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Abstract
RGB-D semantic segmentation has attracted increasing

attention over the past few years. Existing methods mostly
employ homogeneous convolution operators to consume the
RGB and depth features, ignoring their intrinsic differences.
In fact, the RGB values capture the photometric appearance
properties in the projected image space, while the depth fea-
ture encodes both the shape of a local geometry as well as
the base (whereabout) of it in a larger context. Compared
with the base, the shape probably is more inherent and has
a stronger connection to the semantics, and thus is more
critical for segmentation accuracy. Inspired by this obser-
vation, we introduce a Shape-aware Convolutional layer
(ShapeConv) for processing the depth feature, where the
depth feature is firstly decomposed into a shape-component
and a base-component, next two learnable weights are in-
troduced to cooperate with them independently, and finally
a convolution is applied on the re-weighted combination
of these two components. ShapeConv is model-agnostic
and can be easily integrated into most CNNs to replace
vanilla convolutional layers for semantic segmentation. Ex-
tensive experiments on three challenging indoor RGB-D se-
mantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40),
SUN RGB-D, and SID, demonstrate the effectiveness of our
ShapeConv when employing it over five popular architec-
tures. Moreover, the performance of CNNs with ShapeConv
is boosted without introducing any computation and mem-
ory increase in the inference phase. The reason is that
the learnt weights for balancing the importance between
the shape and base components in ShapeConv become con-
stants in the inference phase, and thus can be fused into the
following convolution, resulting in a network that is identi-
cal to one with vanilla convolutional layers.

1. Introduction
With the widespread use of depth sensors (such as Mi-

crosoft Kinect [31]), the availability of RGB-D data has
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Figure 1. Visual demonstration of why the shape of an RGB-D im-
age matters. Regarding the images on the top, lines with the same
color share a same shape, yet with different base. The correspond-
ing patches are shown on the bottom.

boosted the advancement of RGB-D semantic segmenta-
tion, which contributes to an indispensable task in the com-
puter vision community. Thanks to the flourishing of Con-
volutional Neural Networks (CNNs), recent studies mostly
resort to CNNs for tackling this problem. Convolutional
layers, deemed as the core building blocks of CNNs, are
accordingly the key elements in RGB-D semantic segmen-
tation models [6, 13, 15, 17, 21].

However, RGB and depth information are inherently dif-
ferent from each other. In particular, RGB values capture
the photometric appearance properties in the projected im-
age space, while the depth feature encodes both the shape
of a local geometry as well as the base (whereabout) of it in
a larger context. As a result, the convolution operator that
is widely adopted for consuming RGB data might not be
the optimal for processing the depth data. Taking Figure 1
as an example, we would expect the corresponding patches
of the same chairs to have the same features, as they share
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the same shape. The shape is a more inherent property of
the underlying object and has stronger connection to the se-
mantics. We would expect to achieve shape invariance in
the learning process. When a vanilla convolution operator
is applied on these corresponding patches, the resulting fea-
tures are different due to the differences in their base com-
ponent, hindering the learning from achieving shape invari-
ance. On the other hand, the base components cannot be
simply discarded for pursuing the shape invariance in the
current layer, as they form the shape in a followup layer
with a larger context.

To address these problems, we propose a Shape-aware
Convlutional layer (ShapeConv), to learn the adaptive bal-
ance between the importance of shape and base informa-
tion, giving the network the chance to focus more on the
shape information whenever necessary for benefiting the
RGB-D semantic segmentation task. We firstly decom-
pose a patch1 into two separate components, i.e., a base-
component and a shape-component. The mean of patch val-
ues depicts the whereabout of the patch in a larger context,
thus constitutes the base component, while the residual is
the relative changes in the patch, which depicts the shape
of the underlying geometry, thus constitutes to the shape
component. Specifically, for an input patch (such as P1 in
Figure 1), the base describes where the patch is, i.e., the dis-
tance from the observation point; while the shape expresses
what the patch is, e.g., a chair corner. We then employ two
operations, namely, base-product and shape-product, to re-
spectively process these two components with two learn-
able weights, i.e., base-kernel and shape-kernel. The output
from these two is then combined in an addition manner to
form a shape-aware patch, which is further convolved with
a normal convolutional kernel. In contrast to the original
patch, the shape-aware one is capable of adaptively learn-
ing the shape characteristic with the shape-kernel, and the
base-kernel serves to balance the contributions of the shape
and the base for the final prediction.

