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Abstract

Deep neural networks (DNNs) for the semantic segmen-
tation of images are usually trained to operate on a pre-
defined closed set of object classes. This is in contrast to
the “open world” setting where DNNs are envisioned to be
deployed to. From a functional safety point of view, the abil-
ity to detect so-called “out-of-distribution” (OoD) samples,
i.e., objects outside of a DNN’s semantic space, is crucial
for many applications such as automated driving. A natu-
ral baseline approach to OoD detection is to threshold on
the pixel-wise softmax entropy. We present a two-step pro-
cedure that significantly improves that approach. Firstly,
we utilize samples from the COCO dataset as OoD proxy
and introduce a second training objective to maximize the
softmax entropy on these samples. Starting from pretrained
semantic segmentation networks we re-train a number of
DNNs on different in-distribution datasets and consistently
observe improved OoD detection performance when eval-
uating on completely disjoint OoD datasets. Secondly, we
perform a transparent post-processing step to discard false
positive OoD samples by so-called “meta classification.”
To this end, we apply linear models to a set of hand-crafted
metrics derived from the DNN’s softmax probabilities. In
our experiments we consistently observe a clear additional
gain in OoD detection performance, cutting down the num-
ber of detection errors by 52% when comparing the best
baseline with our results. We achieve this improvement sac-
rificing only marginally in original segmentation perfor-
mance. Therefore, our method contributes to safer DNNs
with more reliable overall system performance.

1. Introduction

In recent years spectacular advances in the computer
vision task semantic segmentation have been achieved by
deep learning [47, 51]. Deep convolutional neural networks
(CNNs) are envisioned to be deployed to real world appli-
cations, where they are likely to be exposed to data that is
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Figure 1: Comparison of segmentation mask and softmax
entropy before our OoD training (top row) and after (bot-
tom row). While there are minor differences in the seg-
mentation masks, the annotated unknown object (marked
with green contours) becomes clearly recognizable in the
entropy heatmap due to our OoD training. In the heatmap
high values are red, low ones are blue.

substantially different from the model’s training data. We
consider data samples that are not included in the set of a
model’s semantic space as out-of-distribution (OoD) sam-
ples. State-of-the-art neural networks for semantic segmen-
tation, however, are trained to recognize a predefined closed
set of object classes [13, 32], e.g. for the usage in environ-
ment perception systems of autonomous vehicles [24]. In
open world settings there are countless possibly occurring
objects. Defining additional classes requires a large amount
of annotated data (cf. [12, 52]) and may even lead to per-
formance drops [15]. One natural approach is to introduce a
none-of-the-known output for objects not belonging to any
of the predefined classes [49]. In other words, one uses a
set of object classes that is sufficient for most scenarios and
treats OoD objects by enforcing an alternative model output
for such samples. From a functional safety point of view, it
is a crucial but missing prerequisite that neural networks are
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capable of reliably indicating when they are operating out of
their proper domain, i.e., detecting OoD objects, in order to
initiate a fallback policy.

As images from everyday scenes usually contain many
different objects, of which only some could be out-of-
distribution, knowing the location where the OoD object
occurs is desired for practical application. Therefore, we
address the problem of detecting anomalous regions in an
image, which is the case if an OoD object is present (see
figure 1) and which is a research area of high interest
[6, 20, 33, 42]. This so-called anomaly segmentation [5, 20]
can be pursued, for instance, by incorporating sophisticated
uncertainty estimates [3, 18] or by adding an extra class to
the model’s learnable set of classes [49].

In this work, we detect OoD objects in semantic seg-
mentation with a different approach which is composed of
two steps: As first step, we re-train the segmentation CNN
to predict class labels with low confidence scores on OoD
inputs, by enforcing the model to output high prediction un-
certainty. In order to quantify uncertainty, we compute the
softmax entropy which is maximized when a model outputs
uniform probability scores over all classes [29]. By deliber-
ately including annotated OoD objects as known unknowns
into the re-training process and employing a modified multi-
objective loss function, we observe that the segmentation
CNN generalizes learned uncertainty to unseen OoD sam-
ples (unknown unknowns) without significantly sacrificing
in original performance on the primary task, see figure 1.

The initial model for semantic segmentation is trained on
the Cityscapes data [13]. As proxy for OoD samples we ran-
domly pick images from the COCO dataset [32] excluding
the ones with instances that are also available in Cityscapes,
cf. [19, 22, 37] for a related approach in image classifi-
cation. We evaluate the pixel-wise OoD detection perfor-
mance via entropy thresholding for OoD samples from the
LostAndFound [42] and Fishyscapes [6] dataset, respec-
tively. Both datasets share the same setup as Cityscapes but
include OoD objects.

The second step incorporates a meta classifier flagging
incorrect class predictions at segment level, similar as pro-
posed in [34, 44, 45] for the detection of false positive in-
stances in semantic segmentation. After increasing the sen-
sitivity towards predicting OoD objects, we aim at removing
false predictions which are produced due to the preceding
entropy boost (cf. [9]). The removal of false positive OoD
object predictions is based on aggregated dispersion mea-
sures and geometry features within segments (connected
components of pixels), with all information derived solely
from the CNN’s softmax output. As meta classifier we em-
ploy a simple linear model which allows us to track and
understand the impact of each metric.

