
Building-GAN: Graph-Conditioned Architectural Volumetric Design Generation

Kai-Hung Chang*1 Chin-Yi Cheng*1 Jieliang Luo1 Shingo Murata2 Mehdi Nourbakhsh1 Yoshito Tsuji2

1Autodesk Research, United States , 2Obayashi AI Design Lab, Japan

Abstract

Volumetric design is the first and critical step for pro-
fessional building design, where architects not only depict
the rough 3D geometry of the building but also specify the
programs to form a 2D layout on each floor. Though 2D
layout generation for a single story has been widely studied,
there is no developed method for multi-story buildings. This
paper focuses on volumetric design generation conditioned
on an input program graph. Instead of outputting dense 3D
voxels, we propose a new 3D representation named voxel
graph that is both compact and expressive for building ge-
ometries. Our generator is a cross-modal graph neural
network that uses a pointer mechanism to connect the in-
put program graph and the output voxel graph, and the
whole pipeline is trained using the adversarial framework.
The generated designs are evaluated qualitatively by a user
study and quantitatively using three metrics: quality, diver-
sity, and connectivity accuracy. We show that our model
generates realistic 3D volumetric designs and outperforms
previous methods and baselines.

1. Introduction
Volumetric design (also called massing design or

schematic design) is the first step when an architect designs
a building on a given land site. Based on the local building
codes applied to the site, the building can only be designed
within a valid design space, which is usually not a regular
cuboid. For instance, the daylight restrictions prevent the
building from casting too much shadow over its neighboring
building by drawing a slant line as upper bound. Within the
valid design space, a volumetric design not only depicts the
volumetric 3D shape of the building, but also produces 2D
program layouts for each story. An example is illustrated in
Figure 2. The architect then uses the finalized volumetric
design to gradually develop all the details for construction,
including façade design, interior design, structure systems,
etc. While volumetric design is the foundation of the design

*Contributed equally. chin-yi.cheng@autodesk.com

Figure 1. Our model takes in a program graph (also called bubble
diagram) and a design space in voxel graph representation, and
outputs a variety of volumetric designs. Professional architects
can convert the output into detailed building design efficiently.

and construction process, making a good volumetric design
usually requires a significant amount of time and effort. An
efficient pipeline to generate volumetric design will bring a
great impact on the architecture and construction industry.

Generating realistic 2D room layouts has been a pop-
ular topic for many years. Existing methods include
optimization-based [15, 1] and learning-based [30, 18, 12,
5] approaches. Recently, researchers start looking at how to
integrate program graphs into layout generation tasks using
graph neural networks (GNNs) [18, 12, 5]. Program graph,
also called bubble diagram, is a graph that illustrates the
relations between programs or rooms and is a common rep-
resentation used by professional architects to explore design
ideas. Similar to House-GAN [18], this paper also focuses
on the graph-conditioned layout generation task. The task

11956

Figure 2. Left: an example of valid design space. Right: an exam-
ple of volumetric design within the valid design space

requires the output layouts to be compatible to the condi-
tion input program graphs. However, there is no literature
on extending the task to 3D. Our goal is to produce multiple
layouts, which stack up and form a volumetric design for a
multi-story building.

Though it might seem straight-forward to transfer previ-
ous 2D approaches to 3D, there are several challenges and
limitations when applying previous approaches:

• Compared to the 2D counterparts, 3D program graphs
are not only larger in size, but also more complex
with additional inter-story relations. The output design
space also increases by the number of stories.

• The raw rasterized output used in previous works can-
not produce clean corners and edges due to the fine dis-
cretization of pixels. For instance, boundaries are usu-
ally jagged, rooms can be poorly aligned and overlap-
ping each other, there might be small dents or bulges
in some rooms, etc.

• Volumetric images (usually defined as 3D regular grids
with uniformly discretized voxels) have the closest
structural similarity to rectangular buildings than other
3D representations, such as point clouds or meshes.
However, it is not computational and memory efficient
to use this dense representation for polygonal rooms.
Moreover, there are voxels within the regular grid but
not in the irregular valid design space that take un-
needed memory and computation.

To overcome these challenges and limitations, we pro-
pose voxel graph, a novel 3D representation that can en-
code irregular voxel grids with non-uniform space partition-
ing. To bridge between the input program graph and the
output voxel graph, we design a pointer-based cross-modal
modules in our generative adversarial graph network. The
pointer module can be used not only for message passing,
but also as a decoder to output probability over a dynamic
set of valid programs.

