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Abstract

Recent breakthroughs in self-supervised learning show
that such algorithms learn visual representations that can be
transferred better to unseen tasks than cross-entropy based
methods which rely on task-specific supervision. In this pa-
per, we found that the similar holds in the continual learning
context: contrastively learned representations are more ro-
bust against the catastrophic forgetting than ones trained
with the cross-entropy objective. Based on this novel ob-
servation, we propose a rehearsal-based continual learning
algorithm that focuses on continually learning and main-
taining transferable representations. More specifically, the
proposed scheme (1) learns representations using the con-
trastive learning objective, and (2) preserves learned rep-
resentations using a self-supervised distillation step. We
conduct extensive experimental validations under popular
benchmark image classification datasets, where our method
sets the new state-of-the-art performance. Source code is
available at https://github.com/chaht01/Co2L.

1. Introduction
Modern deep learning algorithms show impressive per-

formances on the task at hand, but it is well known that
they often struggle to retain their knowledge on previously
learned tasks after being trained on a new one [32]. To
mitigate such “catastrophic forgetting,” prior works in the
continual learning literature focus on preserving the previ-
ously learned knowledge using various types of information
about the past task. Replay-based approaches store a small
portion of past samples and rehearse the samples along with
present task samples [35, 29, 34, 5]. Regularization-based
approaches force the current model to be sufficiently close
to the past model—which may be informative about the past
task—in the parameter/functional space distance [25, 6, 39].
Expansion-based approaches allocate a unit (e.g., network
node, sub-network) for each task and keep the unit untouched
during the training for other tasks [38, 31].

In this paper, instead of asking how to isolate previous
knowledge from new knowledge, we draw attention to the
following fundamental question:

What type of knowledge is likely to be useful
for future tasks (and thus not get forgotten), and
how can we learn and preserve such knowledge?

To demonstrate its significance, consider the simple scenario
that the task at hand is to classify the given image as an
apple or a banana. An easy way to solve this problem is to
extract and use the color feature of the image; red means
apple, and yellow means banana. The color, however, will
no longer be useful if our future task is to classify another
set of images as apples or strawberries; color may not be
used anymore and eventually get forgotten. On the other
hand, if the model had learned more complicated features,
e.g., shape/polish/texture, the features may be re-used for
future tasks and remain unforgotten. This line of thoughts
suggests that forgetting does not only come from the limited
access to the past experience, but also from the innately re-
stricted access to future events; to suffer less from forgetting,
learning more transferable representations in the first hand
may be as important as carefully preserving the knowledge
gained in the past.

To learn more transferable representations for continual
learning, we draw inspirations from a recent advance in
self-supervised learning, in particular, contrastive learning
[19, 10]. Contrastive methods learn representations using
the inductive bias that the prediction should be invariant
to certain input transformations instead of relying on task-
specific supervisions. Despite their simplicity, such methods
are known to be surprisingly effective; for ImageNet clas-
sification [37], contrastively trained representations closely
achieve the fully-supervised performance even without labels
[10] and outperform counterparts in the supervised case [24].
More importantly, while the methods are originally proposed
for better in-domain1 performance, recent works also show
that such methods provide significant performance gains on
unseen domains [10, 21]. Under a continual scenario, we
make a similar observation: contrastively learned represen-
tations suffer less from forgetting than the ones trained with
cross-entropy loss (see Section 5.2 for details).

1The term ‘in-domain’ is used here for the setup where data distributions
for representation learning and linear classifier training are the same.
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Figure 1. An overview of the Co2L framework. Mini-batch samples from the current task and the memory buffer are augmented and passed
through current and past (stored at the end of the previous task) representations. Co2L minimizes the weighted sum of two losses: (1)
Asymmetric SupCon loss contrasts anchor samples from the current task against the samples from other classes (Section 4.1). (2) IRD loss
measures the drift of the instance-wise similarities given by the current model from the one given by the previous model (Section 4.2).