To sum up our contributions, we are the first to success-
fully modify the training of segmentation CNNs to make

them much more efficient at detecting OoD samples in Lo-
stAndFound and Fishyscapes. Re-training the CNNs with
a specific choice of OoD images from COCO [32] clearly
outperforms the natural baseline approach of plain softmax
entropy thresholding [21] as well as many state-of-the-art
approaches from image classification. In addition, we are
the first to demonstrate that entropy based OoD object pre-
dictions in semantic segmentation can be meta classified
reliably, i.e., classified whether one considered OoD pre-
diction is true positive or false positive without having ac-
cess to the ground truth. For this meta task we employ
simple logistic regression. Combining entropy maximiza-
tion and meta classification therefore is an efficient and yet
lightweight method, which is particularly suitable as an in-
tegrated monitoring system of safety-critical real world ap-
plications based on deep learning.

2. Related Work
Methods from prior works have already proven their ef-

ficiency in identifying OoD inputs for image data. The pro-
posed methods are either modifications of the training pro-
cedure [19, 22, 29, 31, 37] or post-processing techniques
adjusting the estimated confidence [16, 21, 29]. However,
most of these works treat entire images as OoD.

When considering the semantic space to be fixed, one
possible approach to anomaly segmentation, which we also
pursue here, is to estimate uncertainty of CNNs. Early ap-
proaches to uncertainty estimation involve Bayesian neu-
ral networks (BNNs) yielding posterior distributions over
the model’s weight parameters [35, 40]. In practice, ap-
proximations such as Monte-Carlo dropout [18] or stochas-
tic batch normalization [3] are mainly used due to cheaper
computational costs. Frameworks using dropout for un-
certainty estimation applied to semantic segmentation have
been developed in [4, 26]. Other approaches to model
uncertainty consist of using an ensemble of neural net-
works [28], which captures model uncertainty by averag-
ing predictions over multiple models, and density estima-
tion [6, 11, 39, 43] via estimating the likelihood of sam-
ples with respect to the training distribution. Methods for
OoD detection in semantic segmentation based on classifi-
cation uncertainty and processing only monocular images
have been analyzed in [2, 7, 23, 25, 36, 41].

Using BNNs for estimating uncertainty in deep neural
networks is associated with prohibitive computational costs.
Uncertainty estimates that are generated by multiple mod-
els or by multiple forward passes are still computationally
expensive compared to single inference based ones. In our
approach, we unite semantic segmentation and OoD detec-
tion in one model without any modifications of the underly-
ing CNN’s architecture. Therefore, our re-training approach
can be even combined with existing OoD detection tech-
niques and potentially enhance their efficiency.
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Works with similar training approaches as ours use a dif-
ferent OoD proxy and are presented in [6, 25]. They train
neural networks on the unlabeled objects in Cityscapes as
OoD approximation. However, in our experiments we ob-
serve that the unlabeled data in Cityscapes lacks in diver-
sity and therefore tends to be too dataset specific. With
respect to other OoD datasets, such as LostAndFound and
Fishyscapes, on which we perform our experiments, we ob-
serve that these mentioned methods fail to generalize. Fur-
thermore, in contrast to those works we incorporate a post-
processing step that significantly improves the OoD detec-
tion performance.

Another line of work detects OoD samples in semantic
segmentation by incorporating autoencoders [1, 5, 14, 33].
Training such a model only on specific samples from a
closed set of classes, it is assumed that the autoencoder
model performs less accurately when fed with samples from
never-seen-before classes. The identification of an OoD in-
put then relies on the reconstruction quality. In this way, no
OoD data is required, except for further adjusting the sensi-
tivity of the method.

Autoencoders are in fact deep neural networks them-
selves and usually do not include a segmentation model.
For the goal of safe real-time semantic segmentation, e.g.
necessary for automated driving [24], more lightweight ap-
proaches are favorable. We avoid incorporating deep aux-
iliary models at all and only employ a lightweight linear
model instead. Usually the more complex a model, the
greater the lack of interpretability. As monitoring systems
are supposed to make deep learning models safer, one seeks
for simpler and thereby more explainable approaches. We
post-process our entropy boosted semantic segmentation
CNN output via logistic regression whose computational
overhead is negligible. This linear model is transparent as
it allows us to analyze the impact of each single feature fed
into the model and it demonstrates in our experiments to
efficiently reduce the number of OoD detection errors.

3. Entropy based OoD Detection
In this section, we present our training method to im-

prove the detection of OoD pixels in semantic segmentation
via spatial entropy heatmapping.