We also work with professional architects to create a
synthetic dataset that contains 120,000 volumetric designs
based on realistic building requirements. We evaluate our
model qualitatively and quantitatively, and it outperforms
existing method by a large margin in all the three metrics:
quality, diversity, and connectivity accuracy.

In summary, our main contributions are: 1) a new 3D
representation, voxel graph; 2) a graph-conditioned gener-
ative adversarial network (GAN) using GNN and pointer-
based cross-modal module; 3) an automated pipeline to gen-
erate valid volumetric designs through simple interaction;
and 4) a synthetic dataset that contains 120,000 volumetric
design and their corresponding program graphs. We will
share the code, model, and dataset.

2. Related Work
2.1. Voxel Representations

Regular grid representation using voxels, such as occu-
pancy grids, has been studied since the 3D extension of 2D
convolution. To achieve 3D shape synthesis, researchers
build encoder-decoder models, such as deep belief network
[31], variational auto-encoder (VAE) [13], generative ad-
versarial network (GAN) [29, 23], and energy-based model
[32]. However, due to the dense representation for sparse
occupancy, voxel representation is notorious for its cubic
computational cost and poor scalability to higher resolu-
tions and larger sizes. Existing methods to mitigate the
problem include sparse convolution [8, 7, 4] and octree rep-
resentation [21, 27, 28].

Our proposed voxel graph combines voxel-based and
graph-based representations by encoding voxels into graph
nodes. Similar idea was proposed in Point-Voxel CNN [14].
To enhance the local modeling capability, it has a high-
resolution point-based branch as well as a low-resolution
voxel-based branch for point cloud encoding. Another fea-
ture of our voxel graph is the ability to support non-uniform
space partition. [16, 6, 24, 11] reconstruct 3D models by
selecting space partition planes extracted from point clouds
or images. BSP-Net [3] learns to generate compact meshes
using binary space partitioning. NeuralSim and NeuralSizer
[2] also use graphs to represent structure grids (i.e., columns
and beams) of buildings instead of dense voxels.

2.2. Graph-conditioned Layout Generation

To the best of our knowledge, there is no prior works
on learning-based 3D layout generation. Alternatively, we
review several work on graph-conditioned 2D layout gener-
ation. Graph2Plan [12] generates bounding boxes for each
room, and refines box locations with a cascaded refinement
network. The input graphs are retrieved based on user con-
straints and outline similarity. The user can get various lay-
outs by feeding different graphs, but the model itself can-

11957

Figure 3. Left: the hierarchical program graph. Right: the irregular grid with non-uniform voxel size and the equivalent voxel graph.

not produce variation. House-GAN [18] proposes a graph-
conditioned GAN, where the generator and discriminator
are built upon relational architecture - ConvMPN [33]. Xin-
han Di et al. [5] uses a similar adversarial approach on in-
terior design with doors, windows, and furniture. Layout-
GMN [20] learns to predict structural similarity between
two layouts with an attention-based graph matching net-
work. Wamiq Para et al. [19] explores the idea of generative
modeling using constraint generation for layouts.

3. Representation and Data Collection
The goal of this paper is to generate 3D volumetric de-

signs given a program graph and a valid design space. The
program graph illustrates the intra-story and inter-story re-
lations between programs. Besides program graph and valid
design space, there are other design conditions that are con-
sidered by architects in industry practice. Floor area ratio
(FAR, derived by dividing the total area of the building by
the total area of the parcel), should not exceed a regulation
limit. In addition, target program ratio (TPR) defines the
approximate ratio between programs. For example, office :
corridor : restroom : elevator : stairs = 50 : 20 : 15 : 5 : 10.
Both TPR and FAR are encoded into the program graph as
described in Section 3.2 and are used as the model input.

Another input is a valid design space, which may be ir-
regular due to building codes. The design space can be
further partitioned freely based on architect’s decisions or
statistical heuristics. In practice, before starting the design
process, architects usually partition the space by consider-
ing construction standards, structure systems, and conven-
tional modules. Inspired by this partitioning process, we
invent the representation, voxel graph, as described in Sec-
tion 3.3.

