatula, pliers, mic, etc.). Thus, we
cannot expect the available models to recognize the objects
correctly in our setting. We observe that even if the pre-
dicted categories are incorrect, the instance masks are still
quite reasonable for a variety of objects. For example, the
models do not know what a spatula is called but are still able
to segment it.

With this observation, we use available recognition mod-
els to estimate instance mask ignoring the category informa-
tion. Specifically, we use PointRend model [18] trained on
COCO [25]. For all object instances predictions in the im-
age, we decide the instance that the hand is interacting with
by running a hand detector [40]. Namely, we select the in-
stance with highest IoU with the detected hand box. This
automatic way allows us obtain instance masks for more
than 100 daily object categories as shown in Section 5.3.

Mask loss. Given the estimated object mask, we optimize
the object pose via differentiable rendering. In particular,
we define the object mask loss as the L1 difference between
the rendered and the estimated object masks:

Lmask = ‖NRm(s,R,T )−M‖, (3)

where NR(·) denotes the differentiable rendering operation
which renders the 3D mesh into the 2D mask.

Depth loss. While the 2D mask loss is sufficient in some
cases, it does not capture geometry information and can be
ambiguous—multiple object poses can lead to similar 2D
masks. To overcome this, we employ a new loss term which
fits 3D model to the depth mapD estimated using [35]:

Ldepth = ‖NRd(s,R,T )−D‖, (4)

Object pose objective. Combining the mask and depth
losses, we obtain the object pose estimation objective:

s∗,R∗,T ∗ = argmin
s,R,T

Lmask + Ldepth, (5)
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We perform the optimization in the image region centered
on the object. We start with a number of randomly initial-
ized poses and select the one that leads to the lowest loss.

3.3. Joint Optimization

In this section, we describe how to jointly optimize the
3D hand and object results from previous sections (Fig-
ure 3c). Naively putting them together may result in im-
plausible hand-object reconstructions (Figure 4, row 2), i.e.,
the hand and object are far away from each other in 3D or
having interpenetration. This issue is caused by the depth
and scale ambiguity given only 2D input: a large object dis-
tant from the camera can have the same rendering result in
2D as a smaller object closer to the camera. To help resolve
the ambiguity, we impose additional constraints based on
hand-object distance and collision.

Interaction loss. The reconstructed hand and object could
be distant in 3D space. However, when the hand is interact-
ing with objects, their distance should be small. To push the
interaction pair closer in 3D, we define an interaction loss
based on their chamfer distance.

Ldist =
1

|V o|
∑
x∈V o

min
y∈V h

‖x− y‖2

+
1

|V h|
∑

y∈V h

min
x∈V o

‖x− y‖2.
(6)

For each vertex in the mesh, chamfer distance function finds
the nearest point in the other point set, and sums up the
distances. We find this loss term to be helpful in correcting
the object scale by moving it closer to the hand.

Collision loss. Using the interaction loss alone may result
in implausible artifacts, e.g., hand colliding with the ob-
ject. To resolve the issue, we add an interpenetration loss
term to penalize the object vertices that are inside the hand
mesh. We use the Signed Distance Field (SDF) from the
hand mesh to check if any object vertex is inside the hand.
We first calculate a tight box around the hand and voxelize
it as a 3D grid for storing the SDF value. We use a modified
SDF function φ for the hand mesh:

φ(c) = −min(SDF(cx, cy, cz), 0). (7)

For each voxel cell c = (cx, cy, cz) in the 3D grid, if the
cell is inside the hand mesh, φ takes positive values, pro-
portional to the distance from the hand surface, while φ is
0 outside of the hand mesh. Then, the interpenetration loss
can be calculated as:

Lcollision =
∑
v∈V ∗

o

φ(v), (8)

where φ(v) samples the SDF value of each object vertex v
from the 3D hand grid in a differentiable way.

Figure 5: Qualitative results. Our method produces re-
constructions of reasonably high-quality across a range of
viewpoints, activities, and objects.

Joint objective. By incorporating the loss terms from ob-
ject pose estimation, we obtain the overall objective for
jointly optimizing the hand and the object:

L = λ1Lmask + λ2Ldepth + λ3Ldist + λ4Lcollision. (9)

3.4. Pose Refinement

A physically plausible hand-object reconstruction should
not only be collision-free, but also have enough hand-object
contact area to support the action. However, the interaction
loss described in Section 3.3 does not take into account the
fine-grained hand-object contact. To further refine the 3D
reconstruction, we impose constraints on the hand-object
contact as the final step of RHO (Figure 3d).

