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Abstract

Snow is a highly complicated atmospheric phenomenon
that usually contains snowflake, snow streak, and veiling
effect (similar to the haze or the mist). In this literature,
we propose a single image desnowing algorithm to address
the diversity of snow particles in shape and size. First,
to better represent the complex snow shape, we apply the
dual-tree wavelet transform and propose a complex wavelet
loss in the network. Second, we propose a hierarchical
decomposition paradigm in our network for better under-
standing the different sizes of snow particles. Last, we
propose a novel feature called the contradict channel (CC)
for the snow scenes. We find that the regions containing
the snow particles tend to have higher intensity in the
CC than that in the snow-free regions. We leverage this
discriminative feature to construct the contradict channel
loss for improving the performance of snow removal.
Moreover, due to the limitation of existing snow datasets, to
simulate the snow scenarios comprehensively, we propose
a large-scale dataset called Comprehensive Snow Dataset
(CSD). Experimental results show that the proposed
method can favorably outperform existing methods in three
synthetic datasets and real-world datasets. The code and
dataset are released in https://github.com/weitingchen83/
ICCV2021-Single-Image-Desnowing-HDCWNet.

1. Introduction

Snow is an atmospheric phenomenon that usually affects
the performance of computer vision such as object detection
and semantic segmentation [3, 2]. According to the previ-

*Indicates equal contribution.

(a) Input (b) DesnowNet [1]

(c) JSTASR [2] (d) Ours

Figure 1: Comparison between state-of-the-art snow re-
moval algorithms. (a) Input; (b)-(d) Recovered results
by the DesnowNet [1], the JSTASR [2], and our proposed
method. One can see that the proposed method can achieve
better performance on snow removal.

ous work [2], the formation of snow can be modeled as:

I(𝑥) = K(𝑥)T(𝑥) + A(𝑥) (1 − T(𝑥)), (1)

where K(𝑥) = J(𝑥) (1 − Z(𝑥)R(𝑥)) + C(𝑥)Z(𝑥)R(𝑥), I de-
notes the image deteriorated by snow, K is the snowy image
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without the veiling effect, A is the atmospheric light, and J
is the scene radiance. T(x) = e−𝛽d (x) is the media transmis-
sion where d(x) is the depth and 𝛽 is the scattering coeffi-
cient. C and Z are the chromatic aberration map for snow
images and the snow mask, respectively. R is a binary mask
which presents the snow location information. Snow is a
very complex atmospheric phenomenon because it contains
snowflakes, snow streaks, and the veiling effect. Existing
snow removal strategies can be categorized into two classes:
hand crafted feature-based and learning-based strategies.
For hand crafted feature-based methods [4, 5, 6, 7, 8], Pei
et al. [6] utilized the features based on the color informa-
tion such as saturation and visibility for desnowing. Xu
et al. [4] developed a guidance image based snow removal
pipeline. Zheng et al. [5] extracted features by multi-guided
filters to separate the snow part from the background. These
methods are based on the features observed by a human.
However, they may not hold for diverse real-world scenar-
ios. With the rising of deep learning, several CNN-based
approaches have been proposed [3, 2, 1]. Liu et al. [1] de-
veloped the first learning-based desnowing method called
the Desnownet. They proposed the first snow dataset called
Snow-100K. Chen et al. [2] proposed an algorithm by im-
age inpainting and veiling effect recovery to perform snow
removal and developed a dataset called SRRS to make the
snow removal process more robust. Although these meth-
ods achieve good performance, there are still some issues to
be noted:

(i) Robustness to real-world scenarios: The real-world
snow scenes are highly complicated. For existing snow
removal strategies, the diversity of snow shape and size
is often ignored. First, existing methods lack an effective
mechanism to capture the shape of snow. Moreover, con-
ventional algorithms only consider snowflakes but neglect
snow streaks. Second, because large snow particles are not
easy to be modeled for training, they are difficult to be re-
moved under real-world scenarios. Due to these issues, as
shown in Figure 1, existing methods may have limited per-
formance in real-world scenarios.

(ii) Existing snow datasets cannot reflect the complicated
constitution of real-world snow scenarios: In the Snow-
100K dataset [1], the snowflakes are in different size are
synthesized, but snow streaks and the veiling effect are not
considered. In the SRRS dataset [2], although the veiling
effect is considered, it does not include the snow streaks.
The snow streak is similar to the rain streak, but it has
stronger intensity and may be blurrier than other snow par-
ticles. The lack of the dataset with comprehensive snow
features may degrade the performance of the network when
handling real-world snow scenes.