3.1. Data Collection

Since there is no publicly available dataset for volu-
metric designs from real buildings, we create a synthetic
dataset with 120,000 volumetric designs for commercial
buildings using parametric models. The site of each de-

sign is bounded within 40×40×50m3, where different site
conditions are randomly generated. The heuristics behind
the parametric models are based on the rules and knowl-
edge provided by professional architects. Although these
parametric models are able to explore possible volumet-
ric designs, they are not capable of fitting the constraints.
Therefore, we generate the designs first and then compute
the voxel graph, program graph, FAR, and TPR for each
design. Please refer to the supplementary for more details
and visualization of the synthetic dataset. The dataset can
also be used to explore other learning-based design tools or
relevant tasks in computer vision and graphics.

3.2. Hierarchical Program Graph

Given a building datum, we first construct 2D program
graphs for each story. Each program node feature includes
the program type and the story level. Here, we consider
6 program types: lobby/corridor, restroom, stairs, eleva-
tor, office, and mechanical room. A program edge shows
the two programs are connected by a door or opening. To
construct the 3D program graph, we stack all 2D program
graphs and chain the stairs and elevators, since they are the
only paths for moving vertically. In practice, the 3D pro-
gram graph also represents the circulation of the building.

Recall that there are two other design condition inputs:
FAR and TPR. The FAR limit is stored as a graph-level fea-
ture. As for TPR, we add one hierarchy on top of the 3D
program graph. We create one master program node for
each program type and connect them to all program nodes
of the same type. The edges allow the master node to al-
locate different area sizes on each program node through
message passing. Please refer to left of Figure 3.

3.3. Voxel Graph

To overcome the challenges and limitations listed in Sec-
tion 1, we invent a 3D representation called voxel graph.
Each node represents a voxel and the voxel information (co-
ordinate and dimension) is stored as node features. Differ-
ent from volumetric images with voxel grids, voxel graph

11958

Figure 4. An overview of Building-GAN. Top: the Program GNN, Voxel GNN, and Cross-Modal Pointer Module for the generator. Bottom:
the discriminator with the building and story level decoders.

does not assume regular grids and consumes memory only
for occupied voxels. Moreover, it allows non-uniform space
partitioning, which avoids over-discretization when using
the uniform voxel size.

Theoretically, voxel nodes can encode arbitrary 3D prim-
itives, but in this paper, only cuboids with varying sizes are
used to build up the approximated valid design space. When
parsing the data, the space partition is defined by the projec-
tion of all 2D layouts. In real-world practice, walls tend to
align across different stories for structural stability or con-
struction considerations, which leads to a reduced amount
of voxels in the space partition. Next, we turn the voxels
into graph nodes and store the voxel information (location
and dimension) as node features and program type as node
labels. Node mask is also stored in case of nodes that are
left unused and does not have any program type. Lastly, a
voxel edge connects two voxel nodes if they share a face.
The final voxel graph should look like an irregular cubic
lattice as illustrated in the right of Figure 3.

4. Method
We formulate the framework as a graph-conditioned

GAN. The generator is composed by two GNNs for the pro-
gram graph and voxel graph, connected by a cross-modal
pointer module. The discriminator is composed by a GNN
with two decoders to evaluate design from both building
and story level. An overview of our model is illustrated in
Figure 4.

4.1. Generator

4.1.1 Program GNN

Our generator starts with a program graph neural network
to encode the input program graph. Denote random pro-
gram noise as zp, FAR limit as F , program node feature i
as xi, neighbor of node i as Ne(i), node cluster of i’s pro-
gram type as Cl(i), target program ratio of i’s program type

as rCl(i), multi-layer perceptron as MLP , mean pooling as
Mean, and concatenation operator as [·, ·]. We first map
the node feature to the embedding space (1), then compute
message passing T times. In each message passing step, we
compute the message from neighboring nodes (2) and mean
pool all nodes with the same program type as the master
node embedding (3). Lastly, we update the node embed-
dings with residual learning to avoid gradient vanishing (4).
After T = 5 steps of message passing, the final embedding
of program node i is denoted as xTi .

x0i =MLP p
enc([xi, z

p
i , F]) (1)

mt
i =

1

|Ne(i)|
∑

j∈Ne(i)

MLP p
message([x

t
i, x

t
j]) (2)

cti =Meanj∈Cl(i)({xtj}) (3)

xt+1
i = xti +MLP p

update([x
t
i,m

t
i, rCl(i)c

t
i, F]) (4)

