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Abstract

Recently, pure transformer-based models have shown
great potentials for vision tasks such as image classifica-
tion and detection. However, the design of transformer net-
works is challenging. It has been observed that the depth,
embedding dimension, and number of heads can largely af-
fect the performance of vision transformers. Previous mod-
els configure these dimensions based upon manual craft-
ing. In this work, we propose a new one-shot architecture
search framework, namely AutoFormer, dedicated to vision
transformer search. AutoFormer entangles the weights of
different blocks in the same layers during supernet train-
ing. Benefiting from the strategy, the trained supernet al-
lows thousands of subnets to be very well-trained. Specif-
ically, the performance of these subnets with weights in-
herited from the supernet is comparable to those retrained
from scratch. Besides, the searched models, which we re-
fer to AutoFormers, surpass the recent state-of-the-arts such
as ViT and DeiT. In particular, AutoFormer-tiny/small/base
achieve 74.7%/81.7%/82.4% top-1 accuracy on ImageNet
with 5.7M/22.9M/53.7M parameters, respectively. Lastly,
we verify the transferability of AutoFormer by providing
the performance on downstream benchmarks and distil-
lation experiments. Code and models are available at
https://github.com/microsoft/Cream.

1. Introduction
Vision transformer recently has drawn significant atten-

tion in computer vision because of its high model capability

and superior potentials in capturing long-range dependen-

cies. Building on top of transformers [52], modern state-

of-the-art models, such as ViT [13] and DeiT [50], are able

to learn powerful visual representations from images and

achieve very competitive performance compared to previ-

ous convolutional neural network models [17, 25].

However, the design of transformer neural architectures

is nontrivial. For example, how to choose the best network

∗Equal contributions. Work performed when Minghao is an intern of

MSRA. † Corresponding author: houwen.peng@microsoft.com.

Figure 1. The comparison between AutoFormers and transformer-

based, convolution-based and architecture-searched models, such

as DeiT [50], and ResNet [18].

depth, embedding dimension and/or head number? These

factors are all critical for elevating model capacity, yet find-

ing a good combination of them is difficult. As seen in

Fig. 2, increasing the depth, head number and MLP ratio

(the ratio of hidden dimension to the embedding dimension

in the multi-layer perceptron) of transformers helps achieve

higher accuracy at first but get overfit after hitting the peak

value. Scaling up the embedding dimension can improve

model capability, but the accuracy gain plateaus for larger

models. These phenomenons demonstrate the challenge of

designing optimal transformer architectures.

Previous works on designing vision transformers are

based upon manual crafting, which heavily relies on hu-

man expertise and typically requires a deal of trial-and-

error [13, 50, 67]. There are a few works on automat-

ing transformer design using neural architecture search

(NAS) [45, 55]. However, they are all concentrated on nat-

ural language tasks, such as machine translation, which are

quite different from computer vision tasks. As a result, it is

hard to generalize prior automatic search algorithms to find

effective vision transformer architectures.

In this work, we present a new architecture search algo-

rithm, named AutoFormer, dedicated to finding pure vision

transformer models. Our approach mainly addresses two

challenges in transformer search. 1) How to strike a good
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Figure 2. Adjust a baseline model with different embedding dimension (e), depth (d), MLP ratio (r), and number of heads (h) coefficients

under the same training recipe, where MLP ratio( the ratio of hidden dimension to the embedding dimension in the multi-layer perceptron).

We set the baseline model with d = 12, r = 4, e = 384, h = 6. Note: number of heads does not affect the model size and complexity if

we fix the Q-K-V dimension.

combination of the key factors in transformers, such as net-

work depth, embedding dimension and head number? 2)

How to efficiently find out various transformer models that

fit different resource constraints and application scenarios?

To tackle the challenges, we construct a large search

space covering the main changeable dimensions of trans-

former, including embedding dimension, number of heads,

query/key/value dimension, MLP ratio, and network depth.

This space contains a vast number of transformers with di-

verse structures and model complexities. In particular, it al-

lows the construction of transformers to use different struc-

tures of building blocks, thus breaking the convention that

all blocks share an identical structure in transformer design.

To address the efficiency issue, inspired by BigNAS [65]

and slimmable networks [65, 66], we propose a supernet

training strategy called weight entanglement dedicated to

transformer architecture. The central idea is to enable dif-

ferent transformer blocks to share weights for their common

parts in each layer. An update of weights in one block will

affect all other ones as a whole, such that the weights of

different blocks are maximally entangled during training.

This strategy is different from most one-shot NAS methods

[16, 8, 59], in which the weights of different blocks are in-

dependent for the same layer, as visualized in Fig. 5.