Addressing this issue would be easy if we had per-vertex
contact area annotation for both hand and object as we could
enforce the contact region to be closer. However, obtaining
such annotations for large collection of in-the-wild images
is challenging. As a more scalable solution, we learn 3D
contact priors from a large-scale hand MoCap dataset [47].
The priors include the region of an object that the person is
likely to contact. For example, human is more likely to hold
the mug by its handle.

Given the hand mesh and object mesh obtained from the
joint optimization, we want to update the hand pose so that
it has more reasonable contact with the object. We train a
small network to perform hand pose refinement.

The input to the network are the initial hand parameters
(θ, γ) and the distance field F from the hand vertices V ∗h
to the object vertices V ∗o. For each hand vertex vh, we
compute the distance to its nearest object vertex:

F (vh) = min
vo∈V ∗

o

‖vh − vo‖22 (10)

Then, the network refines the hand parameters (θ,β) in an
iterative fashion. After each iteration, the distance field be-
tween hand and object is updated so that it can be used as
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Figure 6: Qualitative comparison in the wild. Compared
to existing method [14], our approach produces better hand-
object reconstruction across diverse object categories.

input to the next step. The training data is obtained by per-
turbing the ground-truth hand pose parameters and transla-
tion to simulate noisy input estimates. As shown in Fig-
ure 4, we can observe the results after refinement (4th row)
can reconstruct more realistic interaction between hand and
object than the previous step (3rd row).

4. Method Evaluation
In this section, we compare our method to existing me-

things in two settings: quantitatively in the lab and quali-
tatively in the wild. We further present ablation studies of
different aspect of our method.

4.1. Quantitative Comparison in the Lab

In Table 2, we perform quantitative evaluation of our
method in the HO3D dataset [12] and FPH dataset [9].
HO3D [12] dataset contains 3D annotations for both the
hand and object of 68 video sequences, 10 subjects, and
10 objects. FPHA [9] dataset utilizes a MoCap system to
capture hand-object interaction. 3D object pose annotations
are available for 4 objects and subset of videos. We follow
the same testing split as [14] for comparison.

Method for comparison We compare against the state-
of-the-art (SOTA) approach [14] with the same input of
monocular RGB image and the known 3D object model.
[14] uses a feed-forward neural network to predict 3D hand
pose and object pose where its single-frame model with full
3D supervision shows SOTA performance.

Evaluation metric. We report the mean average error
(MAE) over 21 hand joints. The error measures the Eu-
clidean distance between predictions and ground truth. Fol-
lowing [12], we calculate the error after aligning hand root
position and global scale with the ground-truth.

For evaluating object pose, we calculate the Chamfer
distance between ground-truth object vertices and predicted
object vertices (obtained by rotating the input CAD model
with the predicted object pose).

Metrics [14] Ours
Hand MAE ↓ 14.7 9.7
Obj CF dist ↓ 26.8 19.9

Metrics [14] Ours
Hand MAE ↓ 18.0 14.2
Obj MAE ↓ 22.3 23.9

Table 2: Quantitative comparison in the lab. Our method
achieves results better or on par with the state of the art on
popular in-the-lab datasets: HO3D (left) and FPHA (right).

HO Distance ↓ Collision Score ↓

Individual results 414.8 0
+ Interaction loss 71.5 39.8
+ Depth loss 75.2 17.6
+ Penetration loss 76.4 7.7
+ Refinement 75.8 6.5

Table 3: Ablations on loss terms and pose refinement.
From top to bottom, we add each component one by one
(cumulative) and evaluate the prediction in terms of the dis-
tance between hand and object, and the collision score.

Results. Table 2 shows our method achieves better accu-
racy than [14] in 3D hand and object error. In HO3D dataset
(left table), our predictions have smaller hand joint error of
9.7 mm vs. 14.7 mm and smaller object Chamfer distance
of 19.9 vs. 26.8. In FPHA dataset (right table), our method
achieves smaller hand joints error (14.2 mm vs. 18.0 mm).
Our object error is slightly larger than [14]. The main rea-
son is that [14] uses the action split of FPHA, i.e., same
objects with different action labels are used for training and
testing. In comparison, our method are tested directly with-
out 3D supervision in those datasets.