Therefore, in this paper, we propose a novel snow re-
moval architecture which can handle the complicated snow
scenes by embedding the hierarchical dual-tree complex

wavelet transform [9] to the network. Based on this op-
eration, the snow image is decomposed and recovered in
each scale by the recurrent decomposition. Based on this
operation, all subbands can be reconstructed at the small
scales. Moreover, snow particles with large size which do
not appear in the training data can be represented at small
scale. Consequently, the snow particles in the decomposed
subbands can be easier to be removed because the training
set can cover and simulate their distribution. Besides, the
snow streaks and snowflakes can be well represented with
the multi-direction property of DTCWT. Thus, with this ar-
chitecture, the size-free and more comprehensive snow re-
moval can be achieved. Then, we design two sub networks
for complex wavelet recovery, that is, the high-frequency re-
construction network and the low-frequency reconstruction
network. In addition, we investigate snow and snow-free
images and find a new feature called the contradict channel
(CC). Based on the CC, we construct the contradict channel
loss to improve the performance of snow removal. More-
over, we proposed a novel large-scaled snow dataset called
Comprehensive Snow Dataset (CSD) which can solve the
limitations in existing datasets. The main contributions in
this paper are summarized as follows:

• A novel hierarchical DTCWT desnowing network is
proposed. Benefiting from the multi-direction and
multi-scale properties of the hierarchical DTCWT, the
proposed network can achieve better adaptability on
complicated snow scenarios. Experiments on all ex-
isting synthetic datasets and real-world dataset show
that the proposed method achieves the state-of-the-art
performance on snow removal.

• We propose a new feature called the contradict chan-
nel (CC) based on investigating the difference of snow
and clean images. With the discriminative feature, the
contradict channel loss is proposed to benefit the opti-
mization of the network. As far as we know, this is the
first work proposing the CC.

• In order to address the limitation in existing snow
datasets, we proposed a large-scale snow image dataset
called CSD to provide the training data.

2. Related Works
2.1. Single Image Snow Removal

For snow removal in the single image [4, 5, 6, 1, 7, 8,
3, 10, 2], Zheng et al. [5] investigated the difference be-
tween snow streaks and clear background edges, and ap-
plied the multi-guided filter to remove snowflakes. Wang
et al. [7] proposed a three-layer hierarchical scheme which
combines image decomposition and dictionary learning.
Voronin et al. [11] developed the anisotropic gradient in
Hamiltonian quaternions to remove rain and snow. Li et
al. [12] applied the generative adversarial network (GAN)
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(a) Decomposed results by DWT and DTCWT (b) Comparison of snow particles extraction

Figure 2: Comparison of decomposed results and snow extraction by DWT and DTCWT. From (b), one can see that
with the better interpretation of multi-directions, the DTCWT can retrieve more information about snow particles, especially
for snow streaks.

for snowflake removal. Liu et al. [1] proposed a two-staged
snow removal architecture called the DesnowNet based on
Inception-v4 [13]. Moreover, they proposed the first snow
dataset called Snow100K. However, it cannot remove snow
adequately because the veiling effect and non-transparent
snow particles are not considered. Chen et al. [2] proposed
a network called JSTASR to remove snow particles and the
veiling effect by combining the modified partial convolution
and the differentiable dark channel prior layer. They also
proposed a snow dataset called SRRS which considers the
veiling effect. Although this algorithm can address the veil-
ing effect and non-transparency snow particles, sometimes
this method may fail due to: i) lack of considering snow
streaks; ii) inaccurate detection of snow particles, which
may cause over/under desnowing; iii) over deveiling prob-
lem which causes the color distortion.

2.2. Computer Vision Applications Based on Dual-
tree Complex Wavelet Transform

The Dual-tree Complex Wavelet Transform
(DTCWT) [9] has been adopted to solve image pro-
cessing and restoration problems [14, 15, 16, 17] for a
long while. Singh et al. [18] applied the DTCWT with the
ScatterNet to image classification. Li et al. [19] and Lu et
al. [20] used the DTCWT for image segmentation. Chen et
al. [21] leveraged the phase-shift property of the DTWCT
to perform 3D registration. Sun et al. [22] and Jung et
al. [23] utilized it together with the adaptive histogram
equalization for low-light enhancement.