In addition, since the base-kernel and shape-kernel be-
come constants in the inference phase, we can fuse them
into the following convolution kernel, resulting in a network
that is identical to the one with vanilla convolutional layers.
The proposed ShapeConv can be easily plugged into most
CNNs as a replacement of the vanilla convolution in seman-
tic segmentation without introducing any computation and
memory increase in the inference phase. This simple re-
placement transforms CNNs designed for RGB data into
ones better suited for consuming RGB-D data.

To validate the effectiveness of the proposed method,
we conduct extensive experiments on three challenging
RGB-D indoor semantic segmentation benchmarks: NYU-
Dv2 [25](-13,-40), SUN RGBD [26], and SID [1]. We ap-

1The operation unit of input features for the convolutional layer, whose
spatial size is the same as the convolution kernel.

ply our ShapeConv to five popular semantic segmentation
architectures and can observe promising performance im-
provements compared with baseline models. We found that
ShapeConv can significantly improve the segmentation ac-
curacy around the object boundaries (see Figure 5), which
demonstrates the effective leveraging of the depth informa-
tion2.

2. Related Work
CNNs have been widely used for semantic segmentation

on RGB images [3, 4, 19, 18, 23, 33]. In general, exist-
ing segmentation architectures usually involve two stages:
the backbone and the segmentation stage. The former stage
is leveraged to extract features from RGB images, wherein
popular models are ResNet [12], ResNeXt [29] which are
pre-trained on the ImageNet dataset [24]. The latter stage
aims to generate predictions based on the extracted features.
Methods in this stage include Upsample [19], PPM [33] and
ASPP [3, 4], etc. It is worth noting that both stages adopt
the convolutional layers as the core building blocks.

As RGB semantic segmentation has been extensively
studied in literature, a straightforward solution for RGB-D
semantic segmentation is to adapt the well-developed archi-
tectures from the ones designed for RGB data. However,
implementing such a idea is non-trivial due to the asym-
metric modality problem between the RGB and the depth
information. To tackle this, researchers have devoted ef-
forts into two directions: designing dedicated architectures
for RGB-D data [6, 8, 13, 15, 17, 21, 28], and presenting
novel layers to enhance or replace the convolutional layers
in RGB semantic segmentation [5, 27, 30]. Our method falls
into the second category.

Methods in the first category propose to feed RGB and
depth channels to two parallel CNNs streams, where the
output features are fused with specific strategies. For ex-
ample, [6] presents a gate-fusion method, [8, 13, 21] fuse
the features in multi-levels of the backbone stages. Never-
theless, these methods mostly leverage separate networks to
consume RGB and depth features, they are yet faced with
two limitations: 1) it is hard to decide when is the best stage
for the fusion to happen; and 2) the two-stream or multi-
level way often results in large increase of computation.

In contrast, methods along the second direction target at
designing novel layers based on the geometric character-
istics of RGB-D data, which are more flexible and time-
efficient. For instance, Wang et al. [27] proposed the depth-
aware convolution to weight pixels based on a hand-crafted
Gaussian function by leveraging the depth similarity be-
tween pixels. [30] presents a novel operator called mal-
leable 2.5D convolution, to learn the receptive field along
the depth-axis. [5] devises a S-Conv to infer the sampling
offset of the convolution kernel guided by the 3D spatial

2Our code is released through https://github.com/hanchaoleng/ShapeConv.
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information, enabling the convolutional layer to adjust the
receptive field and geometric transformations. ShapeConv
proposed a novel view of the content in each patch and a
mechanism to leverage them adaptively with learnt weights.
Moreover, ShapeConv can be converted into vanilla convo-
lution in the inference phase, resulting in ZERO increase of
memory and computation compared with the models with
vanilla convolution.

3. Method
In this section, we first provide the basic formulation

of the Shape-aware convolutional layer (ShapeConv) for
RGB-D data, followed by its application in the training and
inference phase. We end this section with the method archi-
tectures.