4.1.2 Voxel GNN

The input voxel features vk and voxel noise zvk are first en-
coded by the voxel GNN encoder. To better encode the story
index, we choose positional encoding (PE) as proposed in
[25] and add it to the processed embedding (5). Instead
of appending the absolute coordinates in voxel features, we
use the relative displacements pk − pl in message computa-
tion (6). Voxel node embeddings are updated with residual
learning (7).

v0k =MLP v
enc([vk, z

v
k]) + PE(storyk) (5)

ntk =
∑

l∈Ne(k)

MLP v
message([v

t
k, v

t
l , pk − pl]) (6)

vtk = vtk +MLP v
update(v

t
k, n

t
k) (7)

11959

4.1.3 Pointer-based Cross-Modal Module

After processing the program graph with the program GNN,
the final embedding of program nodes can be viewed as the
virtual ”blueprint” of a design. Therefore, it is necessary to
”look” at this blueprint to generate the output. To bridge
between the program graph and the voxel graph, we intro-
duce a pointer-based cross-modal module. Inspired by the
application [22, 17] of the Pointer Network [26] in natu-
ral language processing and mesh generation tasks, we con-
struct a pointer module to achieve message passing between
the voxel nodes and all the program nodes on the same
story. We cannot use a fixed length output to model program
type distribution since 1) different stories can have different
numbers of program nodes to choose from, for example,
one floor has five rooms and another one has seven rooms;
and 2) if there are two program nodes with the same pro-
gram type, we want to differentiate between the two nodes,
such as two restrooms in the same floor.

The pointer module returns three terms: maskk, attk,
and vt+1

k (8). maskk is used as a soft prediction whether
the voxel node k is used or not (9). If it is not used, it
is left unused and has no program type. Otherwise, attk
is the attention distribution over the set of program nodes
on the same floor (10, 11). An updated embedding vt+1

k is
computed by the weighted sum of the program embeddings
xTi multiplied by the soft prediction maskk with residual
learning (12).

maskk, attk, v
t+1
k = Pointer(vtk, {xTi }) (8)

maskk = σ(MLP (vtk)) (9)

ek,i = θT tanh(Wxx
T
i +Wvv

t
k) (10)

attk = gumbel softmax(ek) (11)

vt+1
k = vtk +maskk

∑
i

attk,ix
T
i (12)

We experiment different ways to integrate the pointer
module. It can be placed after every several message pass-
ing steps in voxel GNN. Our baseline model uses 12 steps
of message passing and call the pointer module once every
2 steps. Please refer to the supplementary for the complete
model and algorithm. Conceptually, these pointer modules
should gradually improve the design. Note that the output
attk indicates which program node is associated to the pro-
gram type of the voxel node, instead of merely the program
type prediction.

4.2. Discriminator

Our discriminator is trained to distinguish if a given de-
sign is generated by the generator or sampled from the
dataset. Therefore, we take a similar architecture as voxel
GNN, but without using the pointer modules. The program

type predictions are concatenated to the encoded voxel node
features. After T = 12 message passing steps, two sep-
arate decoders are used. A graph-level max-pooling de-
coder evaluates the design as a whole while a story-level
max-pooling decoder evaluates the per-story layouts indi-
vidually.

oglobal =MLP dec
global(

∑
k

vTk) (13)

ostory =Meanstory s(MLP dec
story(

∑
k∈s

vTk)) (14)

4.3. Loss

We use the WGAN-GP [9] loss with gradient penalty set
to 10. The two decoder outputs from the discriminator are
equally weighted. The gradient penalty is computed by lin-
early interpolating the cross-modal attention between real
data and generated output, while fixing the voxel graph con-
nectivity.

4.4. Evaluation Metric

We evaluate the generated design in terms of quality, di-
versity, and connectivity accuracy. The quality and diversity
of the output design is evaluated with the Fréchet Inception
Distance (FID) score [10]. FID score has demonstrated high
correlation to human judgement and has been widely used
in many 2D and 3D studies. Our reference model is based
on a larger version of 3D Descriptor Net [32]. We replace all
convolution layers with 6 residual blocks due to the higher
complexity of our data. Then we flatten the embedding to a
128-dimension tensor using convolution operation and pass
it to a dense layer for loss computation. The FID score is
measured over 10,000 samples. We also run a user study
with architects to measure the quality in Section 5.5.

