
ROBUSTNAV: Towards Benchmarking Robustness in Embodied Navigation

Prithvijit Chattopadhyay1,2* Judy Hoffman1 Roozbeh Mottaghi2,3 Aniruddha Kembhavi2,3

1Georgia Tech 2PRIOR @ Allen Institute of AI 3University of Washington

{prithvijit3,judy}@gatech.edu {roozbehm,anik}@allenai.org
prior.allenai.org/projects/robustnav

Abstract

As an attempt towards assessing the robustness of em-
bodied navigation agents, we propose ROBUSTNAV, a
framework to quantify the performance of embodied nav-
igation agents when exposed to a wide variety of visual
– affecting RGB inputs – and dynamics – affecting transi-
tion dynamics – corruptions. Most recent efforts in visual
navigation have typically focused on generalizing to novel
target environments with similar appearance and dynam-
ics characteristics. With ROBUSTNAV, we find that some
standard embodied navigation agents significantly under-
perform (or fail) in the presence of visual or dynamics cor-
ruptions. We systematically analyze the kind of idiosyn-
crasies that emerge in the behavior of such agents when
operating under corruptions. Finally, for visual corrup-
tions in ROBUSTNAV, we show that while standard tech-
niques to improve robustness such as data-augmentation
and self-supervised adaptation offer some zero-shot resis-
tance and improvements in navigation performance, there
is still a long way to go in terms of recovering lost perfor-
mance relative to clean “non-corrupt” settings, warranting
more research in this direction. Our code is available at
https://github.com/allenai/robustnav.

1. Introduction
A longstanding goal of the artificial intelligence com-

munity has been to develop algorithms for embodied agents
that are capable of reasoning about rich perceptual infor-
mation and thereby accomplishing tasks by navigating in
and interacting with their environments. In addition to be-
ing able to exhibit these capabilities, it is equally important
that such embodied agents are able to do so in a robust and
generalizable manner.

A major challenge in Embodied AI is to ensure that
agents can generalize to environments with different ap-
pearance statistics and motion dynamics than the environ-
ment used for training those agents. For instance, an agent

*Part of the work done when PC was a research intern at AI2.

Agent Operating in
a RoboTHOR Scene Clean Frame Camera Crack

Visual Corruption

Agent — LoCoBot

Dynamics Corruption

Ideal Corrupted

MOVE_AHEAD
MOVE_AHEAD

(with Drift)

(a)

(b)

(c)

Figure 1. ROBUSTNAV. (a) A navigation agent pretrained in clean
environments is asked to navigate to targets in unseen environ-
ments in the presence of (b) visual and (c) dynamics based corrup-
tions. Visual corruptions (ex. camera crack) affect the agent’s ego-
centric RGB observations while Dynamics corruptions (ex. drift in
translation) affect transition dynamics in the unseen environment.

that is trained to navigate in “sunny” weather should con-
tinue to operate in rain despite the drastic changes in the
appearance, and an agent that is trained to move on carpet
should decidedly navigate when on a hardwood floor de-
spite the discrepancy in friction. While a potential solution
may be to calibrate the agent for a specific target environ-
ment, it is not a scalable one since there can be enormous
varieties of unseen environments and situations. A more ro-
bust, efficient and scalable solution is to equip agents with
the ability to autonomously adapt to new situations by in-
teraction without having to train for every possible target
scenario. Despite the remarkable progress in Embodied AI,
especially in embodied navigation [59, 46, 48, 54, 7], most
efforts focus on generalizing trained agents to unseen envi-
ronments, but critically assume similar appearance and dy-
namics attributes across train and test environments.

As a first step towards assessing general purpose ro-
bustness of embodied agents, we propose ROBUSTNAV, a
framework to quantify the performance of embodied navi-
gation agents when exposed to a wide variety of common
visual (vis) and dynamics (dyn) corruptions – artifacts that
affect the egocentric RGB observations and transition dy-

15691

namics, respectively. We envision ROBUSTNAV as a testbed
for adapting agent behavior across different perception and
actuation properties. While assessing robustness to changes
(stochastic or otherwise) in environments has been inves-
tigated in the robotics community [32, 13, 14, 21], the
simulated nature of ROBUSTNAV enables practitioners to
explore robustness against a rich and very diverse set of
changes, while inheriting the advantages of working in sim-
ulation – speed, safety, low cost and reproducibility.

ROBUSTNAV consists of two widely studied embodied
navigation tasks, Point-Goal Navigation (POINTNAV) [2]
and Object-Goal Navigation (OBJECTNAV) [4] – the tasks
of navigating to a goal-coordinate in a global reference
frame or an instance of a specified object, respectively. Fol-
lowing the standard protocol, agents learn using a set of
training scenes and are evaluated within a set of held out test
scenes, but differently, ROBUSTNAV test scenes are sub-
ject to a variety of realistic visual and dynamics corruptions.
These corruptions can emulate real world scenarios such as
a malfunctioning camera or drift (see Fig.1).

As zero shot adaptation to test time corruptions may be
out of reach for our current algorithms, we provide agents
with a fixed “calibration budget” (number of interactions)
within the target world for unsupervised adaptation. This
mimics a real-world analog where a shipped robot is al-
lowed to adapt to changes in the environment by execut-
ing a reasonable number of unsupervised interactions. Post
calibration, agents are evaluated on the two tasks in the cor-
rupted test environments using standard navigation metrics.

Our extensive analysis reveals that both POINTNAV and
OBJECTNAV agents experience significant degradation in
performance across the range of corruptions, particularly
when multiple corruptions are applied together. We show
that this degradation reduces in the presence of a clean depth
sensor suggesting the advantages of incorporating multiple
sensing modalities, to improve robustness. We find that
data augmentation and self-supervised adaptation strategies
offer some zero-shot resistance and improvement over de-
graded performance, but are unable to fully recover this gap
in performance. Interestingly, we also note that visual cor-
ruptions affect embodied tasks differently from static tasks
like object recognition – suggesting that visual robustness
should be explored within an embodied task. Finally, we an-
alyze several interesting behaviors our agents exhibit in the
presence of corruptions – such as increase in the number of
collisions and inability to terminate episodes successfully.

In summary, our contributions include: (1) We present
ROBUSTNAV– a framework for benchmarking and assess-
ing the robustness of embodied navigation agents to vi-
sual and dynamics corruptions. (2) Our findings show that
present day navigation agents trained in simulation under-
perform severely when evaluated in corrupt target environ-
ments. (3) We systematically analyze the kinds of mis-

takes embodied navigation agents make when operating un-
der such corruptions. (4) We find that although standard
data-augmentation techniques and self-supervised adapta-
tion strategies offer some improvement, much remains to
be done in terms of fully recovering lost performance.