Unfortunately, applying this idea to continual settings is
not straightforward due to at least two reasons: First, hav-
ing access to informative negative samples is known to be
crucial for the success of contrastive learning [36], while
the instantaneous demographics of negatives samples are
severely restricted under standard continual setups; in class-
incremental learning, for instance, it is common to assume
that the learner can access samples from only a small number
of classes at each time step. Second, the question of how
to preserve the contrastively learned representations on con-
tinual learning setups has not been fully answered. Indeed,
recent works on representation learning for continual setups
aim to learn representations accelerating future learning un-
der a similar decoupled learning setup but lack an explicit
design to preserve representations.
Contribution. To address these challenges, we propose a
new rehearsal-based continual learning algorithm, coined
Co2L (Contrastive Continual Learning). Unlike previous
continual (representation) learning methods, we aim to learn
and preserve representations continually in a decoupled
representation-classifier scheme. The overview of Co2L
is illustrated in Figure 1.

Our contribution under this setup is twofold:
1. Contrastive learning: We design an asymmetric version

of supervised contrastive loss for learning representations
under continual learning setup (Section 4.1) and empir-
ically show its benefits on improving the representation
quality.

2. Preserving representations: We propose a novel preserva-
tion mechanism for contrastively learned representations,
which works by self-distillation of instance-wise rela-
tions (Section 4.2); to the best of our knowledge, this is a
first method explicitly designed to preserve contrastively
learned representations on continual learning.

We validate Co2L under various experimental scenarios en-
compassing task-incremental learning, domain-incremental
learning, and class-incremental learning. Co2L consistently

outperforms all baselines on various datasets, scenarios, and
memory setups. With careful ablation studies, we also show
that both components we propose (asymmetric supervised
contrastive loss, instance-wise relation distillation) are es-
sential for performance. In the ablation of distillation, we
empirically show that distillation preserves learned represen-
tations and efficiently uses buffered samples, which might
be the main source of consistent gains over all comparisons:
distillation provides 22.40% and 10.59% relative improve-
ments with/without buffered samples respectively on the
Seq-CIFAR-10 dataset. In the ablation of asymmetric su-
pervised contrastive loss, we quantitatively verify that the
asymmetric version consistently provides performance gains
over the original one on all setups, e.g., 8.15% relative im-
provement on the Seq-CIFAR-10 with buffer size 500. We
also provide qualitative implications on this performance
gain by visualizing learned representations, which shows our
asymmetric version prevents severe drifts of learned features.

2. Related Work
Rehearsal-based continual learning. Continual learning
methods have been developed in three major streams: using
a fixed-sized buffer to replay past samples (rehearsal-based
approach), regulating model parameter changes through
learning (regularization-based approach), or dynamically
expanding model architecture on demand (expansion-based
approach). Among them, the rehearsal-based approach has
shown great performance in continual learning settings, al-
beit its simplicity. The idea of Experience Replay (ER [34])
is simply managing a fixed-sized buffer to retain a few sam-
ples and replaying those to prevent forgetting past knowl-
edge. Following this simple setup, ER-based methods mainly
focus on either regulating model updates not to contradict
the learning objectives on past samples [29, 5] or selecting
the most representative/forgetting-prone samples to prevent
changes in past predictions [2, 7, 33]. In a purely decoupled
representation learning setup, however, there are few studies
related to ER since representation learning objectives may
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not be directly aligned to task-specific objectives in typi-
cal training schemes. In this work, we focus on utilizing
buffered samples to learn representations continually on a
decoupled representation-classifier learning scheme.
Representation learning in continual learning. Only a
few recent studies on continual learning focus on represen-
tations in two aspects: how to maintain learned represen-
tations [33] and how to learn representations accelerating
future learning [23, 17, 43, 15]. iCaRL [33] prevents rep-
resentations from being forgotten by leveraging distillation.
[23, 17] directly optimize objectives that minimize forget-
ting by learning representations that accelerate future learn-
ing on meta-learning [14] frameworks. Concurrent works
[43, 15, 30] exploit self-supervised learning objectives to
learn more generalizable representations than ones trained
with supervised learning objectives. In this work, we further
exploit the benefits of contrastive learning scheme on con-
tinual learning setups with additional technical components
designed to preserve learned representations.
Contrastive representation learning. Recent progress in
contrastive representation learning shows superior down-
stream task performance, even competitive to supervised
training. Noise-contrastive estimation [18] is the seminal
work that estimates the latent distribution by contrasting with
artificial noises. Info-NCE [42] tries to learn representations
from visual inputs by leveraging an auto-regressive model
to predict the future in an unsupervised manner. Recent
advances in this area stem from the use of multiple views as
positive samples [40]. These core concepts have been fol-
lowed by studies [10, 21, 16, 12] that have resolved practical
limitations that have previously made learning difficult such
as negative sample pairs, large batch size, and momentum
encoders. Meanwhile, it has been shown that supervised
learning can also enjoy the benefits of contrastive representa-
tion learning by simply using labels to extend the definition
of positive samples [24]. In this work, we mainly leverage
contrastive representation learning schemes on the continual
learning setup based on our novel observation (Section 5.2).