We observe a surprising phenomenon when using the

proposed weight entanglement for transformer supernet

training: it allows a large number of subnets in the super-
net to be very well-trained, such that the performance of
these subnets with weights inherited from the supernet are
comparable to those retrained from scratch. This advan-

tage allows our method to obtain thousands of architectures

that can meet different resource constraints while maintain-

ing the same level of accuracy as training from scratch in-

dependently. We give a detailed discussion in Section 3.4

exploring the underlying reasons of weight entanglement.

We perform a evolutionary search with a model size con-

straint over the well-trained supernets to find promising

transformers. Experiments on ImageNet [11] demonstrate

that our method achieves superior performance to the hand-

crafted state-of-the-art transformer models. For instance,

as shown in Fig. 1, with 22.9M parameters, Autoformer

achieves a top-1 accuracy of 81.7%, being 1.8% and 2.9%

better than DeiT-S [50] and ViT-S/16 [13], respectively. In

addition, when transferred to downstream vision classifi-

cation datasets, our AutoFormer also performs well with

fewer parameters, achieving better or comparable results to

the best convolutional models, such as EfficientNet [49].

In summary, we make three major contributions in this

paper. 1) To our best knowledge, this work is the first ef-

fort to design an automatic search algorithm for finding vi-

sion transformer models. 2) We propose a simple yet ef-

fective framework for efficient training of transformer su-

pernets. Without extra finetuning or retraining, the trained

supernet is able to produce thousands of high quality trans-

formers by inheriting weights from it directly. Such merit

allows our method to search diverse models to fit different

resource constraints. 3) Our searched models, i.e., Auto-

Formers, achieve the state-of-the-art results on ImageNet

among the vision transformers, and demonstrate promising

transferability on downstream tasks.

2. Background

Before presenting our method, we first briefly review the

background of the vision transformer and one-shot NAS.

2.1. Vision Transformer

Transformer is originally designed for natural language

tasks [52, 28, 12]. Recent works, such as ViT and DeiT

[13, 50], show its great potential for visual recognition. In

the following, we give the basic pipeline of the vision trans-

former, which serves as a base architecture of AutoFormer.

Given a 2D image, we first uniformly split it into a se-

quence of 2D patches just like tokens in natural language

processing. We then flatten and transform the patches to

D-dimension vectors, named patch embeddings, by either

linear projection [13] or several CNN layers [67]. A learn-

able [class] embedding is injected into the head of the se-

quence to represent the whole picture. Position embeddings

are added to the patch embeddings to retain positional infor-

mation. The combined embeddings are then fed to a trans-
former encoder described below. At last, a linear layer is

12271



Liner

Concate

          Embedding Choice

 Key Choice  Value Choice

Attention

Hidden Dim Choice

Hidden Dim ChoiceHidden Dim Choice

     Embedding Choice

 Query Choice

Add Position 
Embedding to   

Patch Embedding

Transformer Block Choice

Transformer Block Choice

Transformer Block Choice

Transformer Block Choice

Class 
Head

Dynamic Layer of 
Transformer Block

Split
Patch Embedding Choice[class]

Figure 3. Left: The overall architecture of the AutoFormer supernet. Note that transformer blocks in each layer and depth are dynamic.

The parts in solid lines mean they are chosen while those in dashed lines are not. Right: The detailed transformer block in an AutoFormer.

We search for the best block of optimal embedding dimension, number of heads, MLP ratio, Q-K-V dim in a layer. For more details about

the search space, please refer to section 3.2.

used for the final classification.

A transformer encoder consists of alternating blocks of

multihead self-attention (MSA) and multi-layer perceptron
(MLP) blocks. LayerNorm (LN) [2] is applied before ev-

ery block, and residual connections after every block. The

details of MSA and MLP are given below.

Multihead Self-Attention (MSA). In a standard self-

attention module, the input sequence z ∈ R
N×D will be

first linearly transformed to queries Q ∈ R
N×Dh , keys

K ∈ R
N×Dh and values V ∈ R

N×Dh , where N is the

number of tokens, D is the embedding dimension, Dh is

the Q-K-V dimension. Then we compute the weighted

sum over all values for each element in the sequence. The

weights or attention are based on the pairwise similarity be-

tween two elements of the sequence:

Attention(Q,K, V ) = softmax
(QKT

√
dh

)
V, (1)

where 1√
dh

is the scaling factor. Lastly, a fully connected

layer is applied. Multihead self-attention splits the queries,

keys and values into different heads and performs self-

attention in parallel and projects their concatenated outputs.