ROBUSTNAV provides a fast framework to develop and
test robust embodied policies, before they can be deployed
onto real robots. While ROBUSTNAV currently supports
navigation heavy tasks, the supported corruptions can be
easily extended to more tasks, as they get popular within
the Embodied AI community.

2. Related Work
Visual Navigation. Tasks involving navigation based on
egocentric visual inputs have witnessed exciting progress
in recent years [48, 10, 24, 8, 19, 9]. Some of the widely
studied tasks in this space include POINTNAV [2], OBJECT-
NAV [4] and goal-driven navigation where the target is spec-
ified by a goal-image [59]. Approaches to solve POINT-
NAV and OBJECTNAV can broadly be classified into two
categories – (1) learning neural policies end-to-end using
RL [53, 57, 46, 48, 54] or (2) decomposing navigation into
a mapping (building a semantic map) and path planning
stage [6, 7, 25, 43]. Recent research has also focused on as-
sessing the ability of polices trained in simulation to transfer
to real-world robots operating in physical spaces [33, 12].
Robustness Benchmarks. Assessing robustness of deep
neural models has received quite a bit of attention in recent
years [30, 45, 31, 3]. Most relevant and closest to our work
is [30], where authors show that computer vision models are
susceptible to several synthetic visual corruptions, as mea-
sured in the proposed ImageNet-C benchmark. In [34, 39],
authors study the effect of similar visual corruptions for se-
mantic segmentation and object detection on standard static
benchmarks. ROBUSTNAV integrates several visual cor-
ruptions from [30] and adds ones such as low-lighting and
crack in the camera-lens, but within an embodied scenario.
Our findings (see Sec. 5) show that visual corruptions af-
fect embodied tasks differently from static tasks like object
recognition. In [50], authors repurpose the ImageNet val-
idation split to be used as a benchmark for assessing ro-
bustness to natural distribution shifts (unlike the ones intro-
duced in [30]) and [17] identifies statistical biases in the
same. Recently, [29] proposes three extensive benchmarks
assessing robustness to image-style, geographical location
and camera operation. Adversarial robustness of embodied
agents has also been explored in [37], where the authors
utilize spatio-temporal context to craft adversarial perturba-
tions to alter 3D properties (shape and texture) of objects in
Embodied QA [10] and Embodied Visual Recognition [56].
Real-world RL Suite. Efforts similar to ROBUSTNAV have
been made in [16], where authors formalize 9 different chal-
lenges holding back RL from real-world use – including
actuator delays, high-dimensional state and action spaces,

15692

latency, and others. In contrast, ROBUSTNAV focuses on
challenges in the visually rich domains and complexities
associated with visual observation. Recently, Habitat [48]
also introduced actuation (from [40]) and visual noise mod-
els for navigation tasks. In contrast, ROBUSTNAV is de-
signed to benchmark robustness of models against a variety
of visual and dynamics corruptions (7 vis and 4 dyn cor-
ruptions for both POINTNAV and OBJECTNAV).
Adapting Visio-Motor Policies. Significant progress has
been made in the problem of adapting policies trained with
RL from a source to a target environment. Unlike RO-
BUSTNAV, major assumptions involved in such transfer set-
tings are either access to task-supervision in the target en-
vironment [23] or access to paired data from the source
and target environments [22, 51]. Domain Randomiza-
tion (DR) [1, 44, 36, 41] is another common approach to
train policies robust to various environmental factors. No-
tably, [36] perturbs features early in the visual encoders of
the policy network so as to mimic DR and [41] selects op-
timal DR parameters during training based on sparse data
obtained from the the real world. In absence of task su-
pervision, another common approach is to optimize self-
supervised objectives in the target [54, 47] and has been
used to adapt policies to visual disparities (see Sec. 5) in
new environments [26]. To adapt to changes in transition
dynamics, a common approach is to train on a broad fam-
ily of dynamics models and perform system-identification
(ex. with domain classifiers [18]) in the target environ-
ment [55, 58]. [33, 12] studies the extent to which embod-
ied navigation agents transfer from simulated environments
to real-world physical spaces. Among these, we investigate
two of the most popular approaches – self-supervised adap-
tation [26] and aggressive data augmentation and measure
if they can help build resistance to vis corruptions.

3. ROBUSTNAV
We present ROBUSTNAV, a benchmark to assess the ro-

bustness of embodied agents to common visual (vis) and
dynamics (dyn) corruptions. ROBUSTNAV is built on top of
ROBOTHOR [11]. In this work, we study the effects cor-
ruptions have on two kinds of embodied navigation agents
– namely, POINTNAV (navigate to a specified goal coordi-
nate) and OBJECTNAV (navigate to an instance of an object
category). While we restrict our experiments to navigation,
in practice, our vis and dyn corruptions can also be ex-
tended to other embodied tasks that share the same modali-
ties, for instance tasks involving interacting with objects.

In ROBUSTNAV, agents are trained within the training
scenes and evaluated on “corrupt” unseen target scenes.
Corruptions in target scenes are drawn from a set of prede-
fined vis and dyn corruptions. As is the case with any form
of modeling of corruptions (or noise) in simulation [32, 11],
there will always be an approximation error when the vis
and dyn corruptions are compared to their real world coun-

Low Lighting Speckle Noise

Defocus Blur Motion Blur Spatter

Camera Crack Lower FOV

Clean

Figure 2. Visual Corruptions. Visual corruptions ROBUSTNAV
supports in the unseen target environments. Top-left shows a clean
RGB frame and rest show corrupted versions of the same.
terparts. Our aim is to ensure that the ROBUSTNAV bench-
mark acts as a stepping stone towards the larger goal of ob-
taining robust agents, ready to be deployed in real world.

To adapt to a corrupt target scene, we provide agents with
a “calibration budget” – an upper bound on the number of
interactions an agent is allowed to have with the target en-
vironment without any external task supervision. This is
done to mimic a real-world analog where a shipped robot is
allowed to adapt to changes in the environment by execut-
ing a reasonable number of unsupervised interactions. Our
definition of the calibration-budget is based on the number
of steps it takes an agent to reasonably recover degraded
performance in the most severely corrupted environments
when finetuned under complete supervision (see Table. 3)
– set to ∼ 166k steps for all our experiments. We attempt
to understand if self-supervised adaptation approaches [26]
improve performance when allowed to adapt under this cal-
ibration budget (see Sec. 5, resisting corruptions). We now
describe in detail the vis and dyn corruptions present in
ROBUSTNAV.
Visual Corruptions. Visual corruptions are artifacts that
degrade the navigation agent’s egocentric RGB observation
(see Fig. 2). We provide seven visual corruptions within
ROBUSTNAV, four of which are drawn from the set of cor-
ruptions and perturbations proposed in [30] – Spatter, Mo-
tion Blur, Defocus Blur and Speckle Noise; realistic corrup-
tions that one might expect to see on a real robot. Spatter
emulates occlusion in images due to particles of dirt, water
droplets, etc. residing on the camera lens. Motion Blur em-
ulates blur in images due to jittery movement of the robot.
Defocus Blur occurs when the RGB image is out of focus.
Speckle Noise emulates granular interference that inher-
ently exists in and degrades the quality of images obtained
by the camera (modeled as additive noise with the noise
being proportional to the original pixel intensity). Each of
these corruptions can manifest at five levels of severity indi-
cating increase in the extent of visual degradation (1 → 5).