The connectivity accuracy (Con.) is measured by the
number of the program (room) connections observed from
both the generated design and in the program graph, divided
by the amount of all edges in the program graph. Note that
only when two rooms are connected in the program graph
but disconnected in the voxel graph, it is considered as in-
accurate, since there is no shared wall to put a door. It is
accurate when two rooms are connected in voxel graph but
disconnected in program graph, because designers can de-
cide not to put a door on the shared walls.

For more details about model implementation, hyper pa-
rameters, training environment, and user study, please refer
to the supplementary.

5. Experiments
5.1. Baseline Comparison and Visualization

We compare our model to a slightly modified version of
House-GAN [18]. A major difference between our model

11960

Figure 5. For each program graph, volumetric designs are generated by our model and by House-GAN [18].

and House-GAN is that House-GAN directly generates lay-
out masks of size 40 × 40 on the nodes of the program
graph. Since House-GAN does not use voxel graph repre-
sentation, it assumes that the valid design space is a regular
grid. House-GAN discriminator places the generated masks
back to the program nodes as features and determines if the
program graph is valid. To extend the House-GAN to 3D,
we append the story index of each program node to its fea-
ture.

Figure 5 shows example designs from ground truth, our
model, and House-GAN. Our model shows capability of
generating designs that have realistic 3D shapes and clean
facade surfaces. We also observe that the number of jagged
boundaries are reduced due to the usage of voxel graph
representation. In addition, the sliced layouts of individ-
ual stories are reasonable. For instance, the functional pro-
grams such as elevators, stairs, and restrooms are arranged
as clusters and connected by corridors. Last but not least,
the functional programs are nicely aligned in the vertical
direction. In contrast, though House-GAN seems to gener-
ate reasonable layouts story-by-story, they don’t align well
when stacked vertically. Quantitative results are presented
in Table 1. Our model outperforms House-GAN in both
FID and connectivity accuracy.

In Table 1, we also compare models with different hyper-
parameter set-ups. First, we fix the frequency of applying
the pointer module to 2 and experiment different numbers
of message passing layers in voxel GNN. The result shows
that using 12 voxel layers yields best performance in both

Method Parameter FID Con.
House-GAN - 17.6003 0.403
Ours - 0.0845 0.569
House-GAN (sliced) - 52.256 0.612
Ours (sliced) - 17.479 0.536

Voxel Layer
(Pointer Frequency
= every 2 steps)

4 1.0463 0.432
6 0.4139 0.501
8 0.2365 0.497

10 0.0997 0.534
12 0.0845 0.569

Pointer Frequency
(Voxel Layer = 12)

first + last 3.3818 0.578
every 6 steps 0.2179 0.547
every 3 steps 0.1473 0.541
every 2 steps 0.0845 0.569

Table 1. Quantitative evaluation using FID score and connectiv-
ity accuracy. We compare our baseline model to House-GAN and
experiment baseline models with different numbers of voxel layer
and pointer frequencies. We also evaluate sliced layouts from gen-
erated designs of both models.

FID and connectivity accuracy. This is not surprising: using
more voxel layers allows computing longer-range relations
between voxel nodes, which is especially critical for achiev-
ing vertical alignment in taller buildings. Next, we fix the
number of voxel layer and evaluate the impact of different
pointer frequency. The model (first + last) which uses the
pointer module only before and after message passing fails

11961

Figure 6. Design variations generated by fixing the program graph while changing the voxel graph and noise.

to converge. We also run the pointer module every 2, 3,
6 message passing steps in voxel GNN. Using the pointer
module every 2 message passing steps yields the best per-
formance in both FID and connectivity accuracy. Review-
ing the program graph multiple times during the message
passing process might ensure that the information from the
program graph is always considered and provide shorter
paths for gradient back propagation.

5.2. Variation Study

In Figure 6, we visualize examples generated by fixing
the program graph while changing the space partition in the
voxel graph and noise. The model is able to generate differ-
ent designs with different patterns, orientations, etc. based
on the given noise and design space partition.