Knowledge distillation. In continual learning, knowledge
distillation is widely used to mitigate forgetting by distilling
past signatures to the current models [28, 33]. However,
it has not been studied to design/utilize knowledge distilla-
tion for decoupled representation-classifier training in the
continual learning setup. In this work, we develop novel
self-distillation loss for contrastive continual learning, which
is inspired by the recently proposed distillation loss [13] for
contrastive learning framework.

3. Problem Setup and Preliminaries
In this section, we formalize the considered continual

learning setup and briefly describe a recently proposed su-
pervised contrastive learning scheme [24] that will be used
as the main framework for designing Co2L (Section 4).

3.1. Problem Setup: Continual Learning

We consider three popular scenarios of continual learn-
ing as categorized by [41]: task-incremental learning (Task-
IL), domain-incremental learning (Domain-IL), and class-
incremental learning (Class-IL).

Formally, the learner is trained on a sequence of tasks
indexed by t ∈ {1, 2, . . . , T}. For each task, we suppose
that there is a task-specific class set Ct. For Task-IL and
Class-IL, {Ct}Tt=1 are assumed to be disjoint, i.e.,

t ̸= t′ ⇒ Ct ∩ Ct′ = ∅, (Task/Class-IL). (1)

For Domain-IL, Ct remains the same throughout the tasks:

C1 = C2 = · · · = CT , (Domain-IL). (2)

During each task, nt copies of training input-label pairs are
independently drawn from some task-specific distribution,
i.e., {(xi, yi)}nt

i=1 ∼ Dt. Here, xi denotes the input im-
age, and yi ∈ Ct denotes the class label belonging to the
task-specific class set. For Task-IL, the learned models are
assumed to have access to the task label t during the test
phase; the goal is to find a predictor φθ(x, t) parameterized
by θ such that

L(θ) :=
T∑
t=1

EDt [ℓ(y, φθ(x, t))], (Task-IL) (3)

is minimized for some loss function ℓ(·, ·). For Domain-
IL and Class-IL, the model cannot access the task label
during the test phase; the goal is to find a predictor φθ(x)
minimizing

L(θ) =
T∑
t=1

EDt [ℓ(y, φθ(x))], (Domain/Class-IL). (4)

3.2. Preliminaries: Contrastive Learning

We now describe the SupCon (Supervised Contrastive
learning) algorithm, proposed by [24]. Suppose that the clas-
sification model can be decomposed into two components

φθ = w ◦ fϑ (5)

with parameter pairs θ = (ϑ,w), where w(·) is the linear
classifier and fϑ(·) is the representation. Without training
w, SupCon directly trains fϑ as follows: Given a batch of
N training samples {(xi, yi)}Ni=1, SupCon first generates
an augmented batch {(x̃i, ỹi)}2Ni=1 by making two randomly
augmented versions of xk as x̃2k−1, x̃2k, with ỹ2k−1 =
ỹ2k = yk. The samples in the augmented batch are mapped
to a unit d-dimensional Euclidean sphere as

zi = (g ◦ f)ψ(x̃i), (6)
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(a) Asymmetric SupCon Loss (b) Instance-wise Relation Distillation Loss

Figure 2. Illustration of Asymmetric Supervised Constrastive Loss and Instance-wise Relation Distillation (IRD). (a) Given augmented
mini-batch samples, asymmetric SupCon considers samples from the same class of the current task as positives. In other words, the pulling
effects between anchors only exist between current task samples. (b) Given augmented mini-batch samples, the instance-wise relation is
defined on the normalized projected feature vectors. The relation vectors, i.e., dot products (⊙) of feature vectors, are computed from the
learnable (ψt

e−1) and reference model (ψt−1
E ), respectively. For E epoch training, such temperature scaled relation is distilled from the

reference model to the learnable model. Note that the reference model is snapped at the end of (t− 1)-th task training, and we only update
the learnable model’s weights using stop-gradient (denoted by sg).