3.1. ShapeConv for RGB-D Data
Method Intuition. Given an input patch P ∈
RKh×Kw×Cin , Kh and Kw are the spatial dimen-
sions of the kernel; Cin represents the channel numbers in
the input feature map, the output features from the vanilla
convolution layer are obtained by,

F = Conv(K,P), (1)

where K ∈ RKh×Kw×Cin×Cout denotes the learnable
weights of kernels in a convolutional layer (The bias terms
are not included for simplicity.); Cout represents the chan-
nel numbers in the output feature map. Each element of
F ∈ RCout is calculated as,

Fcout
=

Kh×Kw×Cin∑
i

(Ki,cout × Pi).

It can be easily recognized that F usually changes with
respect to different values of P. Take the two patches in the
Figure 1, P1 and P2, as an example. The corresponding out-
put features, F1 and F2 from the vanilla convolution layer
are learned by: F1 = Conv(K,P1), F2 = Conv(K,P2).
Since P1 and P2 are not identical (different distances from
the observation points), accordingly, their features are usu-
ally different, and this may lead to distinct prediction re-
sults.

Nevertheless, P1 and P2, corresponding to the red re-
gions in Figure 1, actually belong to the same class - chair.
And vanilla convolutional layers cannot well handle such
situations. In fact, there exists some invariants of these
two patches, namely, the shape. It refers to the relative
depth correlation under local features, which is however,
unexpectedly ignored by the existing methods. In view of
this, we propose to fill this gap via effectively modeling the
shape for RGB-D semantic segmentation.

ShapeConv Formulation. Based on the aforementioned
analysis, in this paper, we offer to decompose an input

patch into two components: a base-component PB describ-
ing where the patch is, and a shape-component PS express-
ing what the patch is. Therefore, we refer the mean3 of
patch values to be PB , and its relative values to be as PS :

PB = m(P),
PS = P−m(P),

where m(P) is the mean function on P (over the Kh ×
Kw dimensions), and PB ∈ R1×1×Cin , and PS ∈
RKh×Kw×Cin .

Note that directly convolved PS with K in Equation 1
is sub-optimal, as the values from PB contributes the class
discrimination across patches. Thus, our ShapeConv in-
stead leverages two learnable weights, WB ∈ R1 and
WS ∈ RKh×Kw×Kh×Kw×Cin , to separately consume the
above two components. The outputted features are then
combined in an element-wise addition manner, which forms
a new shape-aware patch with the same size as the original
one P. The formulation of ShapeConv is given as,

F = ShapeConv(K,WB ,WS ,P)
= Conv(K,WB � PB +WS ∗ PS)

= Conv(K,PB + PS)

= Conv((K,PBS),

(2)

where � and ∗ denote the base-product and shape-product
operator, respectively, which are defined as,{

PB = WB � PB

PB1,1,cin
= WB × PB1,1,cin

,
(3)

{
PS = WS ∗ PS

PSkh,kw,cin
=

∑Kh×Kw

i (WSi,kh,kw,cin
× PSi,cin

),

(4)
where cin, kh, kw are the indices of the elements in Cin,
Kh, Kw dimensions, respectively.

We reconstruct the shape-aware patch PBS from the addi-
tion of PB and PS, and PBS ∈ RKh×Kw×Cin , which enables
it to be smoothly convolved by the kernel K of vanilla con-
volutional layer. Nevertheless, the PBS is equipped with the
important shape information which is learned by the two
additional weights, making the convolutional layer to focus
on the situations when merely using depth values fails.

3.2. ShapeConv in Training and Inference
Training phase. The proposed ShapeConv in Sec-
tion 3.1 can effective leverage the shape information of
patches. However, replacing vanilla convolutional layer
with ShapeConv in CNNs introduces more computational

3As the depth values are obtained from a fixed observation point, we
notice that the rotational transformations cannot be addressed due to the
angle of view limitation. As a result, we focus more on the translational
transformations in this paper.
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Figure 2. Comparison of vanilla convolution and ShapeConv
within a patch P. In this figure, Kh = Kw = 2, Cin = 3, and
Cout = 2, “+” denotes element-wise addition. (a) Vanilla convo-
lution with kernel K; (b) ShapeConv with folding the WB and WS

into KBS; (c) The computation of KBS from K, WB and WS .

cost due to the two product operation in Equation 3 and 4.
To tackle this problem, we propose to shift these two oper-
ations from patches to kernels,{

KB = WB �KB

KB1,1,cin,cout
= WB ×KB1,1,cin,cout

,{
KS = WS ∗KS

KSkh,kw,cin,cout
=

∑Kh×Kw

i (WSi,kh,kw,cin
×KSi,cin,cout

),

where KB ∈ R1×1×Cin×Cout and KS ∈
RKh×Kw×Cin×Cout denote the base-component of kernels
and shape-component, respectively, and K = KB +KS .