5.3. Ablation Study

We run ablation studies on discriminator, positional en-
coding, and relative position. The results are summarized
in Table 2. We found that it is necessary to use both story
discriminator and building discriminator as using only one
leads to inferior performance. Though having message-
passing in the voxel GNN, story discriminator has difficulty
evaluating inter-story relations and the overall 3D geome-
try. The better connectivity accuracy with * actually results
from noisy low-quality outputs where the layouts are frag-
mented. Building discriminator proves to play a more cru-
cial role in learning the task, but adding story discriminator
significantly improves the output design quality. We also
show that using positional encoding (PE) to encode story
indices performs better than directly using it (i.e. 1, 2 . . .).
Lastly, training without relative position (RP) ends up gen-
erating low quality designs. It shows that relative position
is an indispensable component for our model, since it can
capture the direct spatial relationships between connected
voxels.

Ablation Study FID Con.
Ours 0.0845 0.569
Story discriminator only 6.8061 *0.777
Building discriminator only 1.0464 0.459
No PE 0.1512 0.507
No PE + No RP 0.8333 0.489

Table 2. Ablation study results on discriminator, positional encod-
ing (PE), and relative position (RP). * The higher accuracy here is
caused by fragmented low-quality outputs.

5.4. Intermediate Results

In voxel GNN, we run 12 message passing layers and
use the pointer module every 2 layers. Since every mask
and attention computed by the pointer modules represents a
design solution, we are curious to see the ”design process”
of our model by visualizing the intermediate designs dur-
ing inference. As shown in Figure 7, before the voxel mes-
sage passing, the first attention initializes a seemly random
design, trying to allocate only the lobby/corridor type. It
makes sense since the decision is only based on the program
graph and individual voxel nodes. Interestingly, starting
from the second attention, the model chooses to start over
and gradually grow the voxels. This behavior aligns with
the message passing process since the information from a
far distance will flow in with more passing steps. The model
also tries to refine the design by overwriting some of the de-
cisions made in previous steps. For example, in the first row
of Figure 7, at layer 6, the isolated restroom (in magenta
color) is eliminated at layer 8.

5.5. User Study

To further examine the quality, we conduct user study
with 20 professional architects. Each architect is given 48
design pairs that cover all the combinations of the ground
truth, House-GAN, and our model. Given a pair of designs,

11962

Figure 7. Visualization of designs generated by all pointer modules for every 2 message passing steps in Voxel GNN during inference.

Figure 8. The pairwise quality scores between ground truth (G.T.),
our model, and House-GAN(H.G.).

the better design gets 1 point while the worse one gets -1
point. If it’s a tie, both get 0 scores. The average score of
a method should range between 1 and -1. The results are
shown in Figure 8 and it should be read row-by-row. Our
model and ground truth defeats House-GAN with scores
0.85 and 0.92 respectively. The ground truth score is only
0.37 when compared to our model, which means in many
cases architects cannot clearly tell the difference between
the ground truth and ours.

5.6. Case Study

To understand if our pipeline can be useful to the profes-
sional building design process, we invite an architect to cre-
ate the volumetric design using our pipeline and then com-
plete a detailed building design. As shown in the Figure 1,
the results are realistic and aesthetically appealing. The user
does feel the pipeline largely increased the efficiency of the
design process. For the creation process and detailed feed-
back, please refer to the supplementary.

5.7. Failure Case

We observe three types of common flaws in the volumet-
ric designs generated from our model: 1) missing nodes; 2)
missing edges; and 3) disconnected rooms, as visualized in
Figure 9. One potential cause of these flaws is that our dis-
criminator only considers the program type on each voxel
node instead of the attention between voxel nodes and pro-

Figure 9. Visualization of the three common flaws in generated
volumetric designs. Left: the input program graph. Right: a floor
plan in the generated volumetric design given this program graph

gram graph. Therefore, the discriminator lacks information
regarding the specific program nodes which the voxel nodes
point to. Some of our failed attempts to resolve these flaws
are introduced in the supplementary material and we leave
the solution for future work.

6. Conclusion

In this paper, we try to provide a novel pipeline,
Building-GAN, to improve the efficiency on a realistic pro-
fessional task, volumetric design in the architectural and
construction industry. We invent a 3D representation, voxel
graph, to represent building designs, and design a genera-
tor with a cross-modal pointer module to connect the pro-
gram graph and voxel graph. Our extensive evaluations,
including user testing and user study, show that architects
can create numerous valid and valuable designs by interact-
ing with Building-GAN. Future works include enforcing the
constraints, such as connectivity, TPR, and FAR, as well as
extending the voxel graph for non-cuboid geometries. We
will release our code, model, and dataset, and invite the re-
search community to work together on design-related prob-
lems in the industries.