3. Methodology
3.1. Dual-tree Complex Wavelet Transformation

The DTCWT [9] is an improved form of the discrete
wavelet transformation (DWT) [24]. Although the DWT
has been adopted in several image and signal processing
tasks [25, 26] because it can represent the signal in a more
sparser way, it may have some limitations: i) poor toler-
ance of noise; ii) poor directional selectivity which makes
the processing of geometric features such as edges, ridges,

and diagonal features more challenging. The DTCWT can
overcome these problems by introducing complex wavelets
and the tree structure. In the DTCWT, a signal is decom-
posed by analytic filters based on a scaling function, com-
plex shifting, and a dilated mother wavelet:

ψ(𝑡) = ψℎ (𝑡) + 𝑗ψ𝑔 (𝑡), (2)

where 𝑗 =
√
−1, ψℎ (𝑡) and ψ𝑔 (𝑡) are wavelet basis. They

are the real part and imaginary part of the mother wavelet,
respectively. For the 2-D DTCWT, as shown in Figure 2a,
six high-pass subbands (blue bounding box) and a low-pass
subband (red bounding box) are generated. These high-pass
subbands contain more detailed and texture information in
different directions (i.e., ±15◦,±45◦,±75◦) and diagonal
shapes. This property is beneficial for extracting the snow
information because snow particles generally consist of di-
agonal snowflakes and bevelled snow streaks. As shown
in Figure 2b, one can see that the high-frequency subbands
in DTCWT can achieve better ability on representing the
snow information, especially snow streaks. Therefore, in
this paper, we embed the DTCWT to the network for better
retrieving snow information.

3.2. Hierarchical DTCWT-based Desnowing

In this section, we illustrate the idea about handling
the problem of the snow particles in various sizes and
shape. The overall network is presented in Figure 3.
Initially, the input snow image is decomposed to high-
frequency components and a low-frequency component
(i.e., {𝐻𝐹1

1 , ..., 𝐻𝐹𝑘
1 } and 𝐿𝐹1 where 𝑘 is the number of

the subbands) via the DTCWT in the first level. Then, we
decompose the low-frequency component to the next level,
that is, the 𝐿𝐹1 is decomposed to {𝐻𝐹1

2 , ..., 𝐻𝐹𝑘
2 } and 𝐿𝐹2,

respectively. Following this operation, we decompose the
low-frequency component in each level recurrently to the
𝑖𝑡ℎ level. We apply the high-frequency reconstruction net-
work in each scale to remove the residual snow (small and
medium size) and recover the detailed information while the
low-frequency reconstruction network is applied to conduct
structural information recovery and the large snow particle
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Figure 3: The overview of the proposed architecture. The proposed network is based on hierarchical DTCWT decompo-
sition. 𝐻𝐹𝑘

𝑖
and ˆ𝐻𝐹𝑘

𝑖
denote the input and predicted high-frequency components with 𝑘 subbands at the 𝑖𝑡ℎ level.

removal. Then, the reconstructed low-frequency subband
(𝐿𝐹) and high-frequency subbands (𝐻𝐹) are combined by
the inverse DTCWT recurrently. By this decomposition and
reconstruction paradigm, each subband may contain shrunk
spatial resolution, which means that snow images are re-
constructed at small scales. Thus, removing snow streaks
and snowflakes with larger size may become easier. More-
over, with the better geometrical representation in multi-
directions, the snow information can be retrieved in the
high-frequency subband in each scale appropriately. There-
fore, based on the combination of these two mechanisms,
the snow particles with larger size and various shape can be
addressed effectively.
Network Architecture. The hierarchical dual-tree complex
wavelet representation network is divided into two parts: i)
high-frequency reconstruction (HR) and ii) low-frequency
reconstruction (LR). The two sub-networks leverage the
Res2Net [27] as the backbone. We further introduce the
multi-deconvolution [28, 29], the global convolution [30],
and the boundary refinement [30] into the network to im-
prove the performance. The detailed architecture is pre-
sented in the Supplementary Material. To improve the per-
formance of the sub-networks, we propose the aggregate
wavelet component (AWC) to provide the multi-scale spa-
tial information for two sub-networks.