where g = gϕ denotes the projection map parametrized by
ϕ, and ψ denotes the concatenation of ϑ and ϕ. Now, the
feature map (g ◦ f)ψ is trained to minimize the supervised
contrastive loss

Lsup =

2N∑
i=1

−1
|pi|

∑
j∈pi

log

(
exp(zi · zj/τ)∑
k ̸=i exp(zi · zk/τ)

)
, (7)

where τ > 0 is some temperature hyperparameter and pi is
the index set of positive samples with respect to the anchor
x̃i, defined as

pi =
{
j ∈ {1, . . . , 2N}

∣∣ j ̸= i, yj = yi
}
. (8)

In other words, the sample in pi is either the other augmen-
tation of the unaugmented version of x̃i, or one of the other
augmented samples having the same label.

4. Co2L: Contrastive Continual Learning

Here, we propose a rehearsal-based contrastive contin-
ual learning scheme, coined Co2L (Contrastive Continual
Learning). At a high level, Co2L (1) learns the representa-
tions with an asymmetric form of supervised contrastive loss
(Section 4.1) and (2) preserves learned representations us-
ing self-supervised distillation (Section 4.2) in a decoupled
representation-classifier training scheme. This is done by a
mini-batch gradient descent based on the compound loss

L = Lsup
asym︸ ︷︷ ︸

(1) learning

+ λ · LIRD︸ ︷︷ ︸
(2) preserving

. (9)

Here, each batch is composed of two independently aug-
mented views of N samples (thus 2N in total), where each
sample is drawn from the union of current task samples and
buffered samples.

4.1. Representation Learning with Asymmetric Su-
pervised Contrastive Loss

For continually learning representations, we use an asym-
metrically modified version of the SupCon objective Lsup.
In the modified version, we only use current task samples as
anchors; past task samples from the memory buffer will only
be used as negative samples (see Figure 2(a)). Formally, if
we let S ⊂ {1, . . . , 2N} be the set of indices of current task
samples in the batch, the modified supervised contrastive
loss is defined as

Lsup
asym =

∑
i∈S

−1
|pi|

∑
j∈pi

log

(
exp (zi · zj/τ)∑
k ̸=i exp (zi · zk/τ)

)
.

(10)

The motivation behind this asymmetric design is to prevent
a model from overfitting to a small number of past task
samples. It turns out that such a design indeed helps to boost
the performance. In Section 5.3, we empirically observe that
the asymmetric version Lsup

asym outperforms the original Lsup

and generates better-spread features of buffered samples.

4.2. Instance-wise Relation Distillation (IRD) for
Contrastive Continual Learning

While using the contrastive learning objective (eq. 10)
readily provides a more transferable representation, one may
still benefit from having an explicit mechanism to preserve
the learned knowledge. Taking the inspiration from [13], we
propose an instance-wise relation distillation (IRD); IRD reg-
ulates the changes in feature relation between batch samples
via self-distillation (see Figure 2(b)). Formally, we define
the IRD loss LIRD as follows: For each sample x̃i in a batch
B, we define the instance-wise similarity vector

p (x̃i;ψ, κ) = [pi,1, . . . , pi,i−1, pi,i+1, . . . , pi,2N ] , (11)
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where pi,j denotes the normalized instance-wise similarity

pi,j =
exp (zi · zj/κ)∑2N
k ̸=i exp (zi · zk/κ)

(12)

given the representation parameterized by ψ and the temper-
ature hyperparameter κ. In other words, the instance-wise
similarity vector p(·) is the normalized similarity of a sample
to other samples in the batch.

Roughly, the IRD loss quantifies the discrepancy between
the instance-wise similarities of the current representation
and the past representation; the past representation is a snap-
shot of the model at the end of the previous task. Denoting
the parameters of the past/current model as ψpast and ψ, the
IRD loss is defined as

LIRD =
2N∑
i=1

−p
(
x̃i;ψ

past, κ∗
)
· logp (x̃i;ψ, κ) , (13)

where the logarithms and multiplications on the vectors de-
note the entrywise logarithms and multiplications. We note
that we are using different temperature hyperparameters for
the past and current similarity vectors; on the other hand,
both κ, κ∗ will remain fixed throughout the tasks.