3.1. Training for high Entropy on OoD Samples

Let f(x) ∈ (0, 1)q denote the softmax probabilities after
processing the input image x ∈ X with some deep learning
model f : X → (0, 1)q and let q = |C| ∈ N denote the
number of classes. For the sake of brevity, we omit the
consideration of image pixels in this section. We compute
the softmax entropy via

E(f(x)) = −
∑
j∈C

fj(x) log(fj(x)) . (1)

By (x, y(x)) ∼ Din we denote an “in-distribution” example
with y(x) ∈ C being the ground truth class label of input x,
and by x′ ∼ Dout we denote an “out-distribution” example
for which no ground truth label is given. We aim at mini-
mizing the overall objective

L := (1− λ) E(x,y)∼Din
[ℓin(f(x), y(x))]

+ λ Ex′∼Dout
[ℓout(f(x

′))] , λ ∈ [0, 1]
(2)

where

ℓin(f(x), y(x)) := −
∑
j∈C

1j=y(x) log(fj(x)) and (3)

ℓout(f(x
′)) := −

∑
j∈C

1

q
log(fj(x

′)) (4)

with the indicator function 1j=y(x) ∈ {0, 1} being equal
to one if j = y(x) and zero else. In other words, for in-
distribution samples we apply the commonly used empirical
cross entropy loss, i.e., the negative log-likelihood of the
target class. For out-distribution samples, we consider the
negative log-likelihood averaged over all classes.

By that choice of out-distribution loss function, mini-
mizing ℓout(f(x

′)) is equivalent to maximizing the soft-
max entropy E(f(x)), see equation (1). Since the soft-
max definition implies fj(x) ∈ (0, 1) and

∑
j∈C fj(x) =

1, Jensen’s inequality yields ℓout(f(x)) ≥ log(q) and
E(f(x)) ≤ log(q), with equality (for both inequalities) if
fj(x) = 1/q ∀ j ∈ C, i.e., if the softmax probabilities are
uniformly distributed over all classes.

In order to control the impact of each single objective
on the overall objective L, the convex combination between
expected in-distribution loss and expected out-distribution
loss is included, which can be adjusted by varying the pa-
rameter λ, see equation (2).

3.2. OoD Object Prediction in Semantic Segmenta-
tion via Entropy Thresholding

The softmax probabilities output of CNNs for semantic
segmentation f(x) ∈ (0, 1)|Z|×q, x ∈ X ⊆ [0, 1]|Z|×3 can
be viewed as pixel-wise probability distributions that ex-
press how likely each potential class affiliation j = 1, . . . , q
at a given pixel z ∈ Z is, according to the model f . Let
fz(x) ∈ (0, 1)q denote the softmax output at pixel loca-
tion z which we implicitly considered throughout the pre-
vious section. In semantic segmentation one minimizes the
averaged pixel-wise classification loss over the image, cf.
equation (2). For the sake of simplicity, we consider the
normalized entropy Ē(fz(x)) at pixel location z in the fol-
lowing, that is E(fz(x)) divided by log(q). One pixel is
then assumed to be out-of-distribution (OoD) if the normal-
ized entropy Ē(fz(x)) at that pixel location z is greater than
a threshold t ∈ [0, 1], i.e., z is predicted to be OoD if

z ∈ Ẑout(x) := {z′ ∈ Z : Ē(fz′
(x)) ≥ t} . (5)
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Figure 2: Comparison of softmax entropy heatmap and
OoD prediction mask with our OoD training (bottom row)
and without (top row). The green contours in the entropy
heatmaps mark the annotation of the OoD object. The OoD
object prediction is obtained by simply thresholding on the
entropy heatmap (in this example at t = 0.7 yielding the
red pixels in the OoD prediction masks).

A connected component k ∈ K̂(x) ⊆ P(Ẑout(x)) (the lat-
ter being the power set of Ẑout(x)) consisting of neighbor-
ing pixels fulfilling the condition in equation (5) gives us
an OoD segment / object prediction. An illustration can be
viewed in figure 2. Obviously, the better an in-distribution
pixel can be separated from an out-distribution pixel by
means of the entropy, the more accurate the OoD object pre-
diction will be.

4. Meta Classifier in Semantic Segmentation
By training the segmentation CNN to output uniform

confidence scores as presented in section 3, we increase the
sensitivity towards predicting OoD objects, aiming for an
“entropy boost” on OoD samples. However, it is not guar-
anteed that only OoD samples have a high entropy. There-
fore, detecting OoD samples via entropy boosting poten-
tially comes along with a considerable number of false OoD
predictions, resulting in an unfavorable trade-off.

In this context, we consider one entire OoD object pre-
diction (see section 3.2) as true positive if its intersection
over union (IoU , [17]) with a ground truth OoD object is
greater than zero. More formally, let Zout(x) be the set
of pixel locations in x which are labeled OoD according to
ground truth. Then k ∈ K̂(x) is true positive (TP) if

IoU(k,Zout(x)) > 0

⇔ ∃ z ∈ k : Ē(fz(x)) ≥ t ∧ z ∈ Zout(x) .
(6)

One could also set a higher threshold on the IoU score, how-
ever in this work we treat every single pixel as a potential
road hazard as this results in the least possible amount of
overlooked OoD objects.