Multi-Layer Perceptron (MLP). The MLP block consists

two fully connected layers with an activation function, usu-

ally GELU [19]. In this work, we focus on finding optimal

choices of the MLP ratios in each layer.

2.2. One-Shot NAS

One-shot NAS typically adopts a weight sharing strategy

to avoid training each subnet from scratch [16, 39]. The

architecture search space A is encoded in a supernet, de-

noted as N (A,W ), where W is the weight of the supernet.

W is shared across all the architecture candidates, i.e., sub-

nets α ∈ A in N . The search of the optimal architecture α∗

in one-shot NAS is usually formulated as a two-stage opti-

mization problem. The first-stage is to optimize the weight

W by

WA = argmin
W

Ltrain(N (A,W )), (2)

where Ltrain represents the loss function on the training

dataset. To reduce memory usage, one-shot methods usu-

ally sample subnets from N for optimization. The second-

stage is to search architectures via ranking the performance

of subnets α ∈ A based on the learned weights in WA:

α∗ = argmax
α∈A

Accval (N (α,w)) , (3)

where the sampled subnet α inherits weight w from WA,

and Accval indicates the top-1 accuracy of the architec-

ture α on the validation dataset. Since it is impossible

to enumerate all the architectures α ∈ A for evaluation,

prior works resort to random search [34, 4], evolution al-

gorithms [43, 16] or reinforcement learning [40, 48] to find

the most promising one.

3. AutoFormer
In this section, we first demonstrate that it is impractical

to directly apply one-shot NAS for transformer search fol-

lowing classical weight sharing strategy [16], using differ-

ent weights for different blocks in each layer, because of the

slow convergence and unsatisfactory performance. Then we

propose the weight entanglement strategy for vision trans-

former to address the issues. Finally, we present the search

space and search pipeline.
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Figure 4. Left: Comparison of training loss of supernet between

weight entanglement and classical weight sharing on ImageNet.

Right: Comparison of Top-1 Accuracy on ImageNet of subnets

between weight entanglement and classical weight sharing during

supernet training.

3.1. One-Shot NAS with Weight Entanglement

Prior one-shot NAS methods commonly share weights

across architectures during supernet training while decou-

pling the weights of different operators at the same layer.

Such strategy performs well when used to search architec-

tures over convolutional neural networks space [16, 6, 8, 21,

49]. However, in transformer search space, this classical

strategy encounters difficulties. 1) Slow convergence. As

shown in the Fig. 4 (left), the training loss of the supernet

converges slowly. The reason might be that the independent

training of transformer blocks results in the weights being

updated by limited times. 2) Low performance. The perfor-

mances of subnets inheriting weights from the one-shot su-

pernet, trained under classical weight sharing strategy, are

far below their true performances of training from scratch

(see the right part of Fig. 4). This limits the ranking ca-

pacities of supernet. Furthermore, after the search, it is still

necessary to perform additional retraining for the searched

architectures since the weights are not fully optimized. In-

spried by BigNAS [65] and slimmable networks [66, 64],

we propose the weight entanglement training strategy ded-

icated to vision transformer architecture search. The cen-

tral idea is to enable different transformer blocks to share

weights for their common parts in each layer. More con-

cretely, for a subnet α ∈ A with a stack of l layers, we

represent its structure and weights as{
α = (α(1), ...α(i), ...α(l)),

w = (w(1), ...w(i), ...w(l)),
(4)

where α(i) denotes the sampled block in the i-th layer and

w(i) is the block weights. During architecture search, there

are multiple choices of blocks in each layer. Hence, α(i) and

w(i) are actually selected from a set of n block candidates

belonging to the search space, which is formulated as{
α(i) ∈ {b(i)1 , ...b

(i)
j , ...b(i)n },

w(i) ∈ {w(i)
1 , ...w

(i)
j , ...w(i)

n },
(5)

where b
(i)
j is a candidate block in the search space and w

(i)
j

is its weights. The weight entanglement strategy enforces

Input

Block 1 Block 2 Block 3

Output

Input

Output

Block 2

Block 3

(a) Classical Weight Sharing (b) Weight Entanglement

On Off

ddim= dim=d kdim= d k

dim=d k

ddim=

dim= d k
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Figure 5. Classical weight sharing versus weight entanglement.

that different candidate blocks in the same layer to share as

many weights as possible. This requires that, for any two

blocks b
(i)
j and b

(i)
k in the same layer, we have

w
(i)
j ⊆ w

(i)
k or w

(i)
k ⊆ w

(i)
j . (6)

Such within layer weight sharing makes the weight updates

of w
(i)
j and w

(i)
k entangled with each other. The training of

any block will affect the weights of others for their inter-

sected portion, as demonstrated in Fig. 5. This is different

from the classical weight sharing strategy in one-shot NAS,

where the building blocks in the same layer are isolated. In

other words, in classical weight sharing, for any two blocks

b
(i)
j and b

(i)
k , we have w

(i)
j ∩ w

(i)
k = ∅.