By using fixed model weights snapped at the end of pre-
vious task training as the reference model ψpast, IRD dis-
tills learned representations to the current training model ψ,
thereby leading to preserving learned representations. Since
contrastive representation learning stems from deep metric
learning, IRD achieves knowledge preservation by regulating
overall structure changes of learned representations. Note
that IRD does not regulate exact changes in feature space and
does not define relation from encoder outputs like [13]. More
detailed comparisons between [13] and ours are provided in
the supplementary material.

4.3. Algorithm Details
Here, we give a complete picture of the overall training

procedure and give additional details. The full algorithm is
provided in Algorithm 1.
Data preparation. As the initial or new task arrives, the
dataset is built as a union of current task samples and
buffered samples, without any oversampling [9, 20]. The
mini-batch is drawn from this dataset, where each sample
is independently drawn with equal probability. To enjoy the
benefits of contrastive representation learning, each sample
is augmented into two views following [11]. The detailed
augmentation scheme for contrastive learning is provided in
the supplementary material.
Learning new representation. The augmented samples
are forwarded to the encoder fϑ and projection map gϕ se-
quentially. The projection map outputs are used to compute
asymmetric supervised contrastive loss (eq. 10).

Algorithm 1 Co2L: Contrastive Continual Learning
1: Input: Buffer memoryM, Encoder parameters ϑ, pro-

jector parameters ϕ, number of tasks T , family of aug-
mentations H, a set of training sets {{(xti, yti)}}Tt=1, a
set of disjoint class sets {Ct}Tt=1, learning rate η, number
of epochs of t-th task Et, distillation temperatures κ, κ∗,
distillation power λ.

2: Initialize network (g ◦ f)ψ(·) where ψ = (ϑ, ϕ).
3: for t = 1, · · · , T do
4: Construct dataset Dt by Dt ← {(xti, yti)} ∪M
5: for e = 1, · · · , Et do
6: Draw a mini-batch {(xi, yi)}Ni=1 from Dt
7: for all k ∈ {1, · · · , N} do
8: Draw two augmentations h ∼ H, h′ ∼ H
9: Initialize anchor indices sets S ← ∅, I ← ∅

10: x̃2k−1 = h(xk)
11: x̃2k = h′(xk)
12: I ← I ∪ {2k − 1, 2k}
13: if yk ∈ Ct then
14: S ← S ∪ {2k − 1, 2k}
15: end if
16: end for
17: Compute L by L ← Lsup

asym(I, S;ψte−1) (eq. 10)
18: if t > 1 then
19: Update L by

L ← L+ λ · LIRD(ψt−1
Et−1

, ψte−1, κ
∗, κ) (eq. 13)

20: end if
21: Update ψte−1 by ψte ← ψte−1 − η∇ψt

e−1
L

22: end for
23: Manage bufferM for the number of each class sam-

ples to be same by uniform sampling.
24: end for

Preserving learned representation. When a new task ar-
rives (i.e., t > 1), we compute instance-wise relation drifts
between reference model and the training model with IRD
loss (eq. 13). To this end, we settle the reference model as
the trained model at the end of the training of (t− 1)-th task.
Note that while optimizing total loss (eq. 9), the reference
model is not updated.
Buffer management. At the end of training each task, a
small portion of training samples is pushed into a replay
buffer. Due to its buffer size constraint, a small subset of
samples from each class is pulled out of the replay buffer
at the same ratio. The sample to be pushed or pulled is
uniformly randomly selected for all procedures.

5. Experiment

5.1. Experimental Setup

Learning scenarios and datasets. Following [41], we con-
duct continual learning experiments on Task Incremental
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Figure 3. Observation on two learning schemes, cross-entropy loss training and contrastive representation learning on Seq-CIFAR-10 without
any design used for the continual learning settings. As new task arrives, each model is trained only with current task samples with model
weights without re-initialization. After each task training ends, a new linear classifier is trained on the fixed current representation with
samples observed so far (denoted by “seen objects”) or all samples including ones from future tasks (denoted by “all objects”). The pair of
left figures shows contrastively trained representations suffer less from forgetting than the ones trained with cross entropy loss. The right
pair shows contrastively learned representation is much more useful to perform unseen objects classification tasks.