𝐴𝑊𝐶𝑖 =

{
μ(I), 𝑖 = 1
[μ(𝐿𝐹1), ..., μ(𝐿𝐹𝑖−1), μ(I)], otherwise

, (3)

where AWC𝑖 and LF𝑖 denote the AWC and the low-
frequency component at the 𝑖𝑡ℎ level, respectively. [, ]
presents the concatenate operation, and μ is the multi-
pooling architecture [2] as:

μ(𝑞) = ∥
ρ∈ϕ

κτρ (𝑞), (4)

where κτρ () denotes the stride convolution operation with
the kernel size ρ and the dilated level τ, and ϕ ∈{2, 3, 5}
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Figure 4: Statistical investigation of the contradict chan-
nels. (a) Histogram of the pixel intensities on snow and
clean images in 789 images; (b) & (c) Cumulative distri-
butions of contradict channel in snow images and clean im-
ages, respectively. We adopt patch size of 35×35. The scale
in the x-axis is reversed for the better understanding.

is the scale range for the stride convolution. In this work,
the τ is set as 2. The idea of adopting the AWC is as fol-
lows. Compared to down-scale the input directly, the AWC
contains more semantic and contextual information from
the low-frequency components in different scales which can
benefit the reconstruction process. Furthermore, to prevent
the information loss in down-sampling, multi-pooling is ap-
plied. Note that, the architectures of both HR and LR sub-
networks are similar. However, more parallel kernels (i.e.,
kernel sizes with 2, 3, 5, 7, and 9) in the Res2Net and the
multi-pooling are used in LR, and its filter depth is wider
than that of HR because low-frequency component recov-
ery involves more complex semantic information.

3.3. Contradict Channel Loss

In this paper, we proposed a novel operation which can
identify the difference between snow and snow-free images.
We call it the contradict channel (CC), which is:

I𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡 (𝑥) = 𝑚𝑎𝑥
𝑦∈Ω(𝑥)

(
𝑚𝑖𝑛

𝑐∈{𝑟 ,𝑔,𝑏}
I𝑐 (𝑥)

)
, (5)
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Figure 5: The comparison of the dark channel, the bright
channel, and the contradict channel operation with 35×
35 patch size on snow-free (upper row) and snow (lower
row) images.

where I𝑐(x) is the intensity of the image in the color chan-
nel c and Ω(x) is a local patch with a fixed size centered at
x. Then, we apply the CC operation on snow images and
clean images, and investigate the histograms of them. The
results are presented in Figure 4. From this figure, we can
find an interesting phenomenon. Compared to clean images,
the CC of snow images may have much more pixels close
to one. The regions with snow particles have higher inten-
sity compared with snow-free regions. This phenomenon
is due to that: 1) snowflakes, 2) snow streaks, and 3) the
veiling effect. These materials will result in high intensity
in the contradict channel. On the other hand, compared to
snow images, clean images are usually full of objects with
vivid color, such as blue water, green grass/trees, and red
or yellow flowers, which may make the contradict channel
have lower intensity. We define this property as contradict
channel prior (CCP).

Compared with existing image priors such as the dark
channel prior (DCP) [31] and the bright channel prior
(BCP) [32], the CC can be more discriminative in the snow
scenario. The operation of these two priors can be expressed
as:

I𝐷𝑎𝑟𝑘 (𝑥) = 𝑚𝑖𝑛
𝑦∈Ω(𝑥)

(
𝑚𝑖𝑛

𝑐∈{𝑟 ,𝑔,𝑏}
I𝑐 (𝑥)

)
, (6)

I𝐵𝑟𝑖𝑔ℎ𝑡 (𝑥) = 𝑚𝑎𝑥
𝑦∈Ω(𝑥)

(
𝑚𝑎𝑥

𝑐∈{𝑟 ,𝑔,𝑏}
I𝑐 (𝑥)