In addition to these, we also add low-lighting (low-
lighting conditions in the target environment, has associated
severity levels 1 → 5), lower-FOV (agents operating with a
lower camera field of view compared to the one used during
training, 79◦ → 39.5◦) and camera-crack (a randomized

15693

(a) Motion Bias (Constant)

(c) Motion Drift

(b) Motion Bias (Stochastic)

(d) Motor Failure

Ideal Corrupted

Ideal Corrupted

MOVE_AHEAD

ROTATE_RIGHT

(Sampled uniformly
per-episode) Ideal Corrupted

Ideal Corrupted

MOVE_AHEAD

ROTATE_RIGHT

(Sampled per-step)

(Sampled per-step)

Ideal Corrupted

MOVE_AHEAD

(Drift Angle)

ROTATE_RIGHT
Bias towards

ROTATE_RIGHT ROTATE_LEFT

Rotation actions not working

Agent

(Sampled uniformly
per-episode)

Figure 3. Dynamics Corruptions. We show the kinds of dynam-
ics corruptions supported in ROBUSTNAV. Motion Bias (C &
S) are modeled to mimic friction. Motion Drift models a setting
where translation actions have a slight bias towards rotating right
(or left). In Motor Failure, the one of the rotation actions fail.
crack in the camera lens). For camera-crack, we use fixed
random seeds for the 15 validation scenes which dictate the
location and kind of crack on the camera lens.
Dynamics Corruptions. Dynamics corruptions affect the
transition dynamics of the agents in the target environment
(see Fig. 3). We consider three classes of dynamics cor-
ruptions – Motion Bias, Motion Drift and Motor Failure.
Our dyn corruptions are motivated from and in line with the
well-known systematic and/or stochastic drifts (due to error
accumulation) and biases in robot motion [35, 5, 20, 42].

A common dynamics corruption observed in the real
world is friction. Unfortunately ROBOTHOR does not
yet natively support multiple friction zones within a scene,
as may be commonly observed in a real physical envi-
ronment (for instance the kitchen floor in a house may
have smooth tiles while the bedroom may have rough
hardwood floors). In lieu of this, we present the Mo-
tion Bias corruption. In the absence of this corruption,
the move ahead action moves an agent forward by 0.25m,
and rotation rotate left and rotate right actions ro-
tate an agent by 30◦ left and right respectively. Motion
Bias can induce either (a) a constant bias drawn uniformly
per-episode from Bd = {±0.05,±0.1,±0.15}m or Bθ =
{±5◦,±10◦,±15◦} or (b) stochastic translation and ro-
tation amounts drawn per-step from N (0.25m, 0.1m) and
N (30.0◦, 10◦) respectively.1

Motion Drift models a setting where an agent’s trans-
lation movements in the environment include a slight bias
towards turning left or right. Specifically, the move ahead
action, instead of moving an agent forward 0.25m in the
direction of its heading (intended behavior), drifts towards
the left or right directions stochastically (for an episode)
by α = 10◦ and takes it to a location which deviates in a

1(a) Motion Bias (C) is intended to model scene-level friction, different
floor material in the target environment; (b) Motion Bias (S) is intended to
model high and low friction zones in a scene. Including more sophisticated
models of friction is in the feature roadmap for ROBUSTNAV.

direction perpendicular to the original heading by a max
of ∼ 0.043m. Motor-failure is the setting where either
the rotate left or the rotate right actions malfunction
throughout an evaluation episode.

With the exception of Motion-Bias (S) – the stochas-
tic version – the agent also operates under standard actu-
ation noise models as calibrated from a LoCoBot in [12].
Recently, PyRobot [40] has also introduced LoCoBot cal-
ibrated noise models that demonstrate strafing and drift-
ing. While we primarily rely on the noise models calibrated
in [11], for completeness, we also include results with the
PyRobot noise models.
Tasks. ROBUSTNAV consists of two major embodied nav-
igation tasks – namely, POINTNAV and OBJECTNAV. In
POINTNAV, an agent is initialized at a random spawn loca-
tion and orientation in an environment and is asked to nav-
igate to target coordinates specified relative to the agent’s
position. The agent must navigate based only on sensory
inputs from an RGB (or RGB-D) and a GPS + Compass
sensor. An episode is declared successful if the agent stops
within 0.2m of the goal location (by intentionally invoking
an end action). In OBJECTNAV, an agent is instead asked to
navigate to an instance of a specified object category (e.g.,
Television, 1 out of total 12 object categories) given only
ego-centric sensory inputs – RGB or RGB-D. An episode
is declared successful if the agent stops within 1.0m of the
target object (by invoking an end action) and has the target
object in it’s egocentric view. Due to the lack of perfect lo-
calization (no GPS + Compass sensor) and the implicit need
to ground the specified object within its view, OBJECTNAV
may be considered a harder task compared to POINTNAV–
also evident in lower OBJECTNAV performance (Table. 2).
Metrics. We report performance in terms of the follow-
ing well established navigation metrics reported in past
works – Success Rate (SR) and Success Weighted by Path
Length (SPL) [2]. SR indicates the fraction of successful
episodes. SPL provides a score for the agent’s path based on
how close it’s length is to the shortest path from the spawn
location to the target. If Isuccess denotes whether an episode
is successful (binary indicator), l is the shortest path length,
and p is the agent’s path length then SPL= Isuccess

l
max(l,p)

Scenes. ROBUSTNAV is built on top of the ROBOTHOR
scenes [12]. ROBOTHOR consists of 60 training and 15
validation environments based on indoor apartment scenes
drawn from different layouts. To assess robustness in the
presence of corruptions, we evaluate on 1100 (and 1095)
episodes of varying difficulties (easy, medium and hard)2

for POINTNAV (and OBJECTNAV) across the 15 val scenes.
Benchmarking. Present day embodied navigation agents
are typically trained without any corruptions. However, we

2Based on shortest path lengths – (1) POINTNAV: 0.00 − 2.28 for
easy, 2.29 − 4.39 for medium, 4.40 − 9.61 for hard; (2) OBJECTNAV:
0.00− 1.50 for easy, 1.51− 3.78 for medium , 3.79− 9.00 for hard.