4.2. Qualitative Comparison in the Wild

In Figure 6, we show side-by-side qualitative compar-
isons with [14] using in-the-wild images from [40], which
clearly shows the advantage of our method. Though [14]
achieves good performance in the lab, it struggles on in-the-
wild images. This was primarily due to the lack of labeled
in-the-wild training data with diverse object categories. As
a result, the model trained on limited object categories in
the lab has difficulty in generalizing to new unseen objects.

4.3. Ablation Studies

We now present the ablation studies of the method. We
evaluate the influence of the joint optimization loss terms
and the refinement stage on the overall results. We report
the distance between the estimated hand and object centers
and the collision score computed based on SDF. The more
the object intersects with the hand the larger the collision
score is. A good reconstruction should have small collision
and small hand-object distance.

In Table 3, we observe that the individually reconstructed
hand and object are far from each other, resulting in large
distance and no collision. By adding the interaction loss,
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Figure 7: Example annotations. We use the techniques
proposed in this work to annotate in-the-wild images and
obtain 3D meshes, amodal masks, and contact maps.

the distance decreases quickly to 71.5 mm but also results
in a large collision, i.e, 39.8. Adding the depth and colli-
sion losses reduces the collision score to 7.7 while keeping
a similar hand-object distance, i.e., 76.4 mm. The refine-
ment stage makes small adjustment to the final result and
can slightly reduce both the collision score (6.5 vs. 7.7) and
hand-object distance (75.8 mm vs. 76.4 mm). These find-
ings are consistent with visualization in Figure 4.

5. Dataset
We describe our dataset collection procedure and present

analysis that highlights the variety our data.

Image collections. As a source of in the wild data we use
static frames from the EPIC Kitchens [8, 7] and the 100
Days of Hands [40] datasets, noting that we do not exploit
any temporal information. These datasets contain a range of
interesting hand-object interaction scenarios with varied ob-
jects, people, and viewpoints (both first- and third-person).
To determine candidate images for reconstruction, we use a
hand and object detector [40] and select images that contain
a high bounding box overlap between an object and a hand.

5.1. Dataset Construction

Our annotation procedure consists of three steps: select-
ing a 3D object model, performing reconstruction using the
method proposed in §3, and verification of the results.

Step 1: Model selection. The first step of our annotations
requires the annotator to choose an appropriate 3D object
model for the object being manipulated by the hand. We
maintain a collection of available object models. If the re-
quired object is already present in the collection, the anno-
tator directly selects the model. If not, the annotator finds
an appropriate model online and adds it to the collection.
Two primary sources of 3D object models we use are the
YCB dataset [4] and the Free3D online platform.

Object IoU Hand IoU Quality Match?
Large 0.84 0.67 - -
Medium 0.78 0.69 - -
Small 0.64 0.63 - -
All 0.77 0.68 4.16 92%

Table 4: Dataset evaluation. Left: Amodal masks derived
from our 3D annotations have a high overlap with ground
truth amodal masks labeled by humans. Right: Users, asked
to rate the quality of our 3D annotations from 1 to 5, find
that they are of good quality on average and include a 3D
object model that matches the true object in most cases.

Step 2: Reconstruction. Next, we perform the hand-object
reconstruction using our method, called RHO, proposed in
§3. This step is semi-automatic and relies on the annota-
tor to select the appropriate loss weights to obtain a good
reconstruction. In practice, most annotators find that our
default loss settings lead to a reasonable starting point.

Step 3: Verification. In practice, we find that RHO results
in good reconstructions in many cases. However, there are
still cases where the results are imperfect across different
viewpoints due to ambiguity. Thus, to ensure good anno-
tation quality, we perform an additional step and verify the
reconstructions obtained in step 2. Specifically, we ask the
annotator to inspect the result from step 2 and take one of
three possible actions: accept it if good, return it to step 2
if promising, and remove it from consideration if unlikely
to improve. We iterate back and forth with step 2 until we
converge to a set of reconstructions of reasonable quality.