11963

References
[1] Fan Bao, Dong-Ming Yan, Niloy J. Mitra, and Peter Wonka.

Generating and exploring good building layouts. ACM
Transactions on Graphics, 32(4), 2013.

[2] Kai-Hung Chang and Chin-Yi Cheng. Learning to simulate
and design for structural engineering. In Proceedings of the
37th International Conference on Machine Learning, pages
1426–1436, 2020.

[3] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 45–54, 2020.

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084,
2019.

[5] Xinhan Di, Pengqian Yu, Danfeng Yang, Hong Zhu,
Changyu Sun, and YinDong Liu. End-to-end generative
floor-plan and layout with attributes and relation graph.
arXiv preprint arXiv:2012.08514, 2020.

[6] Hao Fang and Florent Lafarge. Connect-and-slice: an hybrid
approach for reconstructing 3d objects. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13490–13498, 2020.

[7] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submani-
fold sparse convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 9224–9232, 2018.

[8] Benjamin Graham and Laurens van der Maaten. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In Advances in neural information pro-
cessing systems, pages 5767–5777, 2017.

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626–6637, 2017.

[11] Henry Howard-Jenkins, Shuda Li, and V. Prisacariu. Think-
ing outside the box: Generation of unconstrained 3d room
layouts. In ACCV, 2018.

[12] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver van Kaick,
Hao Zhang, and Hui Huang. Graph2plan: Learning
floorplan generation from layout graphs. arXiv preprint
arXiv:2004.13204, 2020.

[13] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[14] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. Advances in Neural
Information Processing Systems, 32:965–975, 2019.

[15] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-
generated residential building layouts. In ACM SIGGRAPH
Asia 2010 papers, pages 1–12. 2010.

[16] Liangliang Nan and Peter Wonka. Polyfit: Polygonal surface
reconstruction from point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2353–
2361, 2017.

[17] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International Conference on Machine Learn-
ing, pages 7220–7229. PMLR, 2020.

[18] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg
Mori, and Yasutaka Furukawa. House-gan: Relational gener-
ative adversarial networks for graph-constrained house lay-
out generation. pages 162–177, 2020.

[19] Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas Guibas,
and Peter Wonka. Generative layout modeling using con-
straint graphs. arXiv preprint arXiv:2011.13417, 2020.

[20] Akshay Gadi Patil, Manyi Li, Matthew Fisher, Mano-
lis Savva, and Hao Zhang. Layoutgmn: Neural graph
matching for structural layout similarity. arXiv preprint
arXiv:2012.06547, 2020.

[21] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3577–3586, 2017.

[22] Abigail See, Peter J Liu, and Christopher D Manning. Get to
the point: Summarization with pointer-generator networks.
arXiv preprint arXiv:1704.04368, 2017.

[23] Edward Smith and David Meger. Improved adversarial sys-
tems for 3d object generation and reconstruction. arXiv
preprint arXiv:1707.09557, 2017.

[24] Sinisa Stekovic, F. Fraundorfer, and V. Lepetit. General 3d
room layout from a single view by render-and-compare. In
ECCV, 2020.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[26] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. Advances in neural information processing sys-
tems, 28:2692–2700, 2015.

[27] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neu-
ral networks for 3d shape analysis. ACM Transactions on
Graphics (TOG), 36(4):1–11, 2017.

[28] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.
Adaptive o-cnn: A patch-based deep representation of 3d
shapes. ACM Transactions on Graphics (TOG), 37(6):1–11,
2018.

[29] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in neural information processing systems, 29:82–90,
2016.

[30] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-
Hao Qi, and Ligang Liu. Data-driven interior plan genera-
tion for residential buildings. ACM Transactions on Graph-
ics (TOG), 38(6):1–12, 2019.

11964

[31] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.

[32] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,
Song-Chun Zhu, and Ying Nian Wu. Learning descriptor
networks for 3d shape synthesis and analysis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 8629–8638, 2018.

[33] Fuyang Zhang, Nelson Nauata, and Yasutaka Furukawa.
Conv-mpn: Convolutional message passing neural network
for structured outdoor architecture reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2798–2807, 2020.

11965