15694

Corruptions Top-1 Acc. ↑ Top-5 Acc. ↑

1 Clean 69.76 89.08

2 Camera Crack† 57.71±5.82 80.27±4.54

3 Lower FOV∗ 45.44 69.53
4 Low Lighting 35.76 58.54
5 Spatter 19.73 39.34
6 Motion Blur 10.11 22.66
7 Defocus Blur 9.39 22.25
8 Speckle Noise 7.79 18.84

Table 1. ImageNet Performance Degradation. Degradation in
classification performance on the ImageNet validation split under
visual corruptions for ResNet-18 [28] trained on ImageNet (used
as the agent’s visual encoder). Corruptions in 2-8 are present RO-
BUSTNAV. ∗Since mimicking lower FOV requires access to cam-
era intrinsics, unavailable for static datasets, we mimic the same
by aggressive center-cropping. †For camera-crack, we report per-
formance over all possible crack settings present in ROBUSTNAV.

anticipate that researchers may incorporate corruptions as
augmentations at training time to improve the robustness of
their algorithms in order to make progress on our ROBUST-
NAV framework. For the purposes of fair benchmarking, we
recommend that future comparisons using ROBUSTNAV do
not draw from the set of corruptions reserved for the target
scenes – ensuring the corruptions encountered in the target
scenes are indeed “unseen”.

4. Experimental Setup
Agent. Our POINTNAV agents have 4 actions available to
them – namely, move ahead (0.25m), rotate left (30◦),
rotate right (30◦) and end. The action end indicates
that the agent believes that it has reached the goal, thereby
terminating the episode. During evaluation, we allow an
agent to execute a maximum of 300 steps – if an agent does
not call end within 300 steps, we forcefully terminate the
episode. For OBJECTNAV, in addition to the aforemen-
tioned actions, the agent also has the ability to look up
or look down – indicating change in the agent’s view 30◦

above or below the forward camera horizon. The agent re-
ceives 224 × 224 sized ego-centric observations (RGB or
RGB-D). All agents are trained under LoCoBot calibrated
actuation noise models from [12] – N (0.25m, 0.005m) for
translation and N (30◦, 0.5◦) for rotation. Our agent archi-
tectures (akin to [53]) are composed of a CNN head to pro-
cess input observations followed by a recurrent (GRU) pol-
icy network (more details in Sec. 1.3 of supplementary).
Training. We train our agents using DD-PPO [53] – a
decentralized, distributed and synchronous version of the
Proximal Policy Optimization (PPO) [49] algorithm. If
R = 10.0 denotes the terminal reward obtained at the end
of a successful episode (with Isuccess being an indicator vari-
able denoting whether an episode was successful), ∆Geo

t de-
notes the change in geodesic distance to target at timestep t
from t − 1 and λ = −0.01 denotes a slack penalty to en-
courage efficiency, then the reward received by the agent at
time-step t can be expressed as,

rt = R . Isuccess︸ ︷︷ ︸
success reward

− ∆Geo
t︸︷︷︸

reward shaping

+ λ︸︷︷︸
slack reward

We train our agents using the AllenAct [52] framework.

5. Results and Findings
In this section, we show that the performance of POINT-

NAV and OBJECTNAV agents degrades in the presence of
corruptions (see Table. 2). We first highlight how vis cor-
ruptions affect static vision and embodied navigation tasks
differently (see Table 1). Following this, we analyze be-
haviors that emerge in these agents when operating in the
presence of vis, dyn, and vis+dyn corruptions. Finally, we
investigate whether standard data-augmentation and self-
supervised adaptation [26] techniques help recover the de-
graded performance (see Table 3).

5.1. Degradation in Performance
We now present our findings regarding degradation in

performance relative to agents being evaluated in clean (no
corruption) target environments (row 1 in Table. 2).
Visual corruptions affect static and embodied tasks dif-
ferently. In Table 1, we report object recognition perfor-
mance for models trained on the ImageNet [15] train split
and evaluated on the corrupt validation splits. In Table 2,
we report performance degradation of POINTNAV and OB-
JECTNAV agents under corruptions (row 1, clean & rows
2-8 corrupt). It is important to note that the nature of tasks
(one-shot prediction vs sequential decision making) are dif-
ferent enough that the difficulty of corruptions for classi-
fication may not indicate the difficulty of corruptions for
navigation. We verify this hypothesis by comparing results
in Tables 1 and 2 – for instance, corruptions which are se-
vere for classification (Defocus Blur and Speckle Noise) are
not as severe for POINTNAV-RGB agents in terms of rela-
tive drop from clean performance. Additionally, for Mask-
RCNN [27] trained on AI2-THOR images, we note that
detection (segmentation)3 mAP0.5:0.95 drops from 62.93
(66.29) to 7.96 (8.64) and 6.56 (6.68) for Spatter (S5) and
Low-Lighting (S5), respectively – unlike rows 2 & 8 in Ta-
ble 2, where Spatter appears to be much severe compared to
Low-Lighting. This difference in relative degradation sug-
gests that that techniques for visual adaptation or robustness
in static settings may not transfer out-of-the-box to embod-
ied tasks, warranting more research in this direction.
Not all corruptions are equally bad. While we note that
POINTNAV and OBJECTNAV agents suffer a drop in perfor-
mance from clean settings, not all corruptions are equally
severe. For instance, in POINTNAV-RGB, while Low Light-
ing, Motion Blur and Motion Bias (C) (rows 2, 3, 9 in
Table 2) lead to a worst-case absolute drop of < 10% in
SPL (and < 10% in SR), corruptions like Spatter and Mo-
tor Failure (rows 8, 13) are more extreme and significantly

3For the 12 OBJECTNAV target classes

15695

POINTNAV OBJECTNAV
RGB RGB-D RGB RGB-D

Corruption ↓ V D SR ↑ SPL ↑ SR ↑ SPL ↑ SR ↑ SPL ↑ SR ↑ SPL ↑
1 Clean 98.82 83.13 98.54 84.60 31.05 14.26 35.62 17.20

