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Content Stylization results

Figure 1: Stylization examples generated by our proposed DIST. The first column shows the content images. The other four
columns show the diverse stylization results based on Paul Cezanne’s style.

Abstract

Image style transfer aims to transfer the styles of art-
works onto arbitrary photographs to create novel artistic
images. Although style transfer is inherently an underde-
termined problem, existing approaches usually assume a
deterministic solution, thus failing to capture the full dis-
tribution of possible outputs. To address this limitation, we
propose a Diverse Image Style Transfer (DIST) framework
which achieves significant diversity by enforcing an invert-
ible cross-space mapping. Specifically, the framework con-
sists of three branches: disentanglement branch, inverse
branch, and stylization branch. Among them, the disen-
tanglement branch factorizes artworks into content space
and style space; the inverse branch encourages the invert-
ible mapping between the latent space of input noise vec-
tors and the style space of generated artistic images; the
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stylization branch renders the input content image with the
style of an artist. Armed with these three branches, our ap-
proach is able to synthesize significantly diverse stylized im-
ages without loss of quality. We conduct extensive experi-
ments and comparisons to evaluate our approach qualita-
tively and quantitatively. The experimental results demon-
strate the effectiveness of our method.

1. Introduction

An exquisite artwork can take a diligent artist days or
even months to create, which is labor-intensive and time-
consuming. Motivated by this, a series of recent approaches
studied the problem of repainting an existing photograph
with the style of an artist using either a single artwork or
a collection of artworks. These approaches are known as
style transfer. Armed with style transfer techniques, anyone
could create artistic images.
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How to represent the content and style of an image is
the key challenge of style transfer. Recently, the seminal
work of Gatys et al. [7] firstly proposed to extract content
and style features from an image using pre-trained Deep
Convolutional Neural Networks (DCNNs). By separating
and recombining contents and styles of arbitrary images,
novel artworks can be created. This work showed the enor-
mous potential of CNNs in style transfer and created a
surge of interest in this field. Based on this work, a se-
ries of subsequent methods have been proposed to achieve
better performance in many aspects, including efficiency
[13, 21, 34], quality [20, 35, 40, 43, 39, 4], and generaliza-
tion [6, 5, 10, 24, 30, 27, 22]. However, diversity, as another
important aspect, has received relatively less attention.

As the saying goes, “There are a thousand Hamlets in
a thousand people’s eyes”. Similarly, different people have
different understanding and interpretation of the style of an
artwork. There is no uniform and quantitative definition of
the artistic style of an image. Therefore, the stylization re-
sults should be diverse rather than unique, so that the prefer-
ences of different people can be satisfied. To put it another
way, style transfer is an underdetermined problem, where a
large number of solutions can be found. Unfortunately, ex-
isting style transfer methods usually assume a deterministic
solution. As a result, they fail to capture the full distribution
of possible outputs.

A straightforward approach to handle diversity in style
transfer is to take random noise vectors along with content
images as inputs, i.e., utilizing the variability of the input
noise vectors to produce diverse stylization results. How-
ever, the network tends to pay more attention to the high-
dimensional and structured content images and ignores the
noise vectors, leading to deterministic output. To ensure
that the variability in the latent space can be passed into the
image space, Ulyanov et al. [35] enforced the dissimilar-
ity among generated images by enlarging their distance in
the pixel space. Similarly, Li et al. [23] introduced a di-
versity loss that penalized the feature similarities of differ-
ent samples in a mini-batch. Although these methods can
achieve diversity to some extent, they have obvious limita-
tions. First, forcibly enlarging the distance among outputs
may cause the results to deviate from the local optimum,
resulting in the degradation of image quality. Second, to
avoid introducing too many artifacts to the generated im-
ages, the weight of the diversity loss is generally set to a
small value. Consequently, the diversity of the stylization
results is relatively limited. Third, diversity is more than
the pixel distance or feature distance among generated im-
ages, which contains richer and more complex connotation.
Most recently, Wang et al. [37] achieved better diversity by
using an orthogonal noise matrix to perturb the image fea-
ture maps while keeping the original style information un-
changed. However, this approach is apt to generate distorted

results, providing insufficient visual quality. Therefore, the
problem of diverse style transfer remains an open challenge.

In this paper, we propose a Diverse Image Style Trans-
fer (DIST) framework which achieves significant diversity
without loss of quality by enforcing an invertible cross-
space mapping. Specifically, the framework takes random
noise vectors along with everyday photographs as its inputs,
where the former are responsible for style variations and the
latter determine the main contents. However, according to
above analyses, we can learn that the noise vectors are prone
to be ignored in the network. Our proposed DIST frame-
work tackles this problem through three branches: disen-
tanglement branch, inverse branch, and stylization branch.