Note that the proposed weight entanglement strategy is

dedicated to work on homogeneous building blocks, such

as self-attention modules with different numbers of heads,

and multi-layer perceptron with different hidden dimen-

sions. The underlying reason is that homogeneous blocks

are structurally compatible, such that the weights can share

with each other. During implementation, for each layer, we

need to store only the weights of the largest block among the

n homogeneous candidates. The remaining smaller build-

ing blocks can directly extract weights from the largest one.

Equipped with weight entanglement, one-shot NAS is

capable of searching transformer architectures in an effi-

cient and effective fashion, as demonstrated in Fig. 4.

Compared with classical weight sharing methods, our

weight entanglement strategy has three advantages. 1)

Faster convergence. Weight entanglement allows each

block to be updated more times than the previous indepen-

dent training strategy. 2) Low memory cost. We now only

need to store the largest building blocks’ parameters for

each layer, instead of all the candidates in the space. 3) Bet-
ter subnets performance. We found that the subnets trained

with weight entanglement could achieve performance on

par with those of training from scratch.

3.2. Search Space

We design a large transformer search space that includes

five variable factors in transformer building blocks: embed-

ding dimension, Q-K-V dimension, number of heads, MLP

ratio, and network depth, as detailed in Tab. 1 and Fig. 3. All
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Supernet-tiny Supernet-small Supernet-base

Embed Dim (192, 240, 24) (320, 448, 64) (528, 624, 48)

Q-K-V Dim (192, 256, 64) (320, 448, 64) (512, 640, 64)

MLP Ratio (3.5, 4, 0.5) (3, 4, 0.5) (3, 4, 0.5)

Head Num (3, 4, 1) (5, 7, 1) (8, 10, 1)

Depth Num (12, 14, 1) (12, 14, 1) (14, 16, 1)

Params Range 4 – 9M 14 – 34M 42 – 75M

Table 1. The search space of AutoFormer. We set up three super-

nets to satisfy different resource constraints. Tuples of three val-

ues in parentheses represent the lowest value, highest, and steps.

Note: the Q-K-V dimensions, numbers of head and MLP ratios

are varied across layers.

these factors are important for model capacities. For exam-

ple, in attention layers, different heads are used to capture

various dependencies. However, recent works [36, 53, 9]

show that many heads are redundant. We thereby make the

attention head number elastic so that each attention mod-

ule can decide its necessary number of heads. On the other

hand, since different layers have different capacities on fea-

ture representation, the varying hidden dimensions in layers

might be better than the fixed sizes when used for construct-

ing new models. Moreover, AutoFormer adds new Q-K-V
dimension into the search space and fixes the ratio of the Q-

K-V dimension to the number of heads in each block. This

setting makes the scaling factor 1√
dh

in attention calculation

invariant to the number of heads, stabilizing the gradients,

and decouples the meaning of different heads.

Following one-shot NAS methods, we encode the search

space into a supernet. That is, every model in the space is

a part/subset of the supernet. All subnets share the weights

of their common parts. The supernet is the largest model

in the space, and its architecture is shown in Fig. 3. In par-

ticular, the supernet stacks the maximum number of trans-

former blocks with the largest embedding dimension, Q-K-

V dimension and MLP ratio as defined in the space. During

training, all possible subnets are uniformly sampled, and the

corresponding weights are updated.

According to the constraints on model parameters, we

partition the large-scale search space in to three parts and

encode them into three independent supernets, as elaborated

in Tab. 1. Such partition allows the search algorithm to

concentrate on finding models within a specific parameter

range, which can be specialized by users according to their

available resources and application requirements.

Overall, our supernets contains more than 1.7×1016 can-

didate architectures covering a wide range of model size.

3.3. Search Pipeline

Our search pipeline includes two sequential phases.

Phase 1: Supernet Training with Weight Entangle-
ment. In each training iteration, we uniformly sample

a subnet α = (α(1), ...α(i), ...α(l)) from the per-defined

search space and update its corresponding weights w =
(w(1), ...w(i), ...w(l)) in the supernet’s weight WA while

freezing the rest. Detailed algorithm is given in supplemen-

tary materials, Appendix A.