We therefore re-formalize ShapeConv the Equation 2 to
following:

F = ShapeConv(K,WB ,WS ,P)
= Conv(WB �m(K) +WS ∗ (K−m(K)),P)
= Conv(WB �KB +WS ∗KS ,P)
= Conv(KB + KS,P)
= Conv(KBS,P),

(5)

where m(K) is the mean function on K (over the Kh×Kw

dimensions). And we require KBS = KB + KS, KBS ∈
RKh×Kw×Cin×Cout .

In fact, the two formulations of ShpeConv, i.e., Equa-
tion 2 and Equation 5 are mathematically equivalent, i.e.,

F = ShapeConv(K,WB ,WS ,P)
= Conv(K,PBS)

= Conv(KBS,P),
(6)

Fcout
=

Kh×Kw×Cin∑
i

(Ki,cout
× PBSi

)

=

Kh×Kw×Cin∑
i

(KBSi,cout
× Pi),

(7)

please refer to the Supp. for detailed proof. In this way, we
utilize the ShapeConv in Equation 5 in our implementation
as illustrated in Figure 2(b) and (c).
Inference phase. During inference, since the two addi-
tional weights i.e. WB and WS , become constants, we can
fuse them into KBS as shown in Figure 2(c) with KBS =
WB � KB + WS ∗ KS . And KBS shares the same tensor
size with K in Equation 1, thus, our ShapeConv is actually
the same as the vanilla convolutional layer in Figure 2(a).
In other words, when replacing vanilla convolution with
ShapeConv, there would introduce zero additional inference
time.

3.3. ShapeConv-enhanced Network Architecture
Different from devising specially dedicated architec-

tures for RGB-D segmentation [21, 22, 17], the proposed
ShapeConv is a more generalized approach that can be eas-
ily plugged into most CNNs as a replacement for the vanilla
convolution in semantic segmentation, which is then trans-
formed for adapting the RGB-D data.

Figure 3 depicts an example of the overall method archi-
tecture. In order to leverage the advanced backbones in se-
mantic segmentation, we firstly require to convert the input
features from RGB images to RGB-D data via the concate-
nation of the RGB and D information. In practice, D can
be depth values [11, 20] or HHA4 images [10, 19, 16, 6].
We then replace the vanilla convolution layer with the
ShapeConv in both the backbone and segmentation stages.
It is worth noting that, WB is initialized to one, WS can
be viewed as Cin square (Kh ×Kw)× (Kh ×Kw) matri-
ces, which are initialized to the identity matrix. In this way,
ShapeConv is equivalent to the vanilla convolution at the
beginning of training since KBS = K. This initialization ap-
proach offers two advantages: 1) It makes the ShapeConv-
enhanced networks do not interfere with the RGB data, i.e.,
the RGB features are processed in the same way as before.
2) It facilitates ShapeConv to reuse the parameters from pre-
trained models.

Thus, with this approach, future advances in RGB se-
mantic segmentation architectures can be easily transferred

4Horizontal disparity, Height above ground and normal Angle to the
vertical axis.
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Figure 3. The overall semantic segmentation network architecture. In this figure, yellow and orange cube denote the RGB and D inputs; “C”
denotes channel-wise concatenation; Green and blue boxes denote architectures consisting of vanilla convolutional layers and ShapeConv
layers, respectively.

to consuming the RGB-D data, greatly reducing the effort
that would otherwise be spent on designing dedicated net-
works for RGB-D semantic segmentation. We have shown
the results of building RGB-D segmentation networks with
this style using several popular architectures [3, 4, 18, 23,
33] in Sec 4.2.