The disentanglement branch factorizes artworks into
content space and style space. The inverse branch encour-
ages the invertible mapping between the latent space of in-
put noise vectors and the style space of generated artistic
images, which is inspired by [32]. But different from [32],
we invert the style information rather than the whole gen-
erated image to the input noise vector, since the input noise
vector mainly influences the style of the generated image.
The stylization branch renders the input content image with
the style of an artist. Equipped with these three branches,
DIST is able to synthesize significantly diverse stylized im-
ages without loss of quality, as shown in Figure 1.

Overall, the contributions can be summarized as follows:

• We propose a novel style transfer framework which
achieves significant diversity by learning the one-to-
one mapping between latent space and style space.

• Different from existing style transfer methods [35, 23,
37] that obtain diversity with serious degradation of
quality, our approach can produce both high-quality
and diverse stylization results.

• Our approach provides a new way to disentangle the
style and content of an image.

• We demonstrate the effectiveness and superiority of
our approach by extensive comparison with several
state-of-the-art style transfer methods.

2. Related Work
Style Transfer. Style transfer aims at synthesizing new

images with artistic styles by repainting an existing photo-
graph utilizing the style information extracted from real art-
works. Gatys et al. [7] first proposed to separate and recom-
bine arbitrary images’ contents and styles, which are cap-
tured from a pre-trained VGG-19 network [31], to generate
novel artistic images. This method is capable of producing
striking stylization results, but is prohibitively slow due to
the iterative optimization process. To enable faster styliza-
tion, [13, 21, 34] proposed to utilize feed-forward networks
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to efficiently synthesize a stylized image. However, these
methods, while enjoying the inference efficiency, are often
limited by compromised visual quality. Motivated by this,
a lot of methods [20, 36, 40, 43, 38] have been proposed to
enhance the quality of generated images from different as-
pects. Another line of work focused on improving the gen-
eralization of style transfer networks, and developed a num-
ber of arbitrary style transfer methods [5, 10, 24, 30, 27, 12].

Above style transfer methods extract style representa-
tions from a single artwork. Sanakoyeu et al. [29] pointed
out that it is insufficient to only use a single artwork, be-
cause it might not represent the full scope of an artistic
style. Therefore, [29] proposed to learn style from a col-
lection of related artworks, vastly boosting the visual qual-
ity. [17, 18, 33] are three follow-up works. [17] could cap-
ture subtle variations of style while also being able to dis-
tinguish different styles and disentangle content and style.
[18] proposed a content-transformation block to alter an ob-
ject in a content- and style-specific manner. Svoboda et al.
[33] achieved zero-shot style transfer with a novel two-stage
peer-regularization layer. In this paper, we follow this line
of work and focus on the diversity problem that is ignored
by these methods.

Diverse Image Generation. Currently there are many
generative models that are able to generate diverse out-
put images, among which Generative Adversarial Networks
(GANs) [8, 28, 2, 26, 41, 3] may be the most well-know one.
The core idea of GANs lies in the adversarial loss that en-
forces the distribution of generated images to match the real
data distribution. However, GANs often suffer from mode
collapse. To resolve this problem, Srivastava et al. [32] pro-
posed to encourage the one-to-one relationship between the
input noise vector and the generated image, thereby signifi-
cantly improving the diversity of generated images. Kazemi
et al. [16] further introduced SC-GAN for content and style
disentangled representation learning. In detail, they en-
forced the correspondence between the content/style code
of the input noise vector and the content/style information
of the generated image. Consequently, by fixing the content
portion of the input, they can generate a specific scene in a
variety of styles. The other portion is analogous.

Above methods all aim at a noise-to-image generation
problem, while style transfer is an image-to-image transla-
tion problem. It is much harder to achieve diversity in the
image-to-image translation scenario, since the noise vec-
tors (which are responsible for diversity) are prone to be
ignored when high-dimensional and structured images are
also taken as inputs along with the noise vectors [25, 1].

Similar to style transfer, image domain translation is also
an image-to-image translation problem, where the goal is
to learn the mapping between different yet similar visual
domains, for example, horses↔zebras. To achieve diver-
sity, Zhu et al. [46] proposed a BicycleGAN that can model

continuous and multimodal distributions, which shares sim-
ilar spirits with [32]. Nevertheless, the method is only ap-
plicable to problems with paired training data. Motivated
by this, [11, 19] proposed diverse unsupervised image do-
main translation methods, which are based on the assump-
tion: the image representation can be decomposed into a
domain-invariant content space that captures shared infor-
mation across domains, and a domain-specific style space
that can model the diverse variations given the same con-
tent. Different from image domain translation, in style
transfer, the content image and style image usually contain
totally different contents, which suggests that above meth-
ods are inapplicable to style transfer. By far, only a few at-
tempts have been made to enforce diversity in style transfer.
[35, 23] proposed to maximize the distance among stylized
images. [37] employed a deep feature perturbation (DFP)
operation to perturb the deep image feature maps. Although
these methods can achieve diversity to some extent, they
sacrificed the quality of generated images. In this paper,
we propose a novel style transfer approach which achieves
better diversity without sacrificing visual quality.