2 Low Lighting ✓ 94.36 75.15 99.45 84.97 10.78 4.59 21.64 9.98
3 Motion Blur ✓ 95.72 73.37 99.36 85.36 10.59 4.03 20.27 8.29
4 Camera Crack ✓ 82.07 63.83 95.72 81.21 7.21 3.57 24.29 12.50
5 Defocus Blur ✓ 75.89 53.55 99.09 85.54 5.02 2.42 19.18 7.90
6 Speckle Noise ✓ 67.42 48.57 98.73 84.66 9.04 3.66 18.63 7.52
7 Lower-FOV ✓ 42.49 31.73 89.08 73.59 9.77 3.90 9.86 4.77
8 Spatter ✓ 33.58 24.72 98.91 84.81 6.76 2.93 21.10 9.06

9 Motion Bias (C) ✓ 92.81 77.83 93.36 79.46 31.51 14.09 31.96 15.38
10 Motion Bias (S) ✓ 94.72 76.95 96.72 79.08 30.87 14.15 35.62 16.39
11 Motion Drift ✓ 95.72 76.19 93.36 75.08 29.68 13.58 34.06 17.03
12 PyRobot [40] (ILQR) Mul. = 1.0 ✓ 96.00 67.79 95.45 69.27 32.51 11.26 36.35 13.62
13 Motor Failure ✓ 20.56 17.63 20.56 17.62 4.20 2.43 6.39 3.67

14 Defocus Blur + Motion Bias (S) ✓ ✓ 76.52 51.08 97.18 79.46 5.57 2.00 18.54 7.23
15 Speckle Noise + Motion Bias (S) ✓ ✓ 62.69 43.31 95.81 78.27 7.85 3.73 18.54 8.16
16 Spatter + Motion Bias (S) ✓ ✓ 33.30 23.33 95.81 78.85 7.85 3.09 21.28 9.26

17 Defocus Blur + Motion Drift ✓ ✓ 74.25 50.99 95.54 76.66 4.57 1.93 17.35 6.97
18 Speckle Noise + Motion Drift ✓ ✓ 64.42 44.73 94.36 75.23 8.49 3.67 19.82 8.61
19 Spatter + Motion Drift ✓ ✓ 32.94 23.44 95.45 76.61 6.85 2.68 19.54 8.86

Table 2. POINTNAV and OBJECTNAV Performance. Degradation in task performance of pretrained POINTNAV (trained for ∼ 75M
frames) and OBJECTNAV (trained for ∼ 300M frames) agents when evaluated under vis and dyn corruptions present in ROBUSTNAV.
POINTNAV agents have additional access to a GPS-Compass sensor. For visual corruptions with controllable severity levels, we report
results with severity set to 5 (worst). Performance is measured across tasks of varying difficulties (easy, medium and hard). Rows are
sorted based on SPL values for RGB POINTNAV agents. Success and SPL values are reported as percentages. (V = Visual, D = Dynamics)

affect task performance (absolute drops of > 57% in SPL,
> 65% in SR). For OBJECTNAV, however, the drop in per-
formance is more gradual across corruptions (partly because
it’s a harder task and even clean performance is fairly low).
A “clean” depth sensor helps resisting degradation. We
compare the RGB and RGB-D variants of the trained POINT-
NAV and OBJECTNAV agents (RGB corrupt, Depth clean)
in Table 2 (corresponding RGB & RGB-D columns). We ob-
serve that including a “clean” depth sensor consistently im-
proves resistance to vis, dyn and vis+dyn corruptions for
both POINTNAV and OBJECTNAV. For POINTNAV, we
note that while RGB and RGB-D variants have comparable
clean performance (row 1), under severe corruptions (Spat-
ter, Lower-FOV and Speckle-Noise), the RGB-D counter-
parts are ahead roughly by an absolute margin of 36.09 −
60.09% SPL. We further observe that, barring exceptions,
POINTNAV RGB-D agents are generally affected minimally
by corruptions – for instance, Low-Lighting and Motion
Blur barely result in any drop in performance. We hypoth-
esize that this is likely because RGB-D navigation agents are
much less reliant on the RGB sensor compared to the RGB
counterparts. In OBJECTNAV, an additional depth sensor
generally improves clean performance (row 1 in Table 2)
which is likely the major contributing factor for increased
resistance to corruptions. Sensors of different modalities are
likely to degrade in different scenarios – e.g., a depth sen-
sor may continue to perceive details in low lighting settings.
The obtained results suggest that adding multiple sensors,
while expensive can help train robust models. Additional
sensors can also be helpful for unsupervised adaptation dur-
ing the calibration phase. For instance, in the presence of
a “clean” depth sensor, one can consider comparing depth

based egomotion estimates with expected odometry read-
ings in the target environment to infer changes in dynamics.
Presence of vis+dyn corruptions further degrades per-
formance. Rows 14-19 in Table 2 indicate the extent of
performance degradation when vis+dyn corruptions are
present. With the exception of a few cases, as expected,
the drop in performance is slightly more pronounced com-
pared to the presence of just vis or dyn corruptions. The
relative drop in performance from vis → vis+dyn is more
pronounced for OBJECTNAV as opposed to POINTNAV.
Navigation performance for RGB agents degrades consis-
tently with escalating episode difficulty. Recall that we
evaluate navigation performance over epsisodes of varying
difficulty levels (see Sec. 3). We break down the perfor-
mance of POINTNAV & OBJECTNAV agents by episode dif-
ficulty levels (in Sec. 1.5 of supplementary). Under “clean”
settings, we find that POINTNAV (RGB and RGB-D) have
comparable performance across all difficulty levels. Un-
der corruptions, we note that unlike the RGB-D counterparts,
performance of POINTNAV-RGB agents consistently deteri-
orates as the episodes become harder. OBJECTNAV (both
RGB & RGB-D) agents show a similar trend of decrease in
navigation performance with increasing episode difficulty.

5.2. Behavior of Visual Navigation Agents
We now study the idiosyncrasies (see Fig 4) exhibited by

these agents (POINTNAV-RGB and OBJECTNAV-RGB) which
leads to their degraded performance.
Agents tend to collide more often. Fig 4 (first column,
bars color-coded based on the kind of corruption) shows
the average number of failed actions under corrupt settings.
In our framework, failed actions occur as a consequence of

15696

Failed Actions Min. Dist. to Target (m) Stop-Fail. (Pos) (%) Stop-Fail (Neg) (%)
Po
in
tN
av

0
5

10
15
20

2.57

14.59

8.63
11.83

21.09

14.77

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.11

0.97
1.15

0.25

1.08
1.23

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.46 0.48

0.27

0.76

0.25

0.7

50
51
52
53
54
55
56
57

53.98 54.11
53.03

55.38 55.07
54.2

Ob
je
ct
Na
v

Clea
n

D.B.
S.N

.
M.D.

D.B. +
 M.D.