)
, (7)

where I𝐷𝑎𝑟𝑘 and I𝐵𝑟𝑖𝑔ℎ𝑡 demonstrate the dark channel and
the bright channel operations. In Figure 5, we present the
dark channel, the bright channel, and the contradict chan-
nel of snow images, and their corresponding ground truths.
One can see that, although the dark channel in snow images
can retrieve the veiling effect information, the snow cannot
be extracted effectively because the dark channel operation
cannot detect the snow particles due to the minimum opera-
tion in the local patch. Regarding the bright channel, though
some snow information can be acquired, the representation
of snow may be limited due to the maximum operation in
the color channel, which may force the snow-free regions

with red, blue and green color to become one. It degrades
the discriminative ability of the bright channel for the snow
scene. Based on the analysis above, we can conclude that
the contradict channel can be a discriminative feature for
snow removal. The intensity of the contradict channel can
be regarded as a natural metric to distinguish snow-free im-
ages from snow images. Motivated by this property, we
construct a novel loss called the contradict channel loss to
benefit the training process of desnowing. The contradict
channel loss L𝐶𝐶 can be defined as:

L𝐶𝐶 = | |𝐶𝐶 (J) − 𝐶𝐶 (J𝐺𝑇 ) | |1, (8)

where 𝐶𝐶 () represents the contradict channel operation.
L𝐶𝐶 indicates the contradict channel loss, J denotes the
predicted snow-free image, and J𝐺𝑇 is the corresponding
ground truth.

3.4. Loss Function

The proposed network adopts three losses: (i) the com-
plex wavelet loss L𝐶𝑊 , (ii) the perceptual loss L𝑃𝑒𝑟 [33],
and (iii) the contradict channel loss L𝐶𝐶 .
Complex Wavelet Loss. The complex wavelet loss L𝐶𝑊

is proposed and defined as follows:

L𝐶𝑊 =
∑
𝑖

[√��(η̃π
𝑖
− ηπ

𝑖
) + 𝑗 (η̃π

𝑖
− ηπ

𝑖
)
��2 + 𝜖2

]
, (9)

where π ∈ {H, L}. ’H’ and ’L’ denote the wavelet coef-
ficients in high-frequency and low-frequency domains. ηπ

𝑖

and η̃π
𝑖

represent estimated wavelet coefficients and the cor-
responding ground truths at the 𝑖𝑡ℎ level, respectively. 𝜖 de-
notes the slack value which can prevent the high-frequency
wavelet coefficients from being zero to keep the texture de-
tails. Thus, we set 𝜖 = 0.02 when calculating the loss in the
high-frequency domain and set 𝜖 = 0 in the low-frequency
domain.
Overall Loss. In the proposed network, the overall loss
function is expressed as:

L𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = L𝐶𝑊 + 𝜆1L𝐶𝐶 + 𝜆2L𝑃𝑒𝑟 , (10)

where L𝑃𝑒𝑟 denotes the perceptual loss [33]. In this paper,
we set 𝜆1 and 𝜆2 as 2 and 0.1, respectively.

4. Experiments
4.1. Data Generation and Implementation Detail

To reflect the complicated constitution in real-world
snow scenarios, we construct a large-scale dataset called the
Comprehensive Snow Dataset (CSD). It consists of 10000
synthesized snow images. In the synthesis process, first, we
apply the famous haze dataset called RESIDE [39] and fol-
low the synthesized procedure in [2] to simulate the veiling
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Table 1: Quantitative analysis on three existing snow datasets. The proposed method can achieve the best results on
all datasets, which verifies the robustness of the proposed method. ’wDH’ and ’woDH’ denote the cases with and without
dehazing by the [34], respectively. Red numbers indicate the best results, and blue numbers are the second best results.

Dataset (size) Methods (PSNR/SSIM/CIEDE 2000)

Zheng [5] Eigen [35] DesnowNet [1] CycleGAN [36] DAD [37] All in One [38] JSTASR [2] Ours

Snow100K (2000) 23.86/0.82/3.90 20.12/0.72/6.40 30.50/0.94/2.31 26.81/0.89/5.73 24.93/0.84/7.61 26.07/0.88/5.53 23.12/0.86/6.31 31.54/0.95/2.18

SRRS (2000) wDH 19.12/0.80/8.25 17.36/0.66/9.69 20.38/0.84/7.53 20.21/0.74/8.20 24.31/0.86/6.41 24.98/0.88/4.98 25.82/0.89/7.18 27.78/0.92/3.64woDH 15.78/0.74/12.28 14.25/0.62/14.46 16.22/0.79/12.14