Phase 2: Evolution Search under Resource Constraints.
After obtaining the trained supernet, we perform an evo-

lution search on it to obtain the optimal subnets. Subnets

are evaluated and picked according to the manager of the

evolution algorithm. Our objective here is to maximize the

classification accuracy while minimizing the model size. At

the beginning of the evolution search, we pick N random

architecture as seeds. The top k architectures are picked

as parents to generate the next generation by crossover and

mutation. For a crossover, two randomly selected candi-

dates are picked and crossed to produce a new one during

each generation. For mutation, a candidate mutates its depth

with probability Pd first. Then it mutates each block with a

probability of Pm to produce a new architecture.

3.4. Discussion

Why does weight entanglement work? We conjecture

that there are two underlying reasons. 1) Regularization

in training. Different from convolution neural networks,

transformer has no convolution operations at all. Its two

basic components, MSA and MLP, employ only fully con-

nected layers. Weight entanglement could be viewed a reg-

ularization training strategy for transformer, to some extent,

similar to the effects of dropout [47, 54, 30]. When sam-

pling the small subnets, corresponding units cannot rely on

other hidden units for classification, which hence reduces

the reliance of units. 2) Optimization of deep thin subnets.

Recent works [3, 57] show that deep transformer is hard to

train, which coincides with our observation in Fig. 2. This

is because the gradients might explode or vanish in deep

thin networks during backpropagation. Increasing the width

of or “overparameterizing” the network will help the opti-

mization [33, 14, 1, 71]. Our weight entanglement training

strategy helps to optimize the thin subnets in a similar way.

The gradients backwarded by wide subnets will help to up-

date the weights of thin subnets. Besides, the elastic depth

severs similar effects to stochastics depth [23] and deep su-

pervision [29], which supervise the shallow layers as well.

4. Experiments

In this section, we first present the implementation de-

tails and evolution search settings. We then analyze the

proposed weight entanglement strategy and provide a large

number of well-trained subnets sampled from supernets to

demonstrate its efficacy. At last, we present the perfor-

mance of AutoFormer evaluated on several benchmarks

with comparisons with state-of-the-art models designed

manually or automatically.
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Search Method Inherited Retrain Params

Random Search - 79.4% 23.0M

Classical Weight Sharing + Random Search 69.7% 80.1% 22.9M

Weight Entanglement + Random Search 81.3% 81.4% 22.8M

Classical Weight Sharing + Evolution Search (SPOS[16]) 71.5% 80.4% 22.9M

Weight Entanglement + Evolution Search (Ours) 81.7% 81.7% 22.9M

Table 2. Comparison of different search methods. The supernets are trained

for 500 epochs, while the subnets are retrained for 300 epochs. Random

search are performed three times and the best performance is reported.

Figure 6. The performance of subnets inheriting weights

from supernet during search. Top 50 candidates until the

current iteration are depicted at each search iteration.

Epochs Optimizer Batch Size LR LR scheduler

500 AdamW 1024 1e-3 cosine

Weight Warmup Label Drop Repeated

Decay Epochs Smoothing Path Augmentation

5e-2 20 0.1 0.1 �

Table 3. Supernet training settings. LR refers to learning rate.

Model Model Size Inherited Finetune Retrain

AutoFormer-T 5.7M 74.7% 74.9% 74.9%

AutoFormer-S 22.9M 81.7% 81.8% 81.7%

AutoFormer-B 53.7M 82.4% 82.6% 82.6%

Table 4. Comparison of subnets with inherited weights, fine-tuned

(40 epochs) and trained from-scratch (300 epochs).

4.1. Implementation Details

Supernet Training. We train the supernets using a sim-

ilar recipe as DeiT [50]. The details are presented in

Tab. 3. Data augmentation techniques, including RandAug-

ment [10], Cutmix [68], Mixup [69] and random erasing,

are adopted with the same hyperparameters as in DeiT [50]

except the repeated augmentation [20]. Images are split into

patches of size 16x16. All the models are implemented us-

ing PyTorch 1.7 and trained on Nvidia Tesla V100 GPUs.

Evolutionary Search. The implementation of evolution

search follows the same protocol as in SPOS [16]. For a

fair comparison, we reserve the ImageNet validation set for

testing and subsample 10,000 training examples (100 im-

ages per class) as the validation dataset. We set the pop-

ulation size to 50 and number of generations to 20. Each

generation we pick the top 10 architectures as the parents

to generate child networks by mutation and crossover. The

mutation probability Pd and Pm are set to 0.2 and 0.4.