S.N
. +

 M.D.0
2
4
6
8

10
12

3.96

8.49

4.91

13.21

6.93 6.47

Clea
n

D.B.
S.N

.
M.D.

D.B. +
 M.D.

S.N
. +

 M.D.0.0
0.5
1.0
1.5
2.0

0.79

2.0
1.61

0.84

1.95
1.69

Clea
n

D.B.
S.N

.
M.D.

D.B. +
 M.D.

S.N
. +

 M.D.55
60
65
70
75
80
85
90

61.84

78.85
73.53

61.31

80.0
75.2

Clea
n

D.B.
S.N

.
M.D.

D.B. +
 M.D.

S.N
. +

 M.D.70
75
80
85
90
95

100

79.04

95.78
91.6

78.11

95.11
92.68

Figure 4. Agent Behavior Analysis. To understand agent behaviors, we report the breakdown of four metrics: Number of collisions as
observed through Failed Actions (first column), closest the agent was to target as measured by Min. Dist. to Target (second column),
and failure to appropriately end and episode either when out of range – Stop-Fail (Pos) (third column), or in range – Stop-Fail (Neg)
(fourth column). Each behavior is reported for both POINTNAV (top row) and OBJECTNAV (bottom row) RGB agents within a clean and
five corrupt settings: Defocus Blur (D.B.), Speckle Noise (S.N.), Motion Drift (M.D.), Defocus Blur + Motion Drift, and Speckle Noise
+ Motion Drift. is clean, is vis corruptions, is dyn corruptions and is vis+dyn corruptions. Blue line in col 2 indicates the
distance threshold for goal in range. Severities for S.N. and D.B. are set to 5 (worst).

colliding with objects, walls, etc. While corruptions gener-
ally lead to increased collisions, we note that adding a dyn
corruption in addition to a vis one (D.B. → D.B. + M.D.
& S.N. → S.N. + M.D.) increases the number of collisions
over vis or dyn corruptions – dyn corruptions lead to un-
foreseen changes in dynamics (actions working unexpect-
edly), which likely contributes to an uptick in collisions.
Agents tend to be farther from the target. Fig 4 (second
column) shows the minimum distance from the target over
the course of an episode. While we note that as corruptions
become progressively severe, agents tend to terminate far-
ther away from the target (see Sec. 1.4 of supplementary),
Fig 4 (second column) indicates that the overall proximity
of the agent to the goal over an episode decreases – mini-
mum distance to target increases as we go from Clean →
vis or dyn; vis or dyn → vis+dyn. While this may be in-
tuitive in the presence of a dyn corruption, it is interesting
to note that this trend is also consistent for vis corruptions
(Clean → D.B. or S.N.).
Corruptions hurt OBJECTNAV stopping mechanism.
Recall that for both POINTNAV and OBJECTNAV, success
depends on the notion of “intentionality” [4] – the agent
calls an end action when it believes it has reached the goal.
In Fig 4 (last two columns) we aim to understand how cor-
ruptions affect this stopping mechanism. Specifically, we
look at two quantitative measures – (1) Stop-Failure (Posi-
tive), the proportion of times the agent invokes an end ac-
tion when the goal is not range; and (2) Stop-Failure (Neg-
ative), the proportion of times the agent does not invoke an
end action when the goal is in range, out of the number of
times the goal is in range.4

We observe that prematurely calling an end action is a

4The goal in range criterion for POINTNAV checks if the target is within
the threshold distance. For OBJECTNAV, this includes an additional visi-
bility criterion.

significant issue only for OBJECTNAV (Fig 4 (third col-
umn)) – which becomes more pronounced as corruptions
become progressively severe (Clean → D.B. or S.N.; M.D.
→ D.B. + M.D. or S.N. + M.D.). Similarly, the inability of
an agent to invoke an end action is also more pronounced
for OBJECTNAV as opposed to POINTNAV (Fig 4 (fourth
column)). To investigate the extent to which this impacts
the agent’s performance, we compare the agent’s Success
Rate (SR) with a setting where the agent is equipped with
an oracle stopping mechanism (call end as soon as the goal
is in range). We find that this makes a significant differ-
ence only for OBJECTNAV– absolute +7.12% for Clean,
+7.76% for M.D. and +13.88% for D.B. + M.D. We hy-
pothesize that equipping agents with robust stopping mech-
anisms can significantly improve performance on ROBUST-
NAV. For instance, equipping the agent with a progress
monitor module [38] (estimating progress made towards the
goal in terms of distance) robust to vis corruptions can po-
tentially help decide when explicitly to invoke an end action
in the target environment.

5.3. Resisting Corruptions
To assist near-term progress, we investigate if some stan-

dard approaches towards training robust models or adapting
to visual disparities can help resisting vis corruptions under
a calibration budget (Sec. 3) – set to ∼ 166k steps.5

Extent of attainable improvement by finetuning under
task supervision. As an anecdotal upper bound on attain-
able improvements under the calibration-budget, we also re-
port the extent to which degraded performance can be re-
covered when fine-tuned under complete task supervision.
We report these results for vis corruptions in Table 3 (row
7). We note that unlike Lower-FOV, the agent is able to al-

5Based on the number of steps it takes an agent to reasonably re-
cover degraded performance in corrupted environments when finetuned
with complete task supervision.

15697

Approach Visual Corruption
Clean Lower-FOV Defocus Blur Camera Crack Spatter

SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

1 Nav. Loss 98.82 83.13 42.49 31.73 75.89 53.55 82.07 63.83 33.58 24.72
2 Nav. Loss + AP 98.45 83.28 45.68 35.14 83.35 61.51 72.70 56.82 20.38 15.70
3 Nav. Loss + AP + SS-Adapt 37.31 31.03 32.94 26.09 40.95 33.35 57.87 46.72 14.19 10.29
4 Nav. Loss + RP 98.73 82.53 44.95 32.74 32.21 22.47 67.06 53.70 23.48 18.63
5 Nav. Loss + RP + SS-Adapt 94.63 77.25 50.59 36.10 79.16 62.74 60.42 49.37 61.06 47.16
6 Nav. Loss + Data Aug 98.45 81.08 71.70 54.54 81.26 61.32 88.44 71.57 23.93 18.41
7 Finetune Nav. Loss on Target - - 72.88 61.82 97.18 80.32 96.54 80.92 91.81 77.38

Table 3. Resisting Visual Corruptions. To assist near-term progress, we study if standard approaches towards training visually robust
models or adapting to visual disparities can help resisting visual corruptions. All agents in rows 1-7 are POINTNAV RGB agents pre-trained
for ∼ 75M frames. Agents in rows 3 & 5 have obtained by running adaptation for ∼ 166k steps. Agents in row 7 provide an anecdotal
upper bound indicating attainable improvements when finetuned with task-supervision under the calibration budget – set to ∼ 166k steps.
For visual corruptions with controllable severity levels, we report results with severity set to 5 (worst).