3. Approach
Inspired by [29, 17, 18, 33], we learn artistic style not

from a single artwork but from a collection of related art-
works. Formally, our task can be described as follows:
given a collection of photos x ∼ X and a collection of art-
works y ∼ Y (the contents of X and Y can be totally dif-
ferent), we aim to learn a style transformation G : X → Y
with significant diversity. To achieve this goal, we propose
a DIST framework consisting of three branches: stylization
branch, disentanglement branch, and inverse branch. In this
section, we introduce the three branches in details.

3.1. Stylization Branch

The stylization branch aims to repaint x ∼ X with the
style of y ∼ Y . To this end, we enable G to approximate the
distribution of Y by employing a discriminator D to train
against G: G tries to generate images that resembles the im-
ages in Y , while D tries to distinguish the stylized images
from the real ones. Joint training of these two networks
leads to a generator that is able to produce desired styliza-
tions. This process can be formulated as follows (note that
for G, we adopt an encoder-decoder architecture consisting
of an encoder Ec and a decoder D) :

Ladv := E
y∼Y

[log(D(y))] + E
x∼X,z∼p(z)

[log(1−D(D(Ec(x), z)))]
(1)

where z ∈ Rdz is a random noise vector and p(z) is the
standard normal distribution N (0, I). We leverage its vari-
ability to encourage diversity in generated images.
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Figure 2: An overview of our method. (a) With the adversarial loss Ladv and content structure loss Lp (Section 3.1), we are
able to transfer artistic styles onto content images. (b) With the content feature loss LFP , content feature adversarial loss
Lcadv , and artwork reconstruction loss Lrecon (Section 3.2), we obtain an encoder Es which can extract the style information
from stylized images. (c) With the inverse loss Linv (Section 3.3), we encourage the bijection mapping between the style
space of stylized images and the latent space of input noise vectors, leading to significant diversity.

Only using above adversarial loss cannot preserve the
content information of x in the generated image, which does
not meet the requirements of style transfer. The simplest so-
lution is to utilize a pixel-wise loss between the content im-
age x ∼ X and stylized image D(Ec(x), z). However, this
loss is too strict and harms the quality of the stylized image.
Therefore, we soften the constraint: instead of directly cal-
culating the distance between original images, we first input
them into an average pooling layer P and then calculate the
distance between them. We express this content structure
loss as:

Lp := E
x∼X,z∼p(z)

[||P (D(Ec(x), z))− P (x)||22] (2)

Compared with the pixel-wise loss which requires the
content image and the stylized image to be exactly the same,
Lp measures their difference in a more coarse-grained man-
ner and only requires them to be similar in general content
structures, more consistent with the goal of style transfer.

Although the stylization branch is sufficient to obtain re-

markable stylized images, it can only produce a determin-
istic stylized image without diversity, because the network
tends to ignore the random noise vector z.

3.2. Disentanglement Branch

[32] alleviated the mode collapse issue in GANs by en-
forcing the bijection mapping between the input noise vec-
tors and generated images. Different from [32], which only
takes noise vectors as inputs, our model takes noise vectors
along with content images as inputs, where the former are
responsible for style variations and the latter determine the
main contents. Therefore, in the inverse process, instead
of inverting the whole generated image to the input noise
vector like [32] does, we invert the style information of the
stylized image to the input noise vector (details in Section
3.3). To be specific, we utilize a style encoder to extract
the style information from the stylized image, and enforce
the consistency between the style encoder’s output and the
input noise vector. The main problem now is how to obtain
such a style encoder. We resolve this problem through the
disentanglement branch.
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First, the disentanglement branch employs an encoder
E

′

c which takes the stylized image D(Ec(x), z) as input.
Given that the content image and stylized image share the
same content and differ greatly in style, if we encourage
the similarity between the output of Ec (whose input is the
content image) and that of E

′

c (whose input is the stylized
image), Ec and E

′

c shall extract the shared content infor-
mation and neglect the specific style information. Notice
that Ec and E

′

c are two independent networks and do not
share weights. This is because there are some differences
when extracting photographs’ contents and artworks’ con-
tents. We define the corresponding content feature loss as,

LFP := E
x∼X,z∼p(z)

[||E
′

c(D(Ec(x), z))− Ec(x)||22] (3)

However, LFP may encourage Ec and E
′

c to output fea-
ture maps in which the value of each element is pretty small
(i.e., ∥ Ec(x) ∥→ 0, ∥ E

′

c(D(Ec(x), z)) ∥→ 0). In such
a circumstance, although LFP is minimized, the similarity
between Ec(x) and E

′

c(D(Ec(x), z)) is not increased. To
alleviate this problem, we employ a feature discriminator
Df and introduce a content feature adversarial loss,