Summary. To summarize, the output of our annotation pro-
cedure is that for each image we have: 3D object model,
3D object pose, and 3D hand pose. Moreover, we can eas-
ily derive additional annotations, such as amodal masks or
contact maps. Example annotations are shown in Figure 7.

5.2. Dataset Evaluation

Annotating data in 3D is hard. Evaluating the quality of
annotations is harder. To judge the quality of the collected
annotations, we use two types of evaluation. The evaluation
is performed on a sample set of 100 images.

Amodal mask accuracy. To evaluate our annotations, we
require a signal that is predictive of reconstruction quality
and can be labeled reliably by humans. Amodal instance
masks, that include both visible and occluded parts of the
object [23], are a good fit. Given only the visible portions
of the image, there are many plausible configurations for the
hidden object parts, especially for articulated objects like
hands. Nevertheless, humans are capable of predicting oc-
cluded regions with high consistency [59].

We ask human annotators to label amodal masks for
hands and objects, which serves as ground truth. We then
compare amodal masks derived from our reconstructions to
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Figure 8: Variety of objects and grasps. We present analysis that shows the variety of objects and grasp types in our data.
Top left: Our data contains 121 object categories and a total of 500 instances. The object distribution has a long tail. Top
right: We embed 3D hand poses into 2D space using Isomap [49]. Each point is a hand-object interaction and is color-coded
by object category. We notice that there is a cluster of pens but no other clear clusters. This suggests that our data contains
a variety of grasp types for each object category rather than only iconic grasps. Indeed, we see examples of different object
categories with similar grasp types (pen and spoon) and same object category with different grasp types (pen). Bottom: We
observe that the first embedding dimension (x axis) corresponds to the closure of the grasp. We show examples for increasing
value of x. From left to right, we see that the grasps gradually transitions from fully closed to fully open.

the ground truth. In Table 4, we report the mean intersection
(IoU) scores for the hands and the objects. Similar to [25],
we show results for different object sizes. We observe that
our amodal masks have a high overlap with the ground truth.
As expected, the overlaps are higher for larger objects.

User study. We also perform a user study. Given the input
image and the annotated hand-object reconstruction, we ask
the users to assign a quality score to each example on a scale
of 1 to 5. The users are instructed to assign 1 when the
reconstruction is poor (e.g. heavy collision or hand being far
from the object) and 5 when there are no clear imperfections
visible. The users can rotate the result in 3D visualization
to view from different angles. We also ask the users to say
if the object in the image matches the 3D model.

In Table 4, we report the results. The average recon-
struction quality we obtain is 4.16. This suggests that most
of our annotations are of good quality. Moreover, we find
that the 3D object model matches the true object in 92% of
the cases. Among the 8%, most are due to imprecise mesh
topology, e.g. a cylinder fitted to a mug with a handle.

5.3. Dataset Analysis

We annotated 500 images using the proposed procedure.
We now present the analysis of the collected data.

Object variety. Our dataset contains 121 object categories
covering a wide variety of daily objects. In Figure 8, top-
left, we show the object distribution for the 50 most frequent
objects. There are some categories with many examples and
a long tail of object categories with few examples.

Grasp variety. A unique feature of our data is that it pro-
vides a variety of hand-object interactions in the wild. This
allow us to study and learn about human grasps using real-
world data. In Figure 8, top-right, we embed 3D hand poses
into 2D space using Isomap [49]. Each point corresponds
to an interaction and is color-coded by object category.

We observe that there is a cluster of pens on the left but
no other clear clusters. This suggests that our data con-
tains a variety of grasp types for each object category, rather
than only iconic grasps. Indeed, looking closer we notice
that there are many examples of similar grasps for different
object categories (e.g. pen and spoon) as well as different
grasp types for the same object category (e.g. pen).

Grasp structure. We further observe an interesting pattern
in the data. In particular, we find that the first dimension of
the hand pose embedding (x axis) corresponds to the closure
of the hand. In Figure 8, bottom, we show example images
for increasing value of x. We see that the grasps gradually
transition from fully closed to fully open.

6. Conclusion
In this work, we propose a new technique for recon-

structing hand-object interactions with the help of 2D im-
age cues and 3D contact priors. We use this technique in
conjunction with human intervention to construct a new 3D
hand-object interaction dataset in the wild. See the arXiv
with supplementary figures and details.
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