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Abstract

The minimal geodesic models based on the Eikonal
equations are capable of finding suitable solutions in vari-
ous image segmentation scenarios. Existing geodesic-based
segmentation approaches usually exploit the image features
in conjunction with geometric regularization terms (such
as curve length or elastica length) for computing geodesic
paths. In this paper, we consider a more complicated prob-
lem: finding simple and closed geodesic curves which are
imposed a convexity shape prior. The proposed approach
relies on an orientation-lifting strategy, by which a planar
curve can be mapped to an high-dimensional orientation
space. The convexity shape prior serves as a constraint for
the construction of local metrics. The geodesic curves in
the lifted space then can be efficiently computed through
the fast marching method. In addition, we introduce a way
to incorporate region-based homogeneity features into the
proposed geodesic model so as to solve the region-based
segmentation issues with shape prior constraints.

1. Introduction

Image segmentation is a fundamental and challenging
problem posed in the fields of image analysis and com-
puter vision. In the past decades, a large variety of seg-
mentation approaches have been devoted to address the re-
lated segmentation problems. Among them, the energy
minimization-based models integrating with priors on the
target regions have proven to yield satisfactory solutions.
Prior-driven segmentation approaches. One widely con-
sidered geometric prior is to assume that the target bound-

aries appear to be short in terms of Euclidean curve length,
by which the image noises can be suppressed in some ex-
tent. Such a first-order geometric prior has been commonly
utilized in various energy minimization-based segmentation
approaches such as active contours [9, 10, 38] and graph-
based models [5,21]. Efficient higher order geometric priors
may include the curvature-penalized length term [3, 26, 43]
and data-driven weighted length [32, 42]. However, utiliz-
ing geometric regularity as a single prior is sometimes in-
sufficient to find favorable segmentations, especially when
dealing with images with complex intensity distribution. In
contrast, the strategy of incorporating shape-driven priors
into the objective energies can yield more accurate and ef-
ficient constraints for segmentation. These priors are often
carried out via a statistical model about the target regions or
contours [6,8,22,23,40]. The implementation of the shape-
driven priors is capable of encouraging satisfactory segmen-
tations, even in the absence of reliable image appearance
features which are used to distinguish disjoint regions.

Recently, the shape constraints associated to the convex-
ity and star convexity were regarded as flexible shape priors.
Existing approaches in conjunction with these shape priors
can be loosely categorized as either discrete or continuous
types. In the discrete setting, the convexity prior [28], the
star convexity prior [46], or geodesic star convexity [29]
are characterized as a regularization term to construct the
discrete energy functionals together with image data-driven
terms. The energy minimization can be addressed by the
graph cut algorithm [5]. In [27, 41], the convexity prior
was incorporated into graph-based segmentation framework
to solve multi-region segmentation tasks. The hedgehog-
like shape prior [31] generalizes the geodesic star convexity
constraint [27] to enlarge the applicable scope of the orig-
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Figure 1. Image segmentation results respectively derived from the region-based region-based geodesic model, the EM Elastica geodesic
model and the proposed elastica geodesic model with convexity shape prior.

inal case. Isack et al. [30] proposed a flexible k-convexity
shape prior model allowing overlaps between different re-
gions. However, these graph-based approaches with con-
vexity constraint did not consider curvature regularization.

In the continuous setting, the convexity prior is usu-
ally exploited in the active contours approaches [33, 47, 48]
based on the level set formulation [39]. To be specific,
in [48] the sign of the curvature was used to penalize the
concave portion of the evolving contour implicitly repre-
sented by a level set function. While in [33, 47], the au-
thors established the relationship between the Laplacian of
a level set function and the convexity property of its zero-
level lines, where the shape prior redefines the searching
space for optimal curve. Bae et al. [3] illustrated that mini-
mizing an energy regularized by a L1-variant of Euler elas-
tica length, which serves as a regularization term, is able to
encourage the final segmentation shape to be convex. How-
ever, the convexity prior in this model is regarded as a way
of implicit constraint, which heavily depends on the impor-
tance to the respective regularization term.

Geodesic models. The geodesic active contour mod-
els [7,32,34,49] address the edge-based segmentation prob-
lems by minimizing a weighted curve length via a gradient
descent scheme. However, the local minimization scheme
may lead to demanding requirement on the initialization and
high sensitivity to spurious edges or noise. Cohen and Kim-
mel [20] proposed a minimal path model to globally mini-
mize a weighted curve length w.r.t. isotropic metrics [7] un-
der the eikonal equation framework. In this paper, we are in-
terested in finding geodesic paths with convexity shape pri-
ors. In general, the weighted length of a curve can be mea-
sured via a Finsler metric. Many geodesic approaches have
contributed to develop various Finsler metrics to generate
suitable geodesic paths in different situations [4,13,18,19].
Chen et al. [12,13] introduced to construct Randers metrics
which encode region-based homogeneity features, bridging
the gap between the eikonal equations and the region-based
active contours. In [11, 16, 17], asymmetric metrics are ex-
ploited for image segmentation using the tool of Voronoi
diagram. The curvature-penalized geodesic models [14,25]
considered an idea of orientation lifting to solve the high-
order geodesic computation problems. Using suitable re-
laxation, the geodesic distances and geodesic paths with

curvature regularization can be efficiently estimated by the
Hamiltonian fast marching (HFM) method [35].