In [9] it has been demonstrated that false-positives due to
increased prediction sensitivity can be removed based on a
meta classifier’s decision, achieving improved trade-offs be-
tween error rates. This meta classifier is essentially a binary
classification model added on top of a segmentation CNN
[34, 44, 45]. We construct hand-crafted metrics per con-
nected component of pixels by aggregating different pixel-
wise uncertainty measures derived from the softmax proba-
bilities, one of which is the entropy. The entropy metric has
proven to be highly correlated to the segment-wise IoU and
therefore contributes greatly to the meta classifier’s perfor-
mance, cf. [44]. Therefore, we expect the learned entropy
maximization on OoD objects to improve the meta classifi-
cation performance. In contrast to existing approaches, that
consider neighboring pixels sharing the same class label as
segment, we generate metrics for segments above the given
entropy threshold t to adapt meta classification to OoD de-
tection. Moreover, we additionally consider the variances
within segments when aggregating pixel-wise measures in-
stead of the means only.

Given the softmax output, further pixel-wise measures
we integrate into the meta classifier are the variation ratio
V (f(x)) = 1 − fĉ(x), ĉ = argmaxj∈C fj(x) and prob-
ability margin M(f(x)) = V (f(x)) + maxj∈C\{ĉ} fj(x).
Moreover, we also consider geometry features, such as the
segment’s size or its ratio between interior and boundary
[44]. These metrics serve as inputs for the meta model that
classifies into true positive and false positive (FP) OoD ob-
ject prediction, i.e., classifying k ∈ K̂(x) into the sets

CTP := {k′ ∈ K̂(x) : IoU(k′,Zout(x)) > 0} and

CFP := {k′ ∈ K̂(x) : IoU(k′,Zout(x)) = 0} .
(7)

The outlined hand-crafted metrics form a structured dataset
of features where the rows correspond to predicted seg-
ments and the columns to metrics.

5. Setup of Experiments
We consider the semantic segmentation of the Cityscapes

data [13] as original task, i.e., we consider Cityscapes as in-
distribution Din. The training split consists of 2,975 pixel-
annotated urban street scene images. As original model, we
use the state-of-the-art semantic segmentation DeepLabv3+
model with a WideResNet38 backbone trained by Nvidia
[51]. This model is initialized with publicly available
weights and serves as our baseline model. For testing, we
evaluate the OoD detection performance on two datasets
comprising street scene images and unexpected objects. We
consider images from the LostAndFound test split [42],
containing 1,203 images with annotations of road and small
obstacles in front of the (ego-)car, and Fishyscapes Valida-
tion [6], containing 30 images with annotated anomalous
objects extracted from Pascal VOC [17] which are then
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Figure 3: Relative number of pixels per supercategory in
the COCO OoD proxy. In every epoch during OoD training
297 out of 46,751 images in total are randomly included.

overlayed in Cityscapes images. Both datasets share the
same setup as Cityscapes but include some unknown road
objects.

In order to perform the OoD training as proposed in sec-
tion 3.1, we approximate the out-distribution via images
from the COCO [32] dataset. This dataset contains images
of objects captured in everyday scenes. Besides, we only
consider COCO images with instances that are not included
in Cityscapes (no persons, no cars, no traffic lights, etc.)
and images that have a minimum height and width of at
least 480 pixels. After filtering, there remain 46,751 im-
ages serving as our proxy for Dout. The pixel frequencies
per class is visualized in figure 3. We emphasize that none
of the OoD objects in the test data have been seen during
our OoD training since we use disjoint datasets for training
and testing, that are originally also designed for completely
different applications. The used OoD proxy is a mixture
of true unknown unknowns (pylon, bloated plastic bag, sty-
rofoam, etc.) as well as known unknowns in terms of vi-
sual similarities (e.g. dogs are available in the test data and
share some visual features of cats which are available in
the OoD proxy). Employing this COCO subset as approx-
imation of Dout is motivated by works on OoD detection
[22, 37] where 80 million tiny images [46] serve as proxy
for all possible images.

We finetune the DeepLabv3+ model with loss functions
according to equation (3) and equation (4). As training data
we randomly sample 297 images from our COCO subset
per epoch and mix them into all 2,975 Cityscapes training
images (1:10 ratio of out-distribution to in-distribution im-
ages). We train the model’s weight parameters on random
squared crops of height / width of 480 pixels for 4 epochs
in total and set the (out-distribution) loss weight λ = 0.9
(see equation (2)). As optimizer we use Adam [27] with a
learning rate of 10−5.
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Figure 4: Relative pixel frequencies of (a) LostAndFound
and (b) Fishyscapes OoD pixels, respectively. The den-
sity at different entropy values is displayed for the baseline
model, i.e., before OoD training, and after OoD training.
The inner lines of the violins represent the quartiles.

6. Pixel-wise Evaluation
Based on the softmax probabilities, we compute the

normalized entropy Ē for all pixels in the respective test
dataset. This gives us per-pixel anomaly / OoD scores
which we compare with the ground truth anomaly segmen-
tation. For the sake of clarity, in this section we refer to
in-distribution pixels as samples of the negative class and to
out-distribution pixels as samples of the positive class.