CSD (2000) wDH 20.21/0.79/7.56 18.63/0.66/8.62 20.13/0.81/6.01 20.98/0.80/6.38 24.33/0.85/7.38 26.31/0.87/5.13 27.96/0.88/6.47 29.06/0.91/3.22woDH 13.98/0.67/15.69 12.71/0.55/17.96 17.63/0.75/9.43

(a) (b) (c)

Figure 6: Examples of the proposed CSD dataset. (a) In-
put; (b) Ground truth; (c) Combined snow mask

effect. Then, we synthesize snowflakes and snow streaks
with different properties (i.e., transparency, size, and lo-
cation) based on the snow synthesis tutorial of Photoshop.
Furthermore, we adopt Gaussian blurring on snow particles
to better simulate the real-world snow scenarios. An ex-
ample of the snow image in the CSD dataset is shown in
Figure 6.

For the implementation detail, the learning rate is set as
10−4 and the Adam [40] optimizer is applied. We adopt the
4-level DTCWT. The proposed network was trained on a
Nvidia RTX Titan GPU and trained with 1000 epochs with
batch size 8. The proposed network is implemented on Ten-
sorflow platform. For the training data, we use 8000 images
from the CSD dataset. In each epoch, we split 30% training
data as the validation set.

4.2. Quantitative Evaluations

In this section, four existing methods which are designed
for the snow removal are adopted for comparison: Zheng et
al. [5], Eigen et al. [35], DesnowNet [1], and JSTASR [2]
(GAN-based method). Moreover, we adopt three meth-
ods (i.e., DAD [37], All in One [38], and CycleGAN [36])
which can address the degradation by different inclement
weathers. For an apples to apples comparison, we retrain
each model (if the original training code is provided) based
on our training dataset and report the best result. We evalu-
ate the proposed method on three datasets: Snow-100K [1],
SRRS [2], and CSD. The results are shown in Table 1. The
number of images in each dataset is shown after the name.

Image quality analysis. For quantitative evaluation, we ap-
ply three metrics: the structural similarity (SSIM), the peak

Table 2: Comparison of run time and the number of re-
quired parameters between the proposed method and
other learning-based methods for snow removal.

DesnowNet [1] JSTASR [2] Ours
Time (s) 1.38 0.87 0.14

Parameters 1.56 × 107 6.5 × 107 6.99 × 106

signal to noise ratio (PSNR), and the CIEDE2000 color
difference. From Table 1, one can see that the proposed
method outperforms other desnowing methods in all met-
rics. Compared with the second best algorithm, the PSNR,
the SSIM, and the CIEDE 2000 of the proposed method are
3.9% higher, 3.4% higher, and 37.2% lower in the CSD
dataset, respectively. It verifies that the proposed method
can achieve the best performance in image quality and color
fidelity.

Run time analysis. In Table 21, the run time and the
number of required parameters analysis are presented. We
compare our method with other learning-based snow re-
moval algorithms. The results indicate that the proposed
method requires much less computational resources than
other desnowing methods. The proposed method saves at
least 83% of running time and 55% of parameters.

4.3. Qualitative Evaluations

In Figure 7, some desnowing results from the real-world
dataset by using the proposed algorithm and other algo-
rithms are compared. One can see that the proposed method
can remove more snow particles compared to other meth-
ods. For the images recovered by other methods, the snow
particles and the veiling effect (see the 2𝑛𝑑 and the 5𝑡ℎ row)
cannot be removed clearly. Moreover, the results in the 3𝑡ℎ
row indicate that the proposed method can remove the snow
streaks effectively compared with other methods. There-
fore, the results prove that the proposed method has better
generalization ability on real-world scenarios.

1This result is tested on Nvidia GTX 1080ti GPU.
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Figure 7: Visual comparison between the proposed method and existing snow removal strategies.

Figure 8: Visual comparison for ablation study. We prove the effectiveness of DTCWT (1𝑠𝑡 row), hierarchical architecture
(2𝑛𝑑 row), and loss functions (3𝑟𝑑 row). (Zoom-in for better visual quality.)
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Table 3: Comparing the results that apply different fea-
ture extraction techniques.

Metric VC MC HLD DWT Ours
PSNR/SSIM 22.18/0.81 24.31/0.83 26.13/0.86 27.92/0.88 29.06/0.91

Table 4: Ablation study of the proposed hierarchical ar-
chitecture. Note that, H-4 is the proposed architecture in
this paper.