most recover performance for Defocus Blur, Camera-Crack
and Spatter (Table. 3, rows 1,7).
Do data-augmentation strategies help? In Table 3, we
study if data-augmentation strategies improve zero-shot re-
sistance to vis corruptions (rows 1,6). We compare POINT-
NAV RGB agents trained with Random-Crop, Random-Shift
and Color-Jitter (row 6) with the vanilla versions (row 1)
and find that while data augmentation (row 6) offers some
improvements (Spatter being an exception) over degraded
performance (row 1) – absolute improvements of (22.81%
SPL, 29.21% SR) for Lower-FOV, (7.77% SPL, 5.37% SR)
for Defocus Blur and (7.74% SPL, 6.37% SR) for Camera-
Crack, obtained performance is still significantly below
Clean settings (row 1, Clean col). Improvements are more
pronounced for Lower-FOV compared to others (likely due
to Random-Shift and Random-Crop). We note that data-
augmentation provides improvements only for a subset of
vis corruptions and when it does, obtained improvements
are still not sufficient enough to recover lost performance.
Do self-supervised adaptation approaches help? In the
absence of reward supervision in the target environment,
Hansen et al. [26] proposed Policy Adaptation during De-
ployment (PAD) – source pretraining with an auxiliary su-
pervised objective and optimizing only the self-supervised
objective when deployed in the target environment. We in-
vestigate the degree to which PAD helps adapting to the
target environments in ROBUSTNAV. The adopted self-
supervised tasks are (1) Action-Prediction (AP) – given two
successive observations in a trajectory, predict the interme-
diate action and (2) Rotation-Prediction (RP) – rotate the
input observation by 0◦, 90◦, 180◦, or 270◦ before feeding
it to the agent and task an additional auxiliary head with
predicting the rotation. We report numbers with AP (rows
2,3) and RP (rows 4,5) in Table. 3. For AP, we find that (1)
pre-training (row 2 vs row 1) results in little or no improve-
ments over degraded performance (maximum absolute im-
provements of 7.96% SPL, 7.46% SR for Defocus Blur) and
(2) further adaptation (row 3 vs rows 2,1) under calibration
budget consistently degrades performance. For RP, we ob-
serve that (1) with the exception of Clean and Lower-FOV,
pre-training (row 4 vs row 1) results in worse performance

and (2) while self-supervised adaptation under corruptions
improves performance over pre-training (row 5 vs row 4),
it is still significantly below Clean settings (row 1, Clean
col) – minimum absolute gap of 20.39% SPL, 19.66% SR
between Defocus Blur (row 5) and Clean (row 1). While
improvements over degraded performance might highlight
the utility of PAD (with AP / RP) as a potential unsuper-
vised adaptation approach, there is still a long way to go
in terms of closing the performance gap between clean and
corrupt settings.

6. Conclusion
In summary, as a step towards assessing general purpose

robustness of embodied navigation agents, we propose RO-
BUSTNAV, a challenging framework well-suited to bench-
mark the robustness of embodied navigation agents, with a
wide variety of visual and dynamics corruptions. To suc-
ceed on ROBUSTNAV, an agent must be insensitive to cor-
ruptions and also be able to adapt to unforeseen changes
in new environments with minimal interaction. We find that
standard POINTNAV and OBJECTNAV agents underperform
(or fail) significantly in the presence of corruptions and
while standard techniques to improve robustness or adapt
to environments with visual disparities (data-augmentation,
self-supervised adaptation) provide some improvements, a
large room for improvement remains in terms of fully re-
covering lost navigation performance. Lastly, we plan on
evolving ROBUSTNAV in terms of the sophistication and
diversity of corruptions as more features are supported
in the underlying simulator. We release ROBUSTNAV in
ROBOTHOR, and hope that our findings provide insights
into developing more robust navigation agents.
Acknowledgements. We thank Klemen Klotar, Luca
Weihs, Martin Lohmann, Harsh Agrawal and Rama Vedan-
tam for fruitful discussions and valuable feedback. We
thank Winson Han for helping out with the Camera-Crack
vis corruption. We thank Vishvak Murahari for helping out
with the ImageNet and the Mask-RCNN experiments. We
also thank the ICCV’21 reviewers for their comments. This
work is supported by the NASA University Leadership Ini-
tiative (ULI) under grant number 80NSSC20M0161.

15698

References

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Ma-
teusz Litwin, Bob McGrew, Arthur Petron, Alex Paino,
Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solv-
ing rubik’s cube with a robot hand. arXiv, 2019. 3

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
et al. On evaluation of embodied navigation agents. arXiv,
2018. 2, 4

[3] Maksym Andriushchenko and Nicolas Flammarion. Under-
standing and improving fast adversarial training. In NeurIPS,
2020. 2

[4] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-
sandr Maksymets, Roozbeh Mottaghi, Manolis Savva,
Alexander Toshev, and Erik Wijmans. Objectnav revisited:
On evaluation of embodied agents navigating to objects.
arXiv, 2020. 2, 7

[5] Kostas E. Bekris, Andrew Ladd, and Lydia E. Kavraki. Ef-
ficient motion planners for systems with dynamics. In ICRA
Workshop, 2007. 4

[6] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-
plore using active neural slam. In ICLR, 2019. 2

[7] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-
hinav Gupta, and Russ R Salakhutdinov. Object goal naviga-
tion using goal-oriented semantic exploration. In NeurIPS,
2020. 1, 2

[8] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vi-
cenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu,
Philip Robinson, and Kristen Grauman. Soundspaces:
Audio-visual navigation in 3d environments. In ECCV, 2020.
2

[9] Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan
Gao, Santhosh Kumar Ramakrishnan, and Kristen Grauman.
Learning to set waypoints for audio-visual navigation. In
ICLR, 2021. 2

[10] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,
Devi Parikh, and Dhruv Batra. Embodied Question Answer-
ing. In CVPR, 2018. 2

[11] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, et al.
Robothor: An open simulation-to-real embodied ai platform.
In CVPR, 2020. 3, 4

[12] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. RoboTHOR: An
Open Simulation-to-Real Embodied AI Platform. In CVPR,
2020. 2, 3, 4, 5

[13] Andrea Del Prete and Nicolas Mansard. Addressing con-
straint robustness to torque errors in task-space inverse dy-
namics. In RSS, 2015. 2

[14] Andrea Del Prete and Nicolas Mansard. Robustness to joint-
torque-tracking errors in task-space inverse dynamics. IEEE
Trans. on Robotics, 2016. 2

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5

[16] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz,
Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester.
An empirical investigation of the challenges of real-world
reinforcement learning. arXiv, 2020. 2

[17] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Jacob Steinhardt, and Aleksander Madry. Identify-
ing statistical bias in dataset replication. In ICML, 2020. 2

[18] Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari,
Ruslan Salakhutdinov, and Sergey Levine. Off-dynamics re-
inforcement learning: Training for transfer with domain clas-
sifiers. arXiv, 2020. 3

[19] Chuang Gan, Yiwei Zhang, Jiajun Wu, Boqing Gong, and
Joshua B Tenenbaum. Look, listen, and act: Towards audio-
visual embodied navigation. In ICRA, 2020. 2

[20] Carlos Garcia-Saura. Self-calibration of a differential
wheeled robot using only a gyroscope and a distance sensor.
arXiv, 2015. 4

[21] Nirmal Giftsun, Andrea Del Prete, and Florent Lamiraux.
Robustness to inertial parameter errors for legged robots bal-
ancing on level ground. In International Conference on In-
formatics in Control, Automation and Robotics, 2017. 2

[22] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and
Pierre-Yves Oudeyer. Sim-to-real transfer with neural-
augmented robot simulation. In CoRL, 2018. 3

[23] Daniel Gordon, Abhishek Kadian, Devi Parikh, Judy Hoff-
man, and Dhruv Batra. Splitnet: Sim2sim and task2task
transfer for embodied visual navigation. In ICCV, 2019. 3

[24] Daniel Gordon, Aniruddha Kembhavi, Mohammad Raste-
gari, Joseph Redmon, Dieter Fox, and Ali Farhadi. Iqa:
Visual question answering in interactive environments. In
CVPR, 2018. 2

[25] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive mapping and plan-
ning for visual navigation. In CVPR, 2017. 2

[26] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Ler-
rel Pinto, and Xiaolong Wang. Self-supervised policy adap-
tation during deployment. In ICLR, 2021. 3, 5, 8

[27] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 5

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[29] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
arXiv, 2020. 2

[30] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In ICLR, 2019. 2, 3

[31] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. Pretrained
transformers improve out-of-distribution robustness. In ACL,
2020. 2

15699

[32] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo
Gamboa, Florian Golemo, Melissa Mozifian, Chris Atkeson,
Dieter Fox, Ken Goldberg, John Leonard, et al. Perspectives
on sim2real transfer for robotics: A summary of the r:ss 2020
workshop. arXiv, 2020. 2, 3

[33] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-
der Clegg, Erik Wijmans, Stefan Lee, Manolis Savva, Sonia
Chernova, and Dhruv Batra. Are we making real progress
in simulated environments? measuring the sim2real gap in
embodied visual navigation. In IROS, 2020. 2, 3

[34] Christoph Kamann and Carsten Rother. Benchmarking the
robustness of semantic segmentation models. In CVPR,
2020. 2

[35] Andrew M. Ladd and Lydia E. Kavraki. Motion planning
in the presence of drift, underactuation and discrete system
changes. In RSS, 2005. 4

[36] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Net-
work randomization: A simple technique for generalization
in deep reinforcement learning. In ICLR, 2020. 3

[37] Aishan Liu, Tairan Huang, Xianglong Liu, Yitao Xu, Yuqing
Ma, Xinyun Chen, Stephen J Maybank, and Dacheng Tao.
Spatiotemporal attacks for embodied agents. In ECCV, 2020.
2

[38] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. arXiv preprint arXiv:1901.03035, 2019. 7

[39] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos,
Evgenia Rusak, Oliver Bringmann, Alexander S Ecker,
Matthias Bethge, and Wieland Brendel. Benchmarking ro-
bustness in object detection: Autonomous driving when win-
ter is coming. arXiv, 2019. 2

[40] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,
Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav
Gupta. Pyrobot: An open-source robotics framework for re-
search and benchmarking. arXiv, 2019. 3, 4, 6

[41] Fabio Muratore, Christian Eilers, Michael Gienger, and Jan
Peters. Data-efficient domain randomization with bayesian
optimization. IEEE Robotics Automation and Letters, 2021.
3

[42] J. Müller, N. Kohler, and W. Burgard. Autonomous minia-
ture blimp navigation with online motion planning and re-
planning. In IROS, 2011. 4

[43] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen
Grauman. Occupancy anticipation for efficient exploration
and navigation. In ECCV, 2020. 2

[44] Sharath Chandra Raparthy, Bhairav Mehta, Florian Golemo,
and Liam Paull. Generating automatic curricula via self-
supervised active domain randomization. arXiv, 2020. 3

[45] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In ICML, 2019. 2

[46] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
Semi-parametric topological memory for navigation. In
ICLR, 2018. 1, 2

[47] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien
Vincent, Marc Pollefeys, Timothy Lillicrap, and Sylvain
Gelly. Episodic curiosity through reachability. In ICLR,
2019. 3

[48] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A plat-
form for embodied ai research. In ICCV, 2019. 1, 2, 3

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv, 2017. 5

[50] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Car-
lini, Benjamin Recht, and Ludwig Schmidt. Measuring ro-
bustness to natural distribution shifts in image classification.
NeurIPS, 2020. 2

[51] Joanne Truong, Sonia Chernova, and Dhruv Batra. Bi-
directional domain adaptation for sim2real transfer of em-
bodied navigation agents. IEEE Robotics and Automation
Letters, 2021. 3

[52] Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-
Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Allenact: A framework for embodied ai research. arXiv,
2020. 5

[53] Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
Dd-ppo: Learning near-perfect pointgoal navigators from 2.5
billion frames. In ICLR, 2020. 2, 5

[54] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to
learn: Self-adaptive visual navigation using meta-learning.
In CVPR, 2019. 1, 2, 3

[55] Jiachen Yang, Brenden Petersen, Hongyuan Zha, and Daniel
Faissol. Single episode policy transfer in reinforcement
learning. In ICLR, 2020. 3

[56] Jianwei Yang, Zhile Ren, Mingze Xu, Xinlei Chen, David J.
Crandall, Devi Parikh, and Dhruv Batra. Embodied amodal
recognition: Learning to move to perceive objects. 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2040–2050, 2019. 2

[57] Joel Ye, Dhruv Batra, Erik Wijmans, and Abhishek Das.
Auxiliary tasks speed up learning pointgoal navigation. In
CoRL, 2020. 2

[58] Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environ-
ment probing interaction policies. In ICLR, 2019. 3

[59] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 1, 2

15700