6.1. Separability by means of Area Under Curve

On basis of the violin plots in figure 4, one already no-
tices the beneficial effect of our OoD training over the base-
line in separating in-distribution and out-distribution pix-
els as large masses of the distributions corresponding to the
respective classes can be well separated for a larger range
of entropy thresholds. This effect can be further quanti-
fied with the aid of receiver operating characteristic (ROC)
curves and precision recall (PR) curves. The area under the
curve (AUC) then represents the degree of separability. The
higher the AUC, the better the separability. In addition to
the baseline, we include further scores of standard OoD de-
tection methods. Namely these are: MSP [21], MC dropout
[18], ODIN [31] and Mahalanobis distance [30].

By comparing the ROC curves for LostAndFound (fig-
ure 5 (a) left), we observe that there is a performance gain
over the baseline model when OoD training is applied. The
baseline curve indicates that the corresponding model has
a lower true positive rate across various fixed false posi-
tive rates, i.e., our model after OoD training assigns higher
uncertainty / entropy values to OoD samples which is ben-
eficial for OoD detection. Furthermore, also with respect
to all other tested methods, entropy thresholding after OoD
training shows the best degree of separability measured by
the AUC of ROC curves (AUROC) with a score of 0.98.
We observe the same effects for Fishyscapes (figure 5 (b)
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(a) LostAndFound (left: AUROC, right: AUPRC)
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(b) Fishyscapes (left: AUROC, right: AUPRC)

Figure 5: Detection ability of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, evaluated by means of receiver
operating characteristic curve (a & b left) and precision recall curve (a & b right). The red lines indicate the performance
according to random guessing, i.e., in the PR curves the red line indicate the fraction of OoD pixels.

left). From the Fishyscapes violins, the discrimination per-
formance after OoD training seems already close to perfect.
This is confirmed by the AUROC of 0.99, again outperform-
ing all other tested methods.

As the AUROC essentially measures the overlap of dis-
tributions corresponding to negative and positive samples,
this score does not place more emphasis on one class
over the other in case of class imbalance. As there is a
considerably strong class imbalance in LostAndFound and
Fishyscapes (0.7% and 1.3% OoD pixels), respectively, we
also consider the PR curves, see figure 5 (a) & (b) right.
Thus, true negatives are ignored and the emphasis shifts to
the detection of the positive class (OoD samples). Now the
AUC of PR curves (AUPRC) serves as measure of separa-
bility. For LostAndFound as well as for Fishyscapes OoD
pixels, the model after OoD training is superior not only
over the baseline model but also any other tested method
in terms of precision when we fix recall to any score.
The AUPRC quantifies this performance gain and further
clarifies the improved capability at detecting OoD pixels.
Regarding LostAndFound, the OoD training increases the
AUPRC over the baseline by 0.30 up to a score of 0.76.
Regarding Fishyscapes, the performance gain is even more
significant. We raise the AUC from 0.28 up to 0.81. We
conclude that, measured by AUROC and AUPRC, our OoD
training is highly beneficial for detecting OoD samples.

Moreover, we conducted the same experiments as for the
DeepLabv3+ model [51] also for the weaker DualGCNNet
[48] which is re-trained with λ = 0.25 for 11 epochs in to-
tal. We report all benchmark scores of all tested methods in
table 1. Besides AUPRC, we also provide the false positive
rates at 95% true positive rate (FPR95) and the mean inter-
section over union (mIoU) for the semantic segmentation of
the Cityscapes validation set. For further comparison, we
additionally included scores of methods based on an auto-
encoder [33] and on density estimation [6].

FPR95 ↓ AUPRC ↑ mIoU ↑
Network architecture and OoD score LostAndFound Test Cityscapes Val.

DualGCN [48] + Entropy 0.30 0.36 0.80
Ours: DualGCN + OoD T. + Entropy 0.12 0.51 0.76

PSPNet [50] + Image Resynthesis [33] N/A 0.41 0.80
DeepV3W + Max Softmax [21] 0.32 0.27 0.90
DeepV3W + ODIN [31] 0.45 0.46 0.90
DeepV3W + MC Dropout [18] 0.21 0.55 0.88
DeepV3W + Mahalanobis [30] 0.27 0.48 0.90
Baseline: DeepV3W [51] + Entropy 0.35 0.46 0.90
Ours: DeepV3W + OoD T. + Entropy 0.09 0.76 0.89

Fishyscapes Val. Cityscapes Val.

DualGCN [48] + Entropy 0.46 0.07 0.80
Ours: DualGCN + OoD T. + Entropy 0.21 0.38 0.76

DeepV3W + Max Softmax [21] 0.21 0.17 0.90
DeepV3W + ODIN [31] 0.12 0.39 0.90
DeepV3W + MC Dropout [18] 0.23 0.26 0.88
DeepV3W + Mahalanobis [30] 0.14 0.55 0.90
Baseline: DeepV3W [51] + Entropy 0.18 0.28 0.90
Ours: DeepV3W + OoD T. + Entropy 0.05 0.81 0.89

Fishyscapes Static1 Cityscapes Val.

DeepV3P [10] + Image Resynthesis [33] 0.27 0.30 0.80
DeepV3S [51] + Learned Density [6] 0.17 0.62 0.81
Ours: DeepV3W + OoD T. + Entropy 0.09 0.87 0.89

Table 1: Results for LostAndFound and Fishyscapes.

6.2. Original Task Performance

In order to monitor that the baseline model does not un-
learn its original task due to OoD training, we evaluate the
model’s performance on in-distribution data with OoD pre-
dictions at different entropy thresholds. The original task
is the semantic segmentation of the Cityscapes images and
we evaluate by means of the most commonly used perfor-
mance metric mean Intersection over Union (mIoU, [17]).
Additionally to the Cityscapes class predictions, that is ob-
tained via the standard maximum a posteriori (MAP) deci-
sion principle [8, 38], we consider an extra OoD class pre-

12nd best in public benchmark results: https://fishyscapes.com/results
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Figure 6: Mean intersection over union (mIoU) for the
Cityscapes validation split with OoD predictions at entropy
thresholds t. The dashed red line indicates the performance
loss considered to be “acceptable” (1 percent point).

diction if the softmax entropy is above the given threshold t.
We compute the mIoU for the Cityscapes validation dataset,
but average only over the 19 Cityscapes class IoUs.

The state-of-the-art DeepLabv3+ model [51], which
serves as our baseline throughout our experiments, achieves
an mIoU score of 0.90 on the Cityscapes validation dataset
without OoD predictions (implying t = 1.0). By re-training
the CNN with entropy maximization on OoD inputs, we ob-
serve improved OoD-AUPRC scores. This gain at detect-
ing OoD samples comes with a marginal drop in Cityscapes
validation mIoU down to 0.89. These two mIoU scores re-
main nearly constant (deviations less than 1 percent point)
for the thresholds t = 0.3, . . . , 1.0. In general, the lower
the entropy threshold, the more pixels are predicted to be
OoD. For t = 0.2 this results in a noticeable performance
decrease, 0.05 for the baseline model and 0.03 for the re-
trained model, respectively. As displayed in figure 6 further
lowering the threshold leads to an even more significant sac-
rifice of original performance. Consequently, we consider
in the following entropy thresholds of at least t = 0.3 since
the performance loss seems acceptable, especially in view
of a substantially improved OoD detection capability.

7. Segment-wise Evaluation
In this section we evaluate the meta classification per-

formance on LostAndFound. The main metrics for the
segment-wise evaluation are the numbers of FPs and FNs
with respect to an OoD object prediction, cf. equation (6).
The F1-score F1 = 2TP/(2TP + FP+ FN) ∈ [0, 1] sum-
marizes the error rates into an overall score. As the removal
of FP OoD predictions should not come at cost of a signifi-
cant loss in original performance, see figure 7, we addition-
ally consider the miss rate of road pixels:

ε := 1−
∣∣∣∣∣ ⋃
x∈X

(
Ẑin(x) ∩ Zin(x)

)∣∣∣∣∣
∣∣∣∣∣ ⋃
x∈X

Zin(x)

∣∣∣∣∣
−1

(8)

with pixel locations predicted to be in-distribution in Ẑin

and annotated as in-distribution in Zin. The road miss rate

OoD Training only OoD Training + meta classifier

Figure 7: OoD detection with t = 0.5 after OoD training
and meta classification. The green contours mark the anno-
tations of OoD objects. OoD predictions in the background
according to the ground truth are ignored (this includes e.g.
the garbage bin even though it has been detected).
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Figure 8: Least angle regression for the meta classifier with
OoD training and an entropy threshold of t = 0.3. The 12
features becoming active first are displayed. The suffixes
int and bd refer to the restriction of a metric on the seg-
ment’s interior and boundary, respectively. See section 4
for a description of the metrics.

ϵ measures the fraction of actual road pixels in the whole
dataset which are incorrectly identified.

We compute per-segment metrics as outlined in sec-
tion 4 for OoD object predictions in the LostAndFound
test set and feed them through meta classification models,
which are simple logistic regressions throughout our exper-
iments. The segments are then leave-one-out cross validated
whether they are TP or FP, see equation (7). Via least angle
regression we analyze the metrics having the most impact
on the meta classification. The analysis shows that after
OoD training the entropy metric E(f(x)) has the most im-
pact, see e.g. figure 8 for t = 0.3.

In general, the higher the entropy threshold, the less
OoD objects are predicted and consequently less data is fed
through the linear models. This explains the observation
that meta classifiers identify FPs more reliably the lower t.
Due to our OoD training, the meta classifiers demonstrate
to be more effective, being most superior when t = 0.7.
In our experiments, OoD training in combination with meta
classification at t = 0.3 turns out to be the best OoD detec-
tion approach achieving the best result with only 598 errors
in total and F1 = 0.82 while having a road miss rate of
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Entropy Baseline Baseline OoD Training OoD Training
Threshold + Meta Classifier + Meta Classifier

Ē ≥ t FP ↓ FN ↓ F1 ↑ ε in % ↓ FP ↓ FN ↓ F1 ↑ ε in % ↓ FP ↓ FN ↓ F1 ↑ ε in % ↓ FP ↓ FN ↓ F1 ↑ ε in % ↓
t = 0.10 33,584 77 0.09 7.60 386 314 0.80 3.24 21,967 99 0.12 5.22 245 302 0.83 2.70
t = 0.20 19,456 136 0.13 2.48 454 307 0.78 0.93 17,000 127 0.15 2.14 271 303 0.83 0.18

t = 0.30 7,349 218 0.28 0.38 412 302 0.79 0.09 8,068 191 0.26 0.30 290 308 0.82 0.06
t = 0.40 3,214 377 0.42 0.08 280 435 0.77 0.03 4,035 289 0.39 0.11 251 359 0.81 0.03
t = 0.50 809 662 0.58 0.01 94 686 0.71 < 0.01 1,215 415 0.60 0.04 145 447 0.80 0.02
t = 0.60 158 1,084 0.69 < 0.01 26 1,093 0.50 < 0.01 327 613 0.69 0.02 49 619 0.76 0.02
t = 0.70 10 1,511 0.16 < 0.01 3 1,512 0.16 < 0.01 135 879 0.61 0.01 21 881 0.63 0.01

Table 2: Detection errors for LostAndFound OoD objects at different entropy thresholds t. We consider the road miss rate ε,
see equation (8), as further measure of loss in original performance (for Cityscapes mIoU, see figure 6). Below the horizontal
line, i.e., t ≥ 0.3, we consider the loss in original performance to be acceptable, see section 6.2 for further details.

0 100 200 300 400 500

# FPs OoD segments

250

500

750

1000

1250

1500

#
F

N
s

O
oD

se
g
m

en
ts

Baseline

Baseline + Meta C.

OoD Training

OoD T. + Meta C.

Figure 9: Detection errors of LostAndFound OoD objects.
In this plot, the number of errors when t = 0.7, . . . , 0.3 are
displayed (when in the axes’ range). The pie-chart markers
indicate the road miss rate ε, being entirely red if ε ≥ 0.001.
See also table 2 for exact numbers.

Entropy Baseline + MSP [21] Baseline + Meta C. OoD T. + Meta C.
Threshold t AUROC AUPRC AUROC AUPRC AUROC AUPRC

t = 0.10 0.8509 0.9817 0.9894 0.9993 0.9915 0.9993
t = 0.20 0.6470 0.9119 0.9859 0.9980 0.9898 0.9980

t = 0.30 0.5333 0.7376 0.9742 0.9884 0.9847 0.9953
t = 0.40 0.3847 0.4671 0.9715 0.9740 0.9808 0.9807
t = 0.50 0.4172 0.2286 0.9628 0.9214 0.9665 0.9536
t = 0.60 0.4906 0.1228 0.9291 0.7252 0.9511 0.8405
t = 0.70 0.5932 0.1334 0.9140 0.5283 0.9444 0.7185

Table 3: Meta classification performance on LostAndFound
at different entropy thresholds t. As comparison to the meta
classifier, we include the detection of OoD prediction errors
via the maximum softmax probability (MSP, [21]).

marginally 0.06%, see also figure 9. Compared to the best
baseline at t = 0.6 with F1 = 0.69, we decrease the num-
ber of total errors by 52% from 1,242 down to 598. More
safety-relevantly, at the same time we significantly reduce
the number of overlooked OoD objects by 70% from 1,084
down to 308.

The numbers of detection errors, F1 scores and road miss
rates ε at different entropy thresholds t are summarized in
table 2. The FP OoD removal efficiency is given in table 3.

8. Conclusion & Outlook
In this work, we presented a novel re-training approach

for deep neural networks that unites improved OoD detec-
tion capability and state-of-the-art semantic segmentation
in one model. Up to now, only a small number of prior
works exist for anomaly segmentation on LostAndFound
and Fishyscapes, respectively. We demonstrate that our
OoD training significantly improves the detection efficiency
via softmax entropy thresholding, leading to superior per-
formance over existing OoD detection approaches.

Moreover, we introduced meta classifiers for entropy
based OoD object predictions. By applying lightweight
logistic regressions, we have demonstrated that entire Lo-
stAndFound OoD segments are meta classified reliably.
This observation already holds for the tested CNN in its
plain version. Due to the increased sensitivity of OoD pre-
dictions via entropy maximization, the meta classifiers’ ef-
ficiency is even more pronounced. In view of emerging
safety-critical deep learning applications, the combination
of OoD training and meta classification has the potential to
considerably improve the overall system’s performance.