4. Experiments
Datasets and metrics. Among the existing RGB-D seg-
mentation problems, the indoor semantic segmentation is
rather challenging, as the objects are often complex and
with severe occlusions [5]. Thus, in order to validate the
effectiveness of the proposed method, we conducted exper-
iments on three indoor RGB-D benchmarks: NYU-Depth-
V2 (NYUDv2-13 and -40) [25], SUN-RGBD [26] and Stan-
ford Indoor Dataset (SID) [1]. NYUDv2 contains 1,449
RGB-D scene images, where 795 images are split for train-
ing and 654 images for testing. We adopted two popular
settings for this dataset, i.e., 13-class [25] and 40-class [9],
where all pixels are labeled with 13 and 40 classes, respec-
tively. SUN-RGBD is composed of 10,355 RGB-D indoor
images with 37 categories for each pixel label. We followed
the widely used setting in [26] to split the dataset into a
training set of 5285 images and a testing set of 5050 im-
ages. SID contains 70, 496 RGB-D images with 13 object
categories. In particular, areas 1, 2, 3, 4, and 6 used for the
training and Area 5 is for testing following [27].

We reported the results using the same evaluation pro-
tocol and metrics as FCN [19], i.e., Pixel Accuracy (Pixel
Acc.), Mean Accuracy (Mean Acc.), Mean Region Intersec-
tion Over Union (Mean IoU), and Frequency Weighted In-
tersection Over Union (f.w. IoU).
Comparison protocol. We adopted several popular archi-
tectures with different backbones as our baseline methods to
demonstrate the effectiveness and generalization capability
of ShapeConv. For all the baseline methods, we only re-

placed the vanilla convolutional layers with our ShapeConv,
without any change to other settings. This guarantees that
the obtained performance improvements is due to the appli-
cation of ShapeConv, but not other factors.

Table 1. Performance comparison with baselines on NYUDv2-13
dataset. Deeplabv3+ is the adopted architecture.

Back Setting Pixel Mean Mean f.w.
bone Acc.(%) Acc.(%) IoU.(%) IoU.(%)

Baseline 80.0 72.5 60.8 67.6
BaselineF 80.6 72.7 61.6 68.5

ResNet Ours 80.4 73.0 61.8 68.1
50 [12] OursF 81.1 73.4 62.7 69.1

+ 0.4 0.5 1.0 0.5
+F 0.5 0.7 1.1 0.6

Baseline 80.0 73.4 61.3 67.6
BaselineF 81.0 74.3 63.1 68.9

ResNet Ours 81.2 74.9 62.9 69.1
101 [12] OursF 81.9 75.7 64.0 70.1

+ 1.2 1.5 1.6 1.5
+F 0.9 1.4 0.9 1.2

Baseline 81.8 73.9 63.2 70.1
BaselineF 82.2 74.4 63.7 70.6

ResNext Ours 82.6 75.7 65.1 71.2
101 32x8d OursF 82.9 76.0 65.6 71.6

[29] + 0.8 1.8 1.9 1.1
+F 0.7 1.6 1.9 1.0

Implementation Details. We used the ResNet [12] and
ResNeXt [29] initialized with the pre-trained model on Im-
ageNet [24] in the backbone stage. If not otherwise noted,
the inputs of both the baseline and ours are the concate-
nation of RGB and HHA images. We adopted both single-
scale and multi-scale testing strategies during inference. For
the latter one, left-right flipped images and five scales are
exploited: [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]. F in tables of
this section denotes the multi-scale strategy. Note that, no
post-processing tricks like CRF [2] is used in our experi-
ments.
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Figure 4. Visualization results from NYUDv2 dataset. Input column denotes RGB, Depth, HHA images from top to bottom; the black
regions in the GT, Baseline and Ours indicate the ignored category. The upper and lower cases are from NYUDv2-40 and NYUDv2-13,
respectively.

Table 2. Performance comparison with baselines on NYUDv2-40
dataset. Deeplabv3+ is the adopted architecture.

Back Setting Pixel Mean Mean f.w.
bone Acc.(%) Acc.(%) IoU.(%) IoU.(%)