Metric H-1 H-2 H-3 B H-4 H-5
PSNR/SSIM 25.31/0.83 27.51/0.88 28.49/0.89 27.33/0.87 29.06/0.91 28.81/0.90

Table 5: Verification for effectiveness of proposed loss
functions.

Metric Baseline L𝐶𝑊 L𝐶𝑊 +L𝐷𝐶 L𝐶𝑊 +L𝐵𝐶 Ours
PSNR/SSIM 26.13/0.87 27.33/0.88 27.43/0.87 27.53/0.88 29.06/0.91

4.4. Ablation Study

To verify the effectiveness of each proposed module, we
divided the ablation study into three parts: effectiveness
of the DTCWT, the hierarchical architecture, and the loss
functions. All the experiments are evaluated and retrained
on the CSD dataset.

Effectiveness of DTCWT. To prove that leveraging
DTCWT can achieve the better performance for network
training, we replace DTCWT with four conventional fea-
ture extraction techniques in the proposed network. In Ta-
ble 3 and Figure 8, we adopt the vanilla convolution with
kernel size 3 × 3 (VC), the multi-convolution (MC) [41],
image-smoothing based high-low frequency decomposition
(HLD) [39, 42], and the DWT [24]. For a fair comparison,
except for the feature extraction technique, the rest part of
the network is the same architecture. From Table 3 and the
first row of Figure 8, we can find that using the DTCWT
for snow feature extraction can achieve much better recov-
ered results compared with other methods. Moreover, we
present the visual comparison for different settings. One
can observe that, with the embedding of the DTCWT, the
desnowed results can be more desirable than others.

Effectiveness of hierarchical architecture. To verify the
effectiveness of the hierarchical architecture, we construct
several settings for comparison, that is, (i) the proposed
hierarchical architecture which only decomposes the low-
frequency component in each level but with different level
of the DTCWT decomposition (H-1 to H-5); (ii) the pro-
posed hierarchical architecture (4-level decomposition) but
both high and low-frequency component are decomposed
in each level (B). The results are shown in Table 4 and the
second row of Figure 8. One can see that, the proposed ar-
chitecture (H-4) achieves the superior performance on snow
removal. The reason is that, for (i), one-level decompo-

sition cannot well decompose the snow particles into the
small scaled ones adequately. However, too much level of
decomposition may deteriorate the final result. For exam-
ple, for the input image size (480× 640), the subband in the
bottom level may lose spatial information after the 5-level
decomposition. In addition, for the setting in (ii), the per-
formance compared to our method is limited because the
number of recovered subbands is approximately four times
greater than that of H-4 and recovering excessive subbands
may degrade the quality of the results.
Effectiveness of loss functions. We evaluate the effective-
ness of the proposed loss functions, that is, L𝐶𝑊 and L𝐶𝐶 .
Moreover, we compared the L𝐶𝐶 with the dark channel loss
(L𝐷𝐶 ) and the bright channel loss L𝐵𝐶 . The comparison
is demonstrated in Table 5 and the third row of Figure 8.
’Baseline’ indicates the 𝐿2 loss on the final recovered re-
sult. Each combination in this experiment is trained with the
perceptual loss. The results indicate that with the proposed
two loss functions, the performance of the network can be
improved greatly compared with the baseline. Moreover,
compared with other existing loss functions (i.e., L𝐷𝐶 and
L𝐵𝐶 ), the CC loss can acquire more significant improve-
ment because the contradict channel is a discriminative fea-
ture for snow scenarios.

5. Conclusion
In this paper, a novel desnowing network to address the

limitations in current desnowing methods was proposed.
First, to handle the complicated snow scenario, a hierarchi-
cal network based on the DTCWT was developed. With the
better representation of snow features, the snowflakes, snow
streaks, and the veiling effect can be removed effectively.
Second, we develop a novel prior in snow images called the
contradict channel prior (CCP). Based on it, the contradict
channel loss was designed to improve the desnowing per-
formance. Last, a large-scale snow dataset called CSD was
proposed. It can interpret the real-world snow scenarios ef-
fectively compared with previous datasets. Experimental
results showed that the proposed method outperforms state-
of-the-art desnowing algorithms in desnowing and can ben-
efit high-level vision tasks.
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