4.2. Ablation Study and Analysis

The Efficacy of Weight Entanglement. We compare

AutoFormer with random search and SPOS [16] (classi-

cal weight sharing) baselines to demonstrate the effective-

ness of weight entanglement. For random search, we ran-

domly pick up architectures from the search space to meet

the model size constraints. For SPOS [16], we adapt it to

Figure 7. Top-1 accuracy on ImageNet of AutoFormer and 1000

sampled high-performing architectures from the supernet-small

with weight inherited from the supernet.

the transformer search space defined in Tab. 1 and keep the

remaining configurations to be consistent with the original

method. In other words, in each layer of the SPOS super-

net, the transformer blocks with different architecture argu-

ments do not share weights. For example, in an MLP block,

there are multiple choices of hidden dimensions. Each MLP

choice has its own weights, being independent of each other.

After training the SPOS supernet, we apply the same evolu-

tion process to find the most promising architecture candi-

date and retrain it using the same setting as our AutoFormer.

Table 2 presents the comparisons on ImageNet. We can

observe that: 1) After retraining,random search and SPOS

are 2.3% and 1.3% inferior to our methods indicating the

superiority of the proposed methods. 2) Without retrain-

ing, i.e., inheriting weights directly from the supernet, the

weight entanglement training strategy can produce signifi-

cantly better results than the classical weight sharing. The

entangled weight can produce well-trained subnets, which

are very close to the ones retrained from scratch. We con-

jecture the relatively inferior performance of SPOS in trans-

former space is mainly due to insufficient training. We

also observe that if we train the supernet in SPOS for more

epochs, the performance can be slowly improved. However,

its training cost is largely higher than our proposed weight

entanglement strategy. Fig. 6 plots the accuracy over the

number of architectures sampled from the trained supernet

during search. Top 50 candidates are depicted at each gen-

eration. It is clear that the evolution search on the supernet

is more effective than the random search baseline.
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Table 5. AutoFormer performance on ImageNet with comparisons to state-of-the-arts. We group the models according to their parameter

sizes. Our AutoFormer consistently outperforms existing transformer-based visual models, being comparable to CNN models.†: reported

by [50], �: reported by [63].

Models Top-1 Acc. Top-5 Acc. #Parameters FLOPs Resolution Model Type Design Type

MobileNetV3Large1.0 [21] 75.2% - 5.4M 0.22G 2242 CNN Auto

EfficietNet-B0[49] 77.1% 93.3% 5.4M 0.39G 2242 CNN Auto

DeiT-tiny [50] 72.2% 91.1% 5.7M 1.2G 2242 Transformer Manual

AutoFormer-tiny (Ours) 74.7% 92.6% 5.7M 1.3G 2242 Transformer Auto

ResNet50� [18] 79.1% - 25.5M 4.1G 2242 CNN Manual

RegNetY-4GF† [41] 80.0% - 21.4M 4.0G 2242 CNN Auto

EfficietNet-B4 [49] 82.9% 95.7% 19.3M 4.2G 3802 CNN Auto

BoTNet-S1-59 [46] 81.7% 95.8% 33.5M 7.3G 2242 CNN + Trans Manual

T2T-ViT-14 [67] 81.7% - 21.5M 6.1G 2242 Transformer Manual

DeiT-S [50] 79.9% 95.0% 22.1M 4.7G 2242 Transformer Manual

ViT-S/16 [13] 78.8% - 22.1M 4.7G 3842 Transformer Manual

AutoFormer-small (Ours) 81.7% 95.7% 22.9M 5.1G 2242 Transformer Auto

ResNet152� [18] 80.8% - 60M 11G 2242 CNN Manual

EfficietNet-B7 [49] 84.3% 97.0% 66M 37G 6002 CNN Auto

ViT-B/16 [13] 79.7% - 86M 18G 3842 Transformer Manual

Deit-B [50] 81.8% 95.6% 86M 18G 2242 Transformer Manual

AutoFormer-base (Ours) 82.4% 95.7% 54M 11G 2242 Transformer Auto

Subnet Performance without Retraining. We surprisingly

observe that there are a large number of subnets achieving
very good performance when inheriting weights from the
supernets, without extra finetuning or retraining. The blue

points shown in Fig. 7 represents the 1000 high-performing

subsets sampled from the supernet-S. All these subsets can

achieve top-1 accuracies ranging from 80.1% to 82.0%, ex-

ceeding the recent DeiT [50] and RegNetY [41]. Such re-

sults amply demonstrate the effectiveness of the proposed

weight entanglement strategy for one-shot supernet train-

ing. Tab. 4 shows that if we further finetune or retrain the

searched subnets on ImageNet, the performance gains are

very small, even negligible. This phenomenon illustrates

the weight entanglement strategy allows the subsets to be

well-trained in supernets, leading to the facts that searched

transformers do not require any retraining or finetuning and

the supernet itself serves good indicator of subnets’ ranking.