Baseline 73.1 57.7 45.6 59.2
BaselineF 74.2 59.0 47.1 60.2

ResNet Ours 74.1 59.1 47.3 60.5
50 [12] OursF 75.0 60.4 48.8 61.4

+ 1.0 1.4 1.7 1.3
+F 0.8 1.4 1.7 1.2

Baseline 73.4 58.9 45.9 59.7
BaselineF 74.4 60.2 47.6 60.7

ResNet Ours 74.5 59.5 47.4 60.8
101 [12] OursF 75.5 60.7 49.0 61.7

+ 1.1 0.6 1.59 1.1
+F 1.1 0.5 1.4 1.0

Baseline 74.7 61.5 48.9 61.5
BaselineF 75.4 62.6 50.3 62.2

ResNext Ours 75.8 62.8 50.2 62.6
101 32x8d OursF 76.4 63.5 51.3 63.0

[29] + 1.1 1.3 1.3 1.1
+F 1.0 0.9 1.0 0.8

4.1. Experiments on Different Datasets
NYUDv2 Dataset. We adopted two popular settings for
this dataset, i.e., 13-class [25] and 40-class [9], and show
the results of baseline and our method with different back-
bones on NYUDv2-13 and NYUDv2-40 in Table 1 and Ta-
ble 2, respectively. It can be seen that architectures with
ShapeConv outperform the baselines with a large margin
under all settings.

We also compare the performance of our ShapeConv
with several recently developed methods in Table 3 and Ta-
ble 4. As illustrated in Table 3, ShapeConv achieves the
best over all the four metrics on NYUDv2-13. Compared
to the recently proposed method [32], our approach yields
around 6.3% improvements on Mean IOU which is the most
commonly used metric for semantic segmentation. In addi-

tion, our method also achieves a competitive performance
on NYUDv2-40 in Table 4.
Table 3. Performance comparison with other methods on
NYUDv2-13 dataset.

Method Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

Eigen [7] 75.4 66.9 - -
MVCNet [20] 77.8 69.5 57.3 -

Ours 82.6 75.7 65.1 71.2
MVCNet [20]F 79.1 70.6 59.1 -
PVNet [32]F 82.5 74.4 59.3 -

OursF 82.9 76.0 65.6 71.6

Table 4. Performance comparison with other methods on
NYUDv2-40 dataset.

Method Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

FCN [19] 65.4 46.1 34.0 49.5
LSD-GF [6] 71.9 60.7 45.9 59.3
D-CNN [27] - 61.1 48.4 -

MMAF-Net [8] 72.2 59.2 44.8 -
ACNet [13] - - 48.3 -

Ours 75.8 62.8 50.2 62.6
CFN [17]F - - 47.7 -

3DGNN [22]F - 55.7 43.1 -
RDF [21]F 76.0 62.8 50.1 -

M2.5D [30]F 76.9 - 50.9 -
SGNet [5]F 76.8 63.3 51.1 -

OursF 76.4 63.5 51.3 63.0

SUN-RGBD Dataset. The comparison results between
baseline and ours with SUN-RGBD dataset are reported in
Table 5. It can be observed that our ShapeConv also pro-
duces a positive effect under all settings. We also com-
pared the performance of ours with several recently devel-
oped methods in Table 6. It is worth noting that the perfor-
mance of the ShapeConv-enhanced Network with backbone
of ResNet-50 in Table 5 has already achieved better results
than several methods in Table 6, such as 3DGNN-101 [22]
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Table 5. Performance comparison with baselines on SUN-RGBD
dataset. The architectures adopted in this table is deeplabv3+ with
different backbones.

Backbone Setting Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

Baseline 81.1 56.5 45.5 69.7
BaselineF 81.4 57.5 46.6 70.0

ResNet Ours 81.6 56.8 46.3 70.3
50 [12] OursF 81.9 57.9 47.7 70.6

+ 0.5 0.3 0.8 0.6
+F 0.5 0.4 1.1 0.6

Baseline 81.6 57.8 46.9 70.4
BaselineF 81.6 58.4 47.6 70.5

ResNet Ours 82.0 58.5 47.6 71.2
101 [12] OursF 82.2 59.2 48.6 71.3

+ 0.4 0.7 0.7 0.8
+F 0.6 0.8 1.0 0.8

and RDF-152 [21] which take the ResNet-101 and -152 as
backbone, respectively.

Table 6. Performance comparison on SUN-RGBD dataset.