Learning (Task-IL), Class Incremental Learning (Class-IL)
and Domain Incremental Learning (Domain-IL) scenarios.
We conduct experiments on Seq-CIFAR-10 and Seq-Tiny-
ImageNet for Task-IL and Class-IL scenarios and R-MNIST
for Domain-IL scenario. Seq-CIFAR-10 is the set of splits
(tasks) of the CIFAR-10 [26] dataset. We split the CIFAR-10
dataset into five separate sample sets, and each sample set
consists of two classes. Similarly, Seq-Tiny-ImageNet is
built from Tiny-ImageNet [1] by splitting 200 class samples
into 10 disjoint sets of samples, each consisting of 20 classes.
Seq-CIFAR-10 and Seq-Tiny-ImageNet split are given in
the same order across different runs, as in [5]. We conduct
experiments on R-MNIST [29] for Domain-IL experiments.
For Domain-IL scenario, R-MNIST is constructed by rotat-
ing the original MNIST [27] images by a random degree in
the range of [0, π). R-MNIST consists of 20 tasks, corre-
sponding to 20 uniformly randomly chosen degrees. We note
that we treat samples from different domains with the same
digit class as different classes while applying asymmetric
supervised contrastive loss.

Training. We compare our contrastive continual learning
algorithm with rehearsal-based continual learning baselines:
ER [34], iCaRL [33], GEM [29], A-GEM [8], FDR [4],
GSS [2], HAL [7], DER [5], and DER++ [5]. We train
ResNet-18 [22] on Seq-CIFAR-10 and Tiny-ImageNet, and
a simple network with convolution layers on R-MNIST. For
all baselines, we report performance given in [5] of buffer
size 200 and 500 except for R-MNIST since we choose a
different architecture. More training details are provided in
the supplementary material.

Evaluation protocol for Co2L. As Co2L is not a cross-
entropy based coupled representation-classifier training, we
need to train a classifier additionally. For a fair compari-
son, we train a classifier using only the last task samples
and buffered samples on top of the frozen representations

learned by Co2L. To avoid the class-imbalance problems,
we train a linear classifier with a class balanced sampling
strategy, where first a class is selected uniformly from the
set of classes, and then an instance from that class is subse-
quently uniformly sampled. We train a linear classifier for
100 epochs for all experiments, and we report classification
test accuracy on this classifier.

5.2. Main Results

Validation of our key hypothesis. Before we provide re-
sults of Co2L in comparison with other methods, we first
validate our running premise for method design: Contrastive
learning learns more useful representation for the future
task than the cross-entropy based coupled representation-
classifier supervised learning. This premise, however, is not
easy to verify under the standard continual learning setup.
Indeed, the quality of a representation is typically defined
as the predictive performance with the best possible (linear)
downstream classifier (see, e.g., [3], and references therein),
but optimal classifiers are only rarely learned under continual
setups.

To circumvent this obstacle, we consider the following
synthetic, yet insightful scenario: After training represen-
tations under the standard continual setup, we freeze the
representations and freshly train the downstream classifier,
using training data from all tasks. Here, the classifier trained
on all observed samples so far will perform learned tasks
well unless frozen representations suffer from forgetting.

As shown in the left pair of heatmaps in Figure 3, the
average test accuracy on the previous tasks is surprisingly
higher in contrastive than in cross-entropy (for off-diagonal
parts, 21.79% vs. 66.46%). In other words, without any
specific method to account for continual setup, contrastive
method learns representations that suffer less from forgetting
than ones trained with cross-entropy loss.

In the right pair of heatmaps in Figure 3, we report test
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Buffer
Dataset Seq-CIFAR-10 Seq-Tiny-ImageNet R-MNIST

Scenario Class-IL Task-IL Class-IL Task-IL Domain-IL

200

ER [34] 44.79±1.86 91.19±0.94 8.49±0.16 38.17±2.00 93.53±1.15

GEM [29] 25.54±0.76 90.44±0.94 - - 89.86±1.23

A-GEM [8] 20.04±0.34 83.88±1.49 8.07±0.08 22.77±0.03 89.03±2.76

iCaRL [33] 49.02±3.20 88.99±2.13 7.53±0.79 28.19±1.47 -
FDR [4] 30.91±2.74 91.01±0.68 8.70±0.19 40.36±0.68 93.71±1.51

GSS [2] 39.07±5.59 88.80±2.89 - - 87.10±7.23

HAL [7] 32.36±2.70 82.51±3.20 - - 89.40±2.50

DER [5] 61.93±1.79 91.40±0.92 11.87±0.78 40.22±0.67 96.43±0.59

DER++ [5] 64.88±1.17 91.92±0.60 10.96±1.17 40.87±1.16 95.98±1.06

Co2L (ours) 65.57±1.37 93.43±0.78 13.88±0.40 42.37±0.74 97.90±1.92

500

ER [34] 57.74±0.27 93.61±0.27 9.99±0.29 48.64±0.46 94.89±0.95

GEM [29] 26.20±1.26 92.16±0.64 - - 92.55±0.85

A-GEM [8] 22.67±0.57 89.48±1.45 8.06±0.04 25.33±0.49 89.04±7.01

iCaRL [33] 47.55±3.95 88.22±2.62 9.38±1.53 31.55±3.27 -
FDR [4] 28.71±3.23 93.29±0.59 10.54±0.21 49.88±0.71 95.48±0.68

GSS [2] 49.73±4.78 91.02±1.57 - - 89.38±3.12

HAL [7] 41.79±4.46 84.54±2.36 - - 92.35±0.81

DER [5] 70.51±1.67 93.40±0.39 17.75±1.14 51.78±0.88 97.57±1.47

DER++ [5] 72.70±1.36 93.88±0.50 19.38±1.41 51.91±0.68 97.54±0.43

Co2L (ours) 74.26±0.77 95.90±0.26 20.12±0.42 53.04±0.69 98.65 ±0.31

Table 1. Classification accuracies for Seq-CIFAR-10, Seq-Tiny-ImageNet and R-MNIST on rehearsal-based baselines and our algorithm.
We report performance of baslines of Seq-CIFAR-10 and Seq-Tiny-ImageNet from [5]. ‘-’ indicates experiments unable to run due to
compatibility issues (e.g., iCaRL in Domain-IL) or intractable training time (e.g., GEM, HAL or GSS on Tiny ImageNet). All results are
averaged over ten independent trials. The best performance marked as bold.

accuracies of the classifiers that are trained with all samples,
including the samples from unseen tasks. Interestingly, we
observe that the average task accuracy on the unseen task is
also notably higher in contrastively trained representations
(rightmost heatmap) than ones trained with cross-entropy
loss (second to right); for lower triangle parts, 32.77% vs.
62.76%. This implies that contrastive learning methods
learn more highly transferable representations to future tasks,
which might be the source of its robustness against forget-
ting.
Superiority of Co2L over baselines. As shown in Table 1,
our contrastive continual learning algorithm consistently out-
performs all baselines in various scenarios, datasets, and
memory sizes. Such results indicate that our algorithm suc-
cessfully learns and preserves representations useful for fu-
ture learning, and thus it significantly mitigates catastrophic
forgetting. Moreover, such consistent gains over all compar-
isons show that our scheme is not limited to certain incre-
mental learning scenarios. In what follows, we provide a
more detailed analysis of our algorithm.

5.3. Ablation Studies

Effectiveness of IRD. To verify the effectiveness of IRD, we
perform an ablation experiment with the class-IL setup on the
Seq-CIFAR-10 dataset (identical to the setup in Section 5.2),
with three additional variants of Co2L. (a) without buffer
and IRD: We optimize using only the SupCon loss (eq. 7);
the symmetric version is identical to the asymmetric one
since we do not use a replay buffer. (b) with IRD only: We

use both (symmetric) SupCon loss and IRD loss. (c) with
replay buffer only: We optimize the asymmetric SupCon
loss (eq. 10) without an IRD loss. Note that while we do not
use buffered samples to learn representations for (a,b), we
still need buffered samples to train the downstream linear
classifier; for (a,b), we use 200 auxiliary buffered samples
to train the classifier (as in (c) and Co2L).

As shown in Table 2, IRD brings a significant perfor-
mance gain, with or without the replay buffer. With the
replay buffer (rows (c,d)), we observe a 22.40% relative im-
provement; without the replay buffer (rows (a,b)), there is
a 10.59% relative improvement. The former is noticeably
larger than the latter; we suspect that maintaining the simi-
larity structure of buffered samples (along with current task
samples) is essential in preserving learned representations.

We also note that IRD seems to complement the asym-
metric SupCon in terms of using buffered samples, leading
to a performance boost. To verify this, we consider a syn-
thetic infinite-buffer class-IL scenario: all past samples are
available throught the training. Under this setup, we train
a model with Lsup and another with Lsup

asym on Seq-CIFAR-
10. As shown in Figure 4, asymmetric SupCon performs
relatively poor without using IRD; under this class-balanced
setup, not using past task samples as positive pairs only re-
stricts learning. With increasing IRD power, however, the
performance gap closes, indicating that IRD complements
asymmetric SupCon by helping fully utilize the buffered
samples. Such trend is also aligned with the results in Ta-
ble 2; the performance boost from buffered samples–and
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Buffer Size IRD Accuracy(%)

(a) w/o buffer and IRD 0 ✗ 53.25±1.70

(b) w/ IRD only 0 ✓ 58.89±2.61

(c) w/ buffer only 200 ✗ 53.57±1.03

(d) Co2L(ours) 200 ✓ 65.57±1.37

Table 2. Ablation study of Instance-wise Relation Distillation (IRD).
We train our model on Seq-CIFAR-10 dataset under class-IL sce-
nario (identical to the setup in Section 5.2) with ablated Co2L. IRD
brings significant gain with or without replay buffer. All results are
averaged over ten independent trials.

Figure 4. Performance comparison of original and asymmetric
SupCon losses on Seq-CIFAR-10 under the ideal Class-IL scenario.
Both settings use all past task samples. Instance-wise Relation
Distillation (IRD) effectively closes the performance gap, which
indicates IRD successfully retains learned representations without
using past samples as positive pairs.

thus asymmetric SupCon loss–is relatively small without
using IRD. This, however, does not necessarily imply that
asymmetricity does not bring any benefit, as we will observe
in the following ablation study on asymmetric SupCon.

Effectiveness of asymmetric supervised contrastive loss.
To verify the effectiveness of asymmetric supervised con-
trastive loss, we compare two contrastive learning losses, the
original SupCon and the asymmetric SupCon, as variants of
Co2L with the identical settings of Section 5.2. As shown
in Table 3, asymmetric SupCon consistently provides gains
over all counterparts with the original SupCon.

We also compare the visualizations of encoders’ outputs
of buffered and entire training samples of the Seq-CIFAR-10
dataset where the encoders are trained in the ablation ex-
periments of Table 3. As illustrated in Figure 5, buffered
samples’ features trained with original SupCon are close to
the same class samples while ones with asymmetric SupCon
are well-spread. Since the buffered samples with asymmetric
SupCon better represents the entire class sample population,
representations trained on asymmetric SupCon show better
task performance with linear classifiers. Such qualitative re-
sults are also well aligned with the motivation of asymmetric
SupCon mentioned in Section 4.1 and provide the benefits
of asymmetricity.

Seq-CIFAR-10 Seq-Tiny-ImageNet

Buffer 200 500 200 500

Lsup 60.49±0.72 68.66±0.68 13.51±0.48 19.68±0.62

Lsup
asym 65.57±1.37 74.26±0.77 13.88±0.40 20.12±0.42

Table 3. The effectiveness of asymmetric SupCon loss (Lsup
asym) ver-

sus the original SupCon loss (Lsup), combining with the IRD loss.
All results are averaged over ten independent trials.

Figure 5. Top: t-SNE visualization of features from buffered (col-
ored) and entire (gray) training samples of Seq-CIFAR-10. Bottom:
Same as Top, but non-buffered samples are in opaque color instead
of gray for a clear illustration of clusters. Left: Buffered samples’
features trained with original SupCon are close to the same class
samples but distant from different classes. Right: Buffered samples’
features trained on asymmetric SupCon are well-spread; buffered
samples better represent the entire class sample population.

6. Conclusion

We propose a contrastive continual learning scheme for
learning representations under continual learning scenarios.
The proposed asymmetric form of contrastive learning loss
and the instance-wise relation distillation help model learn
and preserve new and past representations and show a bet-
ter performance over baselines on various learning setups.
We hope that our work will serve as a good reference to
how representation learning for continual learning should be
designed.
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[42] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 3

[43] Song Zhang et al. Self-supervised learning aided
class-incremental lifelong learning. arXiv preprint
arXiv:2006.05882, 2020. 3

9525