4.3. Results on ImageNet

We perform the search of AutoFormer on ImageNet and

find multiple transformer models with diverse parameter

sizes. All these models inherit weights from supernets di-

rectly, without extra retraining and other postprocessing.

The performance are reported in Tab. 5 and Fig. 1. It is clear

that our AutoFormer model families achieve higher accura-

cies than the recent handcrafted state-of-the-art transformer

models such as ViT [13] and DeiT [50]. In particular, us-

ing ∼23M parameters, our small model, i.e. AutoFormer-S,

achieves a top-1 accuracy of 81.7%, being 1.8% and 2.9%

better than DeiT-S and ViT-S/16, respectively.

Compared to vanilla CNN models, AutoFormer is also

competitive. As visualized in Fig. 1, our AutoFormers

perform better than the manually-designed ResNet [18],

ResNeXt [62] and DenseNet [22], demonstrating the poten-

tials of pure transformer models for visual representation.

However, transformer-based vision models, including

AutoFormer, now are still inferior to the models based on

inverted residual blocks [44], such as MobileNetV3 [21]

and EfficientNet [49]. The reason is that inverted residu-

als are optimized for edge devices, so the model sizes and

FLOPs are much smaller than vision transformers.

4.4. Transfer Learning Results

Classification. We transfer Autoformer to a list of

commonly used recognition datasets: 1) general classifica-

tion: CIFAR-10 and CIFAR-100 [27]; 2) fine-grained clas-

sification: Stanford Car [26], FLowers [37] and Oxford-

III Pets [38]. We follow the same training settings as

DeiT [50], which take ImageNet pretrained checkpoints and

finetune on new datasets. Tab. 6 shows the results in terms

of top-1 accuracy: 1) Compared to state-of-the-art Con-

vNets, AutoFormer is close to the best results with a negligi-

ble gap with fewer parameters; 2) Compared to transformer-

based models, AutoFormer achieves better or comparable

results on all datasets, with much fewer parameters (∼4x).

Distillation. AutoFormer is also orthogonal to knowl-

edge distillation (KD) since we focus on searching for

an efficient architecture while KD focuses on better train-

ing a given architecture. Combining KD with Auto-

Formers by distilling hard labels from a RegNetY-32GF

[41] teacher could further improve the performance from

74.7%/81.7%/82.4% to 75.7%/82.4%/82.9%, respectively.
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Table 6. AutoFormer results on downstream classification datasets. ↑ 384 denotes fine-tuning with 384×384 resolution.

Model #Param FLOPs ImageNet CIFAR-10 CIFAR-100 Flowers Cars Pets Model Type Design Type

Grafit ResNet-50 [51] 25M 12.1G 79.6 - - 98.2 92.5 - CNN Manual

Grafit RegNetY-8GF [51] 39M 23.4G 79.6 - - 99.0 94.0 - CNN Manual

EfficientNet-B5 [49] 30M 9.5G 83.6 98.7 91.1 98.5 - - CNN Auto

ViT-B/16 [13] 86M 55.4G 77.9 98.1 87.1 89.5 - 93.8 Trans Manual

DeiT-B ↑ 384 [50] 86M 55.4G 83.1 99.1 90.8 98.5 93.3 - Trans Manual

AutoFormer-S ↑ 384 23M 16.5G 83.4 99.1 91.1 98.8 93.4 94.9 Trans Auto

5. Related Work

Vision Transformer. Transformer is originally proposed

for language modeling [52], and recently applied in com-

puter vision. It has shown promising potentials on a va-

riety of tasks [7, 13, 35]. A straightforward approach for

using transformer in vision is to combine convolutional lay-

ers with the self-attention module [52, 58]. There has been

progress in this direction, such as [42, 70, 56, 24].

Most recently, Dosovitskiy et al. introduce Vision Trans-

former (ViT) [13], a pure transformer architecture for vi-

sual recognition. It presents promising results when trained

with an extensive image dataset (JFT-300M, 300 million

images) that is not publicly available. The most recent

DeiT [50, 67] models verify that large-scale data is not re-

quired. Using only Imagenet can also produce a competitive

convolution-free transformer. However, existing visions of

transformer models are all built upon manual design, which

is engineering-expensive and error-prone. In this work, we

present the first effort on automating the design of vision

transformer with neural architecture search.

Neural Architecture Search. There has been an increas-

ing interest in NAS for automating network design [15, 25].

Early approaches search a network using either reinforce-

ment learning [73, 72] or evolution algorithms [61, 43].