Despite great advances, only the geometric priors are uti-
lized in existing minimal geodesic approaches. In Fig. 1,
we show a comparison example for geodesic curves de-
rived from the region-based geodesic curves [12, 13], the
Euler-Mumford (EM) elastica model [14] and the proposed
geodesic model with convexity shape prior. In order to
bridge these gaps, we proposed a new elastica geodesic
model by integrating image features and convexity shape
prior, which to our best knowledge is original. In summary,
the contributions of our work are threefold:
Firstly, we introduce a new elastica geodesic approach im-
posed with the constraint of the convexity shape prior. The
convexity restriction of geodesic curves is carried out by the
sign of their curvature, which is encoded into a new type of
geodesic metrics established in an orientation-lifted space.
Secondly, we discuss the solutions for the computation of
simple closed and convex geodesic paths. In numerical con-
sideration, we adopt the HFM method [35] as the numerical
solver, for which the stencils are adaptively generated by the
proposed geodesic metric with a convexity shape constraint.
Finally, Both the region- and edge-based features are taken
into account in the proposed geodesic model. The proposed
model can blend the benefits from the convexity shape prior,
curvature regularization and region-based homogeneity fea-
tures. In addition, we propose an efficient way to incorpo-
rate user intervention for the computation of geodesic paths
and for interactive image segmentation.

The structure of this paper is organized as follows. Sec-
tion 2 gives the background on the elastica geodesic model
and the Eikonal active contour model. The new elastica
geodesic models with convexity shape prior are presented
in Sections 3 and 4. The experimental results and the con-
clusion are respectively presented in Sections 5 and 6.

2. Background
Notations. Let M := Ω× S1 be an orientation-lifted space,
where Ω ⊂ R2 is a bounded domain, and S1 := R/2πZ can
be identified with [0, 2π[ equipped with a periodic boundary
condition. A point x = (x, θ) is a pair comprised of a phys-
ical component x and an angular coordinate θ. For each
x ∈M, we denote by ẋ = (ẋ, θ̇) ∈ R2×R a tangent vector
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at x. In the following, we use the notation E := R2 × R to
represent the tangent space to M at any base point x. In ad-
dition, we denote by a+ := max{0, a} the positive part of
a real number a ∈ R, and let by convention a2+ := (a+)2.

2.1. EM Geodesic Model

Orientation lifting for curvature representation. The
proposed model with convexity shape prior is established
partially upon the curvature-penalized geodesic models [14,
25, 35]. The foundation of these models is to evaluate cur-
vature using an orientation lifting. Consider a smooth curve
γ : [0, 1] → Ω, with non-vanishing velocity1. Then there
exists a unique η : [0, 1]→ S1 obeying for all % ∈ [0, 1]

γ′(%) = (cos η(%), sin η(%))T ‖γ′(%)‖. (1)

In other words, η(%) encodes the tangent direction at γ(%).
By Eq. (1), we define the orientation-lifted curve

Γ = (γ, η) : % ∈ [0, 1] 7→ Γ(%) ∈M, (2)

whose first-order derivative is defined as Γ′(%) =
(γ′(%), η′(%)) ∈ E. In addition, the curvature κ : [0, 1]→ R
of the smooth curve γ is obtained as

κ(%) = η′(%)/‖γ′(%)‖. (3)

We refer to γ as the physical projection of Γ.
Euler-Mumford elastica approach. In [14], the authors
introduced a weighted curve length with curvature penalty,
defined as follows for a smooth curve γ

LEM(γ) :=
∫ 1

0
ψ(γ(%), η(%)) (1 + β2κ(%)2)‖γ′(%)‖d%.