Method Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

3DGNN-101 [22] - 55.7 44.1 -
D-CNN-50 [27] - 53.5 42.0 -

MMAF-Net-152 [8] 81.0 58.2 47.0 -
SGNet-101 [5] 81.0 59.8 47.5 -

Ours-101 82.0 58.5 47.6 71.2
CFN-101 [17]F - - 48.1 -

3DGNN-101 [22]F - 57.0 45.9 -
RDF-152 [21]F 81.5 60.1 47.7 -
SGNet-101 [5]F 82.0 60.7 48.6 -

Ours-101F 82.2 59.2 48.6 71.3

SID Dataset. Note that SID dataset is much larger than
the other two datasets, contributing to a better testbed for
evaluating RGB-D semantic segmentation model capabili-
ties. The results on SID dataset between the baseline with
ours and the state-of-the-art methods are reported in Table 7.
We can observe that our ShapeConv surpasses these meth-
ods with a large margin. Note that even though we utilized
a strong baseline (ResNet-101 backbone) which surpasses
MMAF-Net-152 (ResNet-152 backbone) with 1.7% Mean
IoU, our ShapeConv can still achieves a 6% Mean IoU im-
provement. This highlights the effectiveness of our method.

Table 7. Performance comparison on SID dataset. The architec-
tures of baseline and ours adopted in this table is deeplabv3+ with
ResNet-101 backbone and the “+” denote the deltas relative to the
baseline method.

Method Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

D-CNN [27] 65.4 55.5 39.5 49.9
MMAF-Net-152 [8] 76.5 62.3 52.9 -

Baseline-101 78.7 63.2 54.6 65.6
Ours-101 82.7 70.0 60.6 71.2

+ 4.0 6.8 6.0 5.6

4.2. Experiments on Different Architectures
Our proposed ShapeConv is a general layer for RGB-

D semantic segmentation which can be easily plugged into
most CNNs as a replacement for the vanilla convolution in
semantic segmentation. To verify its generalization proper-
ties, we also evaluated the effectiveness of our method in
several representative semantic segmentation architectures:
Deeplabv3+ [4], Deeplabv3 [3], UNet [23], PSPNet [33]
and FPN [18] with different backbones (ResNet-50 [12],
ResNet-101 [12]) on NYUDv2-40 dataset, and reported the
performance in Table 8. We can see that ShapeConv brings
significant performance improvements under all settings,
demonstrating the generalization capability of our method.

Table 8. Performance comparison with different baseline methods
on NYUDv2-40 dataset.

Architecture Back Setting Pixel Mean Mean f.w.
bone Acc.(%) Acc.(%) IoU.(%) IoU.(%)
Res Baseline 73.4 58.9 45.9 59.7
Net Ours 74.5 59.5 47.4 60.8

Deeplabv3+ 101 + 1.1 0.6 1.5 1.1
[4] Res Baseline 73.1 57.7 45.6 59.2

Net Ours 74.1 59.1 47.3 60.5
50 + 1.0 1.4 1.7 1.3

Res Baseline 73.3 57.3 45.1 59.2
Net Ours 73.6 58.5 46.4 59.7

Deeplabv3 101 + 0.3 1.2 1.3 0.5
[3] Res Baseline 71.6 55.5 43.2 57.2

Net Ours 72.8 56.6 44.9 58.5
50 + 1.2 1.1 1.7 1.3

Res Baseline 70.9 54.7 42.1 57.7
Net Ours 72.3 56.5 43.9 58.8

UNet 101 + 1.4 1.8 1.8 1.1
[23] Res Baseline 70.0 51.7 39.7 55.5

Net Ours 70.8 54.1 42.0 56.9
50 + 0.8 2.4 2.3 1.4

Res Baseline 72.8 56.8 44.2 58.9
Net Ours 73.3 59.2 46.3 59.6

PSPNet 101 + 0.5 2.4 2.1 0.7
[33] Res Baseline 71.1 53.6 42.0 56.7

Net Ours 72.0 56.2 44.0 57.7
50 + 0.9 2.6 2.0 1.0

Res Baseline 72.8 57.3 44.7 59.1
Net Ours 73.6 58.4 45.9 60.0

FPN 101 + 0.8 1.1 1.2 0.9
[18] Res Baseline 70.3 52.8 40.9 56.0

Net Ours 71.5 54.9 42.8 57.5
50 + 1.2 2.1 1.9 1.5

4.3. Visualization
Figure 4 illustrates the qualitative results on NYUDv2-

13 and -40, more results can be found in the Supp. As
shown in this figure, the depth information, especially the
detailed one, can be well utilized by ShapeConv to extract
the object features. For instance, the chair and table re-
gions in the top example of Figure 4(a) are with gradually
changed colors, making it hard to predict accurate segmen-
tation boundaries of the baseline method. The shape fea-
tures learned by ShapeConv makes the accurate cut follow-
ing the geometric hints compare with the conventional con-
volutional layer. For other two cases, i.e., the chair in the
bottom example of Figure 4(a) and the desk in the top exam-
ple of Figure 4(b), the ShapeConv can also significantly im-
prove the segmentation results in edge areas compared with
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Figure 5. Segmentation accuracy around object boundaries. In this figure, the left is the visualization of the “trimap” measure; The right is
the percent of misclassified pixels within trimaps of different widths.

the baseline. It is worth noting that for the multiple book-
shelves in the bottom example of Figure 4(b), ShapeConv
achieves more consistent predictions. This is because our
ShapeConv yields a positive tendency for smoothing neigh-
borhood regions within same classes.

To validate the effectiveness of our method on modeling
the depth information, we adopted the comparison strategy
proposed by Kohli et al. [14]. Specifically, we counted the
relative number of misclassified pixels within a narrow band
(“trimap”) surrounding ground-truth object boundaries. As
shown in Figure 5, our method outperforms the baseline
across all trimap widths. This further demonstrates the seg-
mentation effectiveness of our method on edge areas, where
the shape information matters.

4.4. Ablation Study
We conducted ablation experiments to validate the indis-

pensability of the two introduced weights in Equation 5. As
can be observed in Table 9, the model performance degrades
when removing either WB or WS , or both. This proves
that both the base-kernel and shape-kernel are essential for
the final performance improvement, and combing these two
achieves the best results.
Table 9. Performance comparison with and without WB and WS

in ShapeConv on NYUDv2-40. The architecture adopted in this
table is deeplabv3+ with ResNet-101 as backbone.

WB WS
Pixel Mean Mean f.w.

Acc.(%) Acc.(%) IoU.(%) IoU.(%)
73.4 58.9 45.9 59.7

X 73.9 59.4 47.0 60.1
X 74.1 59.2 46.3 60.1

X X 74.5 59.5 47.4 60.8

To provide a more in-depth analysis of ShapeConv, we
conducted detailed ablation studies on the NYUDv2-40
dataset with deeplabv3+ and ResNet-101 as baseline and
backbone, respectively. Results on more datasets can be
found at the Supp. Table 10 illustrates the results and the
key observations from this table are as follows: 1) The in-
put features with HHA outperform the Depth images for
the baseline and ours; 2) Replacing the vanilla convolu-
tion with ShapeConv leads to considerable performance im-
provements on both Depth and HHA; 3) The multi-scale
setting in testing phase brings more performance gains; 4)

Table 10. Ablation study of the proposed ShapeConv on the
NYUDv2-40 dataset. RGB, Detph and HHA denote the inputs
consisting of RGB images, depth images and HHA images.

Setting Pixel Mean Mean f.w.
Acc.(%) Acc.(%) IoU.(%) IoU.(%)

a.RGB 71.8 56.9 43.9 57.3
b.RGB+Depth 72.8 58.9 44.9 57.7
c.RGB+DepthF 73.9 59.1 46.8 60.0
d.RGB+HHA 73.4 58.9 45.9 59.7
e.RGB+HHAF 74.4 60.2 47.6 60.7
f.RGB+Depth+ShapeConv 73.9 58.2 46.2 60.0
g.RGB+Depth+ShapeConvF 74.8 59.2 47.5 60.8
h.RGB+HHA+ShapeConv 74.5 59.5 47.4 60.8
i.RGB+HHA+ShapeConvF 75.5 60.7 49.0 61.7

Cascading the ShapeConv with HHA and multi-scale test-
ing can achieve the best result.

5. Conclusion
In this paper, we propose a ShapeConv layer to effec-

tively leverage the depth information for RGB-D semantic
segmentation. In particular, an input patch is firstly decom-
posed into two components, i.e., shape and base, which are
then decorated with two corresponding learnable weights
before the convolution is applied. We have conducted ex-
tensive experiments on several challenging indoor RGB-D
semantic segmentation benchmarks and promising experi-
mental results can be observed. Moreover, it is worth noting
that our ShapeConv introducing no additional computation
or memory in comparison with the vanilla convolution dur-
ing inference, yet with superior performance.

In fact, the shape-component is inherent in the local ge-
ometry and highly relevant to the semantics in images. In
the future, we plan to expand the application scope to other
geometry entities, such as point clouds, where the shape-
base decomposition is more challenging due to the addi-
tional degree of freedom.
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