Most recent works resort to the one-shot weight sharing

strategy to amortize the searching cost [34, 40, 5, 16]. The

key idea is to train a over-parameterized supernet model,

and then share the weights across subnets. However, most

weight-sharing methods need an additional retraining step

after the best architecture is identified [16, 31, 59].

Recent works, OFA [6], BigNAS [65] and slimmable

networks [66, 64] alleviate this issue by training a once-

for-all supernet. Despite the fact that AutoFormer shares

similarities with these methods in the concept of training a

one-for-all supernet, these methods are designed to search

for convolutional networks rather than vision transform-

ers. Specifically, AutoFormer considers the design of multi-

head self-attention and MLP, which is unique to transformer

models, and gives dedicated design of search dimensions as

elaborated in Sec. 3.2. Moreover, BigNAS adopts several

well-crafted techniques, such as sandwich training, inplace

distillation, regularization, etc. OFA proposes a progres-

sively shrinking approach by progressively distilling the full

network to obtain the smaller subnets. By contrast, Auto-

Former is simple and efficient, achieving once-for-all train-

ing without these techniques.

For transformers, there are few studies applying NAS

to improve their architectures [45, 55]. These approaches

mainly focus on natural language processing tasks. Among

them, the most similar one to us is HAT [55]. In addi-

tion to the difference between tasks, HAT requires an ad-

ditional retraining or finetuning step after the search, while

AutoFormer does not, which is the key difference. An-

other difference is the search space. HAT searches for an

encoder-decoder Transformer structure, while ours is a pure

encoder one. There are two concurrent works, i.e., Boss-

NAS [32] and CvT [60], exploring different search space

from ours. BossNAS searches for CNN-transformer hy-

brids, while ours for pure transformers. CvT proposes a

new architecture family and searches for the strides and ker-

nel size of them. Due to the difference of search space, we

do not compare them in this work.

6. Conclusion

In this work, we propose a new one-shot architec-

ture search method, AutoFormer, dedicated to transformer

search. AutoFormer is equipped with the training strategy,

Weight Entanglement. Under this strategy, the subnets in

the search space are almost fully trained. Extensive ex-

periments demonstrate the proposed algorithm can improve

the training of supernet and find promising architectures.

Our searched AutoFormers achieve state-of-the-art results

on ImageNet among vision transformers. Moreover, Aut-

oFormers transfer well to several downstream classification

tasks and could be further improved by distillation. In future

work, we are interested in further enriching the search space

by including convolutions as new candidate operators. Ap-

plying weight entanglement to convolution network search

or giving the theoretical analysis of the weight entangle-

ment are other potential research directions.
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Matthieu Cord, and Hervé Jégou. Grafit: Learning fine-

grained image representations with coarse labels. arXiv
preprint arXiv:2011.12982, 2020. 8

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,

2, 8

[53] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,

and Ivan Titov. Analyzing multi-head self-attention: Spe-

cialized heads do the heavy lifting, the rest can be pruned. In

ACL, 2019. 5

[54] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and

Rob Fergus. Regularization of neural networks using drop-

connect. In ICML, 2013. 5

[55] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng

Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware

transformers for efficient natural language processing. arXiv
preprint arXiv:2005.14187, 2020. 1, 8

[56] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. In ECCV,

2020. 8

[57] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li,

Derek F Wong, and Lidia S Chao. Learning deep transformer

models for machine translation. In ACL, 2019. 5

[58] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 8

[59] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, 2019. 2, 8

[60] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,

Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-

ing convolutions to vision transformers. arXiv preprint
arXiv:2103.15808, 2021. 8

[61] Lingxi Xie and Alan Yuille. Genetic cnn. In ICCV, 2017. 8

[62] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 7

[63] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-

scale conv-attentional image transformers, 2021. 7

[64] Jiahui Yu and Thomas S Huang. Universally slimmable net-

works and improved training techniques. In ICCV, 2019. 4,

8

[65] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,

Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-

aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling

up neural architecture search with big single-stage models.

NeurIPS, 2020. 2, 4, 8

[66] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. ICLR, 2019.

2, 4, 8

[67] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,

Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-

to-token vit: Training vision transformers from scratch on

imagenet. arXiv preprint arXiv:2101.11986, 2021. 1, 2, 7, 8

[68] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In ICCV, 2019. 6

[69] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. ICLR, 2018. 6

12279



[70] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring

self-attention for image recognition. In CVPR, 2020. 8

[71] Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing

Tan, Xiaodan Song, Quoc Le, Qiang Liu, and Dale Schuur-

mans. Go wide, then narrow: Efficient training of deep thin

networks. In ICML, 2020. 5

[72] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. ICLR, 2016. 8

[73] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 8

12280