For future work, we plan to apply OoD training for
the retrieval of OoD objects in order to assess the impor-
tance of their occurrence and whether a new concept is
required to be learned. Our code is publicly available at
https://github.com/robin-chan/meta-ood.
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[24] Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger,
et al. Computer vision for autonomous vehicles: Problems,
datasets and state of the art. Foundations and Trends® in
Computer Graphics and Vision, 12(1–3):1–308, 2020. 1, 3

[25] Nicolas Jourdan, Eike Rehder, and Uwe Franke. Identifica-
tion of uncertainty in artificial neural networks. In Proceed-
ings of the 13th Uni-DAS e.V. Workshop Fahrerassistenz und
automatisiertes Fahren, July 2020. 2, 3

[26] Alex Kendall and Yarin Gal. What Uncertainties Do We
Need in Bayesian Deep Learning for Computer Vision?

5136



In Advances in Neural Information Processing Systems 30,
pages 5574–5584. Curran Associates, Inc., 2017. 2

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 5

[28] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In Advances in Neural In-
formation Processing Systems 30, pages 6402–6413. Curran
Associates, Inc., 2017. 2

[29] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin.
Training confidence-calibrated classifiers for detecting out-
of-distribution samples. In International Conference on
Learning Representations, 2018. 2

[30] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo
Shin. A Simple Unified Framework for Detecting Out-of-
Distribution Samples and Adversarial Attacks. In Advances
in Neural Information Processing Systems, volume 31, pages
7167–7177. Curran Associates, Inc., 2018. 5, 6

[31] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the re-
liability of out-of-distribution image detection in neural net-
works. In International Conference on Learning Represen-
tations, 2018. 2, 5, 6

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. Mi-
crosoft COCO: Common Objects in Context. In Computer
Vision – ECCV 2014, pages 740–755. Springer International
Publishing, 2014. 1, 2, 5

[33] Krzysztof Lis, Krishna Nakka, Pascal Fua, and Mathieu
Salzmann. Detecting the unexpected via image resynthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019. 2, 3, 6

[34] Kira Maag, Matthias Rottmann, and Hanno Gottschalk.
Time-dynamic estimates of the reliability of deep seman-
tic segmentation networks. In IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI), November
2020. 2, 4, 11

[35] David J. C. MacKay. A practical bayesian framework for
backpropagation networks. Neural Computation, 4(3):448–
472, 1992. 2

[36] A. Mehrtash, W. M. Wells, C. M. Tempany, P. Abolmae-
sumi, and T. Kapur. Confidence calibration and predictive
uncertainty estimation for deep medical image segmentation.
IEEE Transactions on Medical Imaging, pages 1–1, 2020. 2

[37] Alexander Meinke and Matthias Hein. Towards neural net-
works that provably know when they don’t know. In Inter-
national Conference on Learning Representations, 2020. 2,
5

[38] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-
walkar. Foundations of Machine Learning. The MIT Press,
2012. 6

[39] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan
Gorur, and Balaji Lakshminarayanan. Do deep generative
models know what they don’t know? In International Con-
ference on Learning Representations, 2019. 2

[40] Radford M Neal. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media, 2012. 2

[41] Philipp Oberdiek, Matthias Rottmann, and Gernot A. Fink.
Detection and retrieval of out-of-distribution objects in se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020. 2

[42] Peter Pinggera, Sebastian Ramos, Stefan Gehrig, Uwe
Franke, Carsten Rother, and Rudolf Mester. Lost and
found: detecting small road hazards for self-driving vehicles.
In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016. 2, 4

[43] Jie Ren, Peter J. Liu, Emily Fertig, et al. Likelihood ratios for
out-of-distribution detection. In Advances in Neural Infor-
mation Processing Systems 32, pages 14707–14718. Curran
Associates, Inc., 2019. 2

[44] Matthias Rottmann, Pascal Colling, Thomas Paul Hack, et al.
Prediction error meta classification in semantic segmenta-
tion: Detection via aggregated dispersion measures of soft-
max probabilities. In 2020 IEEE International Joint Confer-
ence on Neural Networks (IJCNN), 2020. 2, 4, 11

[45] Matthias Rottmann and Marius Schubert. Uncertainty mea-
sures and prediction quality rating for the semantic segmen-
tation of nested multi resolution street scene images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2019. 2,
4, 11

[46] Antonio Torralba, Rob Fergus, and William T. Freeman. 80
million tiny images: A large data set for nonparametric ob-
ject and scene recognition. 30(11):1958–1970, Nov. 2008.
5

[47] Jingdong Wang, Ke Sun, Tianheng Cheng, et al. Deep
high-resolution representation learning for visual recogni-
tion. IEEE transactions on pattern analysis and machine
intelligence, PP, April 2020. 1

[48] Li Zhang, Xiangtai Li, Anurag Arnab, Kuiyuan Yang, Yun-
hai Tong, and Philip H. S. Torr. Dual graph convolutional
network for semantic segmentation. In Proceedings of the
British Machine Vision Conference (BMVC), 2019. 6

[49] Xiang Zhang and Yann LeCun. Universum prescription:
Regularization using unlabeled data. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017. 1, 2, 14

[50] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 6

[51] Yi Zhu, Karan Sapra, Fitsum A. Reda, et al. Improving se-
mantic segmentation via video propagation and label relax-
ation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019. 1,
4, 6, 7

[52] Aleksandar Zlateski, Ronnachai Jaroensri, Prafull Sharma,
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