The parameter β ∈ R+ has the dimension of a radius of cur-
vature, and modulates the strength of the curvature penalty.
For simplicity, and up to a rescaling argument, we assume
β = 1 in the rest of this description. The cost function
ψ : M → R+ is orientation-dependent and derived from
image gradients [14]. A defect of LEM is that it features
second-order derivatives of γ, implicitly through the curva-
ture κ, and is thus not directly amenable to global optimiza-
tion via optimal control methods. Accordingly, an equiva-
lent energy LEM is defined using the orientation lifting (2)

LEM(Γ) =
∫ 1

0
ψ(Γ(%))FEM(Γ(%),Γ′(%)) d%, (4)

where FEM : M × E → [0,∞] is a Finsler metric defined
for any point x = (x, θ) ∈ M and any non-zero vector
ẋ = (ẋ, θ̇) ∈ E as follows

FEM(x, ẋ) =

{
‖ẋ‖+ θ̇2

‖ẋ‖ , if ẋ ∝ ϑθ,
∞, otherwise,

(5)

1The non-vanishing velocity assumption is implicit in the sequel.

where ϑθ = (cos θ, sin θ)T is the unit vector related to
θ ∈ S1, and “∝” indicates positive collinearity. The equiva-
lence of LEM with LEM follows from the expression (3) of
the curvature κ. In order to compute the minimal geodesic
curve from a source point p ∈ M to a target point x ∈ M,
we first estimate a geodesic distance mapDp : M→ [0,∞)

Dp(x) = inf
Γ
{LEM(Γ); s.t. Γ(0) = p, Γ(1) = x}.

In the following, we omit the dependence of the distance
map D := Dp on the source point p. This map is the vis-
cosity solution to an eikonal equation based on the Hamil-
tonianHEM of the model [35, 44]

HEM
x (dD(x)) = 1

2ψ(x)2, ∀x ∈M\{p}, (6)

with D(p) = 0 and outflow boundary condition on ∂M,
where dD is the differential ofD. The HamiltonianHEM is
defined from the metric FEM by Legendre-Fenchel duality

HEM
x (x̂) = 1

8

(
〈x̂, ϑθ〉+

√
〈x̂, ϑθ〉2 + θ̂2

)2
, (7)

for any base point x = (x, θ) ∈ M and any co-tangent vec-
tor x̂ = (x̂, θ̂) ∈ R2×R. An equivalent integral expression
ofHEM can be derived

HEM
x (x̂) = 3

8

∫ π/2
−π/2

(
〈x̂, ϑθ〉 cosϕ+ θ̂ sinϕ

)2
+

cosϕdϕ.

(8)
Using the Fejer quadrature rule for integrals, and techniques
from discrete geometry, one obtains the approximation [35]

HEM
x (x̂) = 1

2

∑
1≤i≤I ρ

θ
i 〈x̂, ėθi 〉2+ + ‖x̂‖2O(ε2), (9)

where I is a positive integer, ρθi ≥ 0 is a non-negative
weight associated to θ, and ėθi ∈ Z3 is an offset with in-
teger components, for all 1 ≤ i ≤ I . The construction [35]
involves a relaxation parameter ε > 0, chosen in practice as
ε = 0.1 with I = 30 offsets. A finite differences discretiza-
tion of the eikonal equation (6), is obtained as a result∑

1≤i≤I ρ
θ
i

(
D(x)−D(x−hėθi )

h

)2
+

= ψ(x)2, (10)

with consistency error O(h + ε2), where h > 0 is the grid
scale. The numerical solution to (10) can be accurately es-
timated by the HFM method [35, 37], see Section 4.

Once the map D is estimated, a geodesic G from the
source point p to any target x ∈ M, can be backtracked,
by solving a simple ODE backwards in time. Namely one
sets G(T ) = x, where T = D(x) is the arrival time, and
G′(%) = V(G(%)) for all % ∈ [0, T ], where the geodesic
flow V is obtained symbolically and numerically

V(x) =
dHEM

x

dx̂
(dD(x)), (11)

=
∑

1≤i≤I ρ
θ
i

(
D(x)−D(x−hėθi )

h

)
+

ėθi +O(h). (12)

Then one can re-parameterize G to generate a new geodesic
path Gp,x defined over the range [0, 1].
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2.2. Region-based Eikonal Active Contour Model

We briefly review the region-based Eikonal active con-
tour (EAC) model [13, 15], which is used in this paper to
build the cost function ψ in Eq. (5). We start from a typical
active contour energy comprising of a region-based homo-
geneity term Er and a regularization term Ee

E(C) := µEr(C) + Ee(C), (13)

where µ ∈ R+ is a weight parameter and C : [0, 1] → Ω is
a closed contour with counter-clockwise order. The compo-
nent Ee is a weighted curve length associated to a Rieman-
nian metric, of the form Ee(C) =

∫ 1

0
‖C′(%)‖M(C)d%. The

metric tensor M is here derived from the image gradients,
and such that

√
〈ẋ,M(x)ẋ〉 = ‖ẋ‖M(x) is low [14] if an

edge passes through the point x ∈ Ω with tangent ẋ ∈ R2.
The region-based functionalEr measures the homogene-

ity of image features in each region. In this section, we take
the region competition model [50] with the Gaussian mix-
ture model (GMM) as an example to formulate the term Er

Er(C) =
∫
R1
ξ1(x)dx+

∫
R2
ξ2(x)dx,

where R1 and R2 are the regions inside and outside C, re-
spectively. The functions ξi : Ω → R measure the image
homogeneity within each region Ri. In this paper, we com-
pute each ξi using a Gaussian mixture model, for which the
probability distribution function (PDF) Pi(z; Θi) are taken
as a weighted sum of N Gaussian PDFs. In this case, one
has ξi(x) = − log

(
Pi(f(x); Θi)

)
, ∀x ∈ Ω, where Θi are

the parameters of the GMM and f : Ω→ Rd is a gray level
image for d = 1 or a color image for d = 3.

In the EAC model [12, 13, 15], a key ingredient is to ex-
press, using Stokes theorem, the energy (13) as a weighted
curve length. In other words, E(C) ≈ LEAC(C) + c, where
c is a constant and where

LEAC(C) =
∫ 1

0

(
‖C′‖M(C) + µ〈ω(C), C′〉

)
d%. (14)

The vector field ω : U → R2 is defined over an open and
bounded subregion U ⊂ Ω. As in [12, 15], it is obtained as
the solution of the following linear PDE problem

min
∫
U
‖ω‖2dx, s.t. curlω = ξ1 − ξ2 on U.

The weighted curve length (14) is an instance of Randers
geometry, defined by the non-symmetric metric

R(x, ẋ) = ‖ẋ‖M(x) + µ〈ω(x), ẋ〉. (15)

As discussed in [13, 15], the positivity of R can be ensured
by using a sufficiently small subregion U , or invoking a new
vector field induced from ω. Computing minimizers of (14)
can be achieved by numerically solving an eikonal equation
with Randers anisotropy, leading to a robust minimization
procedure for the active contour energy (13) [12, 13, 15].

3. Elastica Curves with Convexity Prior
Definition 1 A simple closed planar curve γ, smooth and
parametrized in counter-clockwise order, is said convex iff
its curvature κ in Eq. (3) is non-negative.

3.1. Elastica Metric with Convexity Shape Prior

We introduced in Section 2.1 the EM elastica path length
LEM, which we reformulated using orientation lifting (2)
and a suitable metric FEM in Eq. (5). Globally optimal
geodesics can be computed numerically, by solving a gen-
eralized Eikonal PDE (6), involving a suitable Hamiltonian
(7), using a finite differences scheme (10).

We take here the opposite route, starting from a modified
finite differences scheme - which ensures that our approach
is practical - all the way back to a variant of the elastica met-
ric embedding the constraint that curvature is non-negative,
consistently with Definition 1. The modified scheme reads

∑
1≤i≤I ρ̃

θ
i

(
D(x)−D(x−hėθi )

h

)2
+

= ψ(x)2, (16)

where ρ̃θi = ρθi if 〈ėθi , (0, 0, 1)T 〉 ≥ 0, and ρ̃θi = 0 other-
wise, for all 1 ≤ i ≤ I . Excluding finite differences offsets
ėθi whose third component is negative, as we do here and
in contrast with the original scheme (10), ensures that the
angle θ which is the third component of x = (x, θ) ∈ M is
non-decreasing as the front propagates.

Let us emphasize that the modified finite differences
scheme is sufficient to fully implement the numerical
method, both the Eikonal solver and the backtracking ODE,
by a straightforward adaptation of the geodesic flow (11)
(featuring HC and ρ̃θi ). The computations below are thus
only intended to provide insight on the nature of the PDE
that is solved and of the geodesic model that is globally op-
timized by the method. By construction, comparing with
equations (9) and (10), the modified scheme corresponds to
the Hamiltonian representation

HC
x (x̂) = 1

2

∑
1≤i≤I ρ̃

θ
i 〈x̂, ėθi 〉2+ + ‖x̂‖2O(ε2), (17)

where x = (x, θ) ∈ R2 × S1 and x̂ = (x̂, θ̂) ∈ R2 ×R. An
exact integral expression is obtained as I →∞ and ε→ 0

HC
x (x̂) := 3

8

∫ π
2

0

(
〈x̂, ϑθ〉 cosϕ+θ̂ sinϕ

)2
+

cosϕdϕ. (18)

Note that the proposed integral in Eq. (18) starts at 0, instead
of −π2 inHEM. By introducing polar coordinates, one has

HC
x (x̂) = r2~C(φ), with (〈x̂, ϑθ〉, θ̂) = r(cosφ, sinφ),

where r > 0 and φ ∈ [−π, π], and where ~C reads as

~C(φ) := 3
8

∫ π/2
0

(cos(ϕ− φ))2+ cosϕdϕ.
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Figure 2. Left: Finite difference stencil of (10) and (16) with
dashed arrows when 〈ėθi , (0, 0, 1)T 〉 < 0. Right: Unit vectors
in tangent space for EM elastica model, and the variant with con-
vexity prior. Set of all (ṡ, θ̇) such that FC(x, (ṡϑθ, θ̇)) = 1 (solid
line), and likewise for FEM (dashed line)

Distinguishing cases, we obtain a closed form expression of
~C, hence also of the modified HamiltonianHC, as follows

~C(φ) =
1

8


0 if φ ∈ [−π,−π2 ],

2 cosφ+ 2 cosφ sinφ if φ ∈ [−π2 , 0],

1 + cos2 φ+ 2 cosφ sinφ if φ ∈ [0, π2 ],

1 + cos2 φ+ 2 cosφ if φ ∈ [π2 , π],

The metric FC of the proposed geodesic model can
be expressed in terms of the Hamiltonian HC using
Legendre-Fenchel duality: 1

2F
C(x, ẋ)2 = maxx̂{〈x̂, ẋ〉 −

HC(x, x̂)}. Considering a non-zero vector ẋ = (ẋ, θ̇) ∈ E
and denoting ṡ := ‖ẋ‖ one has

FC(x, ẋ)2 =
+∞, if θ̇ < 0 or ẋ 6∝ ϑθ,
(ṡ+ θ̇2/ṡ)2, if 0 ≤ ṡ ≤ θ̇,
4(ṡ2 − 2ṡθ̇ + 2θ̇2), if 0 ≤ θ̇ ≤ ṡ ≤ 2θ̇,
8

27θ̇
(9ṡθ̇2 + ṡ3 + (ṡ2 − 3θ̇2)

3
2 ), if 0 ≤ 2θ̇ ≤ ṡ.

As expected, the metric FC assigns an infinite cost to vec-
tors whose angular velocity component θ̇ is negative. The
path lengthLC associated toFC, similarly to Eq. (4), is thus
infinite for curves whose curvature κ takes negative values.
Note that FC and FEM coincide in the regime 0 ≤ ṡ ≤ θ̇
which corresponds of a curvature κ = θ̇/ṡ ≥ 1. The set of
all (ṡ, θ̇) such that FC(x, (ṡϑθ, θ̇)) = 1, and likewise for
FEM, are illustrated on Fig. 2.

3.2. Searching Space for Convex Geodesics

The goal is to detect simple closed and convex curves C
to describe target boundaries, whose orientation-lifting G =
(C, η) defined by (2) is a minimizer ofLC. For that purpose,
we introduce a way of integrating the circular geodesic
(CG) model [2] and the total curvature into the computa-
tion of geodesic distances associated to FC. Specifically,
the CG model ensures that a closed geodesic G is obtained,
while the bound on the total curvature eliminates curves
whose physical projection C has self-intersections.

(a) (b)

Figure 3. a and b: The black dash lines and the arrows indicate
the ray line 7−−zp and the direction of (cos θp, sin θp)T , respectively.
The red and blue curvilinear regions in figure (b) are the scribbles.

The CG Model. At the initialization stage, we exploit two
points p = (p, θp) ∈ Ω × S1 and z ∈ Ω to set up the
CG method [2], where p is placed on the boundary of the
target region, with tangent orientation θp, and z is a point
inside the target region. This initialization allows the user
to guide the image segmentation in a simple and reliable
manner. The ray (half line) originating from z and pass-
ing through p is denoted by 7−−zp ⊂ Ω. See Fig. 3a, where
the angular component θp of p is indicated by the arrow
(cos θp, sin θp)

T . We consider the following set Φ1( 7−−zp), of
curves γ : [0, 1]→ Ω with C2-regularity

Φ1( 7−−zp) :=
{
γ; Indγ(z) 6= 0, γ(0) = γ(1) ∈ 7−−zp,

γ(%) /∈ 7−−zp,∀% ∈]0, 1[
}
, (19)

where Indγ(z) is the winding number of γ about the point
z. Any curve γ ∈ Φ1( 7−−zp) is by construction closed and
encloses the point z, as illustrated on Fig. 3a, where γ is
shown as the red solid line. As in [2], the ray line 7−−zp is taken
as a cut to disconnect the two sides of 7−−zp in the domain Ω,
allowing to efficiently track closed geodesic paths.
Total Curvature. The total curvature K(γ) of a smooth
curve γ ∈ C2([0, 1],Ω) is obtained as

K(γ) =
∫ 1

0
κ(%) ‖γ′(%)‖ d% =

∫ 1

0
η′(%) d%, (20)

where κ is the curvature (3) and η is the orientation lift-
ing (1). If the curvature κ is non-negative, a property en-
sured by our geodesic metric FC (see Section 3.1), then
K(γ) coincides with the absolute curvature of γ. We let

Φ2 :=
{
γ ∈ C2([0, 1],Ω); K(γ) = 2π

}
. (21)

Note that K(γ) ∈ 2πZ when γ : [0, 1] → Ω is a smooth
closed curve such that γ′(0) ∝ γ′(1).
Search Space for Geodesic Paths. The search space for
geodesic paths, for which the physical projections are sim-
ple closed and convex curves, is obtained by combining the
constraints of the CG model, of prescribed total curvature,
and of non-negative curvature.

Proposition 1 Consider a smooth curve γ : [0, 1] → Ω
with curvature κ : [0, 1] → R. Then the curve γ is simple,
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Algorithm 1: Geodesic Distances Estimation
Input: A source point p and the set Send.
Output: Geodesic distance map D.

1 • Set D(p) = 0 and D(x) =∞, ∀x ∈Mh\{p}.
2 • Set Ξ(x)← Trial and K̃(x) = 0, ∀x ∈Mh.
3 • Construct the neighbourhood N and set xm ← p.
4 while xm /∈ Send do
5 Find xm minimizing u among all Trial points.
6 Set Ξ(x)← Accepted.
7 Update K̃(xm) using the equation (24).
8 if K̃(xm) ≤ 2π then
9 foreach y ∈ Ñ(xm) s.t. Ξ(y) = Trial do

10 Update D(y) by solving the upwind
discretization of the equation (23).

11 else
12 D(xm)←∞.

closed and convex, and encloses the point z, if γ ∈ Φ1( 7−−zp)
∩ Φ2 and κ(%) ≥ 0 for any % ∈ [0, 1].

The search space for geodesic paths is defined as

Φp := {Γ = (γ, η); γ ∈ Φ1( 7−−zp)∩Φ2, Γ(0) = Γ(1) = p}.

Our numerical method is designed to extract the geodesic
path Gp which is the global optimum of the problem

Gp = arg min
Γ∈Φp

{
∫ 1

0
ψ(Γ(ρ))FC(Γ(%),Γ′(%)) d%}. (22)

The orientation-lifted curves Γ ∈ Φp with finite energy
obey FC(Γ(%),Γ′(%)) < ∞, ∀% ∈ [0, 1], which by con-
struction of FC implies both the lifting property (1) and the
non-negativity of the curvature of γ.
Remark. The proposed model allows user to provide scrib-
bles inside and outside the target region. One can randomly
choose a point x from an interior scribble, yielding a seg-
ment [z, x]. The segment [z, x] and the scribble serve as an
obstacle such that no curve is allowed to passed by it. More-
over, we can sample a point y from each individual exterior
scribble, leading to a segment [y, q], where q ∈ ∂Ω is a
boundary point being such that the vector z − y is propor-
tional to y− q. Then, this exterior scribble and the segment
[y, q] form a new obstacle. We illustrate these obstacles in
Fig. 3b by red dash lines.

4. Hamiltonian Fast Marching Solver
The HFM method [35–37] is a state-of-the-art numerical

solver of generalized eikonal equations. It expects a do-
main discretized on a Cartesian grid, Mh := (Ω ∩ hZ2) ×
(hZ\2πZ) a subset of M, where h = 2π/Nθ withNθ as the
number of discrete orientations.

Adaptive stencil construction. The HFM method takes its
name from a specific representation or approximation of the
Hamiltonian of the eikonal equation, as a sum of squares of
positive parts, similar to Eq. (9) or sometimes slightly more
general [37]. Crucially, this representation must only fea-
ture non-negative weights, and offsets with integer coordi-
nates, as in Eq. (9). Its design constitutes the main origi-
nality of the HFM method, but is outside the scope of this
paper. Depending on the original form of the Hamiltonian,
intermediate reformulations may be employed e.g. from (7)
to (8), as well as variety of tools from discrete geometry
such as Voronoi’s first reduction of quadratic forms [36].
This paper differs from previous works [35–37] in the sense
that we start from the numerical scheme (16), and derive
from it a closed form expression of the Hamiltonian HC

and metric FC, see Section 3.1.
The HFM method computes the numerical solution D :

Mh → R+
0 to the numerical scheme (16) (or likewise (10)).

For that purpose, when adequate, the value D(x) at a point
x ∈ Mh is updated by solving locally the upwind dis-
cretization of the eikonal equation. In other words, with
the notations of (16), we set D(x)← λ, where λ obeys∑
i∈I(x)

ρ̃θi h
−2(λ−D(yi))

2
+ = ψ(x)2, with yi := x−hėθi ,

(23)
and where I(x) ⊂ {1, · · · , I} is a set of valid indices.
Solving for λ in Eq. (23) is a straightforward operation.
Note that yi is a point of the Cartesian grid hZ3 since the
offset ėθi has integer coordinates, for any 1 ≤ i ≤ I . How-
ever i is removed from I(x) under two conditions: (i) if
yi lies outside the domain Mh, which implements outflow
boundary conditions, and (ii) if the segment [x,yi] inter-
sects2 the wall 7−−zp ×S1, which enforces the closedness con-
dition (19). Notice that Point (ii) was developed specifically
for the CG model.

We let N(x) := {yi; i ∈ I(x)} denote the stencil at x,
and Ñ(x) := {y ∈Mh; x ∈ N(y)} the reversed stencil.
Single-pass HFM algorithm. At the initialization stage,
the HFM method tags each grid point x ∈Mh as Trial. We
set the geodesic distances D(x) =∞ for all the grid points
x ∈ Mh\{p} and set D(p) = 0 for the source point. Dur-
ing the front propagation, the HFM method finds a point xm

with the smallest distance value among all Trial points. This
point xm is immediately tagged as Accepted. Then for each
point y ∈ Ñ(xm) of the reversed neighborhood, the dis-
tance D(y) is updated by solving the upwind discretization
of the eikonal equation (23), taking only into account the
values of D corresponding to previously Accepted points.
Computation of the total curvature. In [24], the authors
introduced an efficient method which can simultaneously

2We allow the intersection between [x,yi] and 7−−zp ×S1 for the case
x ∈ 7−−zp ×S1 and the vector yi − x points to the left side of 7−−zp ×S1.
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Figure 4. Qualitative comparison with the model [28]. The original
images are shown in column 1. The segmentations in columns 2
and 3 are derived from [28] and the proposed model, respectively.

compute the geodesic distances and the Euclidean distances
between the source point p and any target point x in an
accumulation manner. As a result, the Euclidean length of
each geodesic path can be estimated without backtracking
these paths, which reduces computation time. In this paper,
we adapt the method of [24] to compute simultaneously the
length D(x) = LC(Gp,x) of the geodesic Gp,x = (γ, η)

reaching the point x, and its total curvature K̃(x)

K̃(x) := K(γ) =
∫ 1

0
η′(%)d%.

For that purpose, we note that the total curvature map K̃
obeys a linear PDE, involving the geodesic flow vector field
V : M→ R2 × R used in geodesic backtracking (11)

〈∇K̃,V〉 = V3, where V3 := 〈(0, 0, 1)T ,V〉.

In addition, the numerical method yields a simple and in-
trinsic approximation of the geodesic flow (11), of the form
V(x) =

∑
i∈I(x) τiė

θ
i + O(h) with the notations of (23).

Thus one has, using an upwind finite differences scheme( ∑
i∈I(x)

τi

)
K̃(x) =

∑
i∈I(x)

τiK̃(yi) + hV3(x) +O(h2).

(24)
We solve for K̃(x) when the point x is Accepted, using this
linear equation and omitting the O(h2) term. For all i ∈
I(x) such that τi > 0, one has D(x) > D(yi), since yi
was previously Accepted. If the value of K̃(x) > 2π, then
we set D(x) =∞ to avoid the self-crossing problem.

In Algorithm 1, we summarize this variant of the HFM
for computing the geodesic distance map u. The front prop-
agation is terminated when any end point xe ∈ Send is
tagged as Accepted, where the set Send ⊂ Mh collects all
the immediate neighbors of p = (p, θp) ∈ Mh on the cor-
rect side of 7−−zp ×S1. The desired geodesic path, defined in
Eq. (22), is then backtracked by Eq. (11).
Computation of the cost function. The length LEAC in
Eq. (14) can be interpreted in the framework of Section 2.1,
by choosing the cost ψ(x, θ) = R(x, ϑθ), and β = 0. This

Figure 5. Qualitative comparison with the EAC model (column 1)
and the original elastica model (column 2). The results in column
3 are derived from the proposed model.

leads to the possibility of integrating the regional homo-
geneity features and curvature regularization for tracking
geodesic paths. However, such an interpretation is not what
we do in this paper, opting instead for an exponential cost

ψ(x, θ) =

{
exp(αR̃(x, ϑθ)), ∀x ∈ U,
∞, otherwise

and β > 0, where R̃(x, θ) is defined as

R̃(x, θ) =
‖ϑθ‖M(x)

max(x̃,θ̃)∈M ‖ϑθ̃‖M(x̃)
+

µ〈ϑθ, ω(x)〉
maxy∈U ‖ω(y)‖

.

This construction of the cost function proves to be very ef-
ficient in practice. Note that the subdomain U ⊂ Ω should
be understood as a search space for geodesic paths such
that any geodesic curve Gp = (Cp, ηp) obeys Cp(%) ∈
U,∀% ∈ [0, 1]. Up to curve evolution scheme, the goal is to
produce sequences (Cj)j≥0 of geodesic curves which solve
the problem (22), and the subregion U at the j-th iteration
is defined as a tubular neighbourhood of Cj−1. The ini-
tial curve C0 is required to be simple, closed and convex.
Since the edge-based features are independent to the evolv-
ing curves Cj , such an initial curve C0 can be produced using
edge-based features only, implemented by using ψ(x, θ) =
exp(α‖ϑθ‖M(x)/max(x̃,θ̃)∈M ‖ϑθ̃‖M(x̃)),∀x ∈ Ω.
Computation time. For a given metric FC and a given
grid Mh, the computation complexity is bounded by the
anisotropy ratio [35] which is determined by the relaxation
parameter ε. We report the running time of Fig. 1 with
ε = 0.1, where the size of the grid is 346 × 599 × 60.
The CPU-implemented HFM method requires around 38
seconds under a suitable stopping criterion, while a GPU-
implemented numerical solver requires around 2.5 seconds.

5. Experimental Results
In this section, we illustrate the advantages of using the

convexity shape constraint and curvature regularization for
interactive image segmentation. In the following experi-
ments, we provide scribbles within the target regions and
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source positions p with tangents (cos θp, sin θp)
T to set up

the proposed model. Accordingly, the original point z is
obtained as the barycentre point of the convex hull of the
union of the scribbles and the source position.

In Fig. 4, we illustrate the qualitative comparison results
with the graph-based model [28] which also features con-
vexity shape prior. In column 1, we show the original im-
ages [1] with scribbles (blue and red curvilinear regions),
and source positions with given tangents, where cyan dots
represents source positions p. The cyan arrows are posi-
tively collinear to (cos θp, sin θp)

T . Each red line represents
the small neighbourhood of the segment between the point
z and the boundary ∂Ω. These scribbles are taken as input
for model [28]. In Fig. 4, we can see that the segmentations
from the proposed model can accurately capture the desired
boundaries. In contrast, the segmentation regions from [28]
appear to be convex, but fail to depict the targets.

In Fig. 5, we compare the proposed model to state-
of-the-art geodesic models. Specifically, the segmenta-
tion results from the EAC model [13, 15], the EM elas-
tica model [14] and the proposed model are respectively
depicted in columns 1 to 3. The cyan dots and the corre-
sponding arrows indicate the source positions and the tan-
gents. The blue curvilinear regions indicate the scribbles
inside the target regions. For the EM elastica model, only
the edge-based features are used for segmentation. From
this experiment, one can point out that only the proposed
model are capable of finding suitable segmentation results.

We also evaluate quantitative comparisons on 43 CT im-
ages [45], where the target regions of the test images are
approximately convex. In order to illustrate the advantages
of the proposed model which encodes convexity shape prior
and curvature regularization, we add Gaussian noise to each
test image. Two examples of these CT images are shown
at the bottom of Fig. 6. The quantitative evaluation for the
EAC model, the EM elastica model and the proposed model
is carried out by the Jaccard Index. Here we exploit only
the edge-based cost function for the EM elastica model.
The boxplots of the Jaccard Index values from the consid-
ered models are exhibited at the top of Fig. 6. Again, we
observe that the proposed model achieves the best perfor-
mance among the compared approaches. In this experiment,
we only exploit the points z and p = (p, θp) as initializa-
tion to set up the EAC and EM elastica models. The point
z for each test image is taken as the barycentre point of the
target region. Each source point p is randomly chosen from
the ground truth boundary, while the angular coordinate θp
is set as the counter-clockwise tangent of the boundary at p.

6. Conclusion
In this paper, we show the possibility of integrating the

convexity shape prior, the EM elastica term and the region-

Figure 6. Top: Box plots of the Jaccard index values on 43 CT im-
ages with Gaussian noise for the EAC model, EM elastica model
and the proposed model. Bottom: Segmentations on two examples
of CT images, where columns 1 to 3 show the results respectively
from the EAC model, EM elastica model and the proposed one.

based homogeneity features into the computation of simple
closed and convex curves. One main contribution lies at the
introduction of a variant of the original EM elastica Hamil-
tonian in order to induce new asymmetric geodesic metrics
which encode the convexity shape constraint. As a second
contribution, we introduce efficient numerical solutions for
computing orientation-lifted geodesic curves based on the
HFM method, whose physical projection curves are simple
closed and convex. Experiments show that the proposed
model indeed obtains promising segmentation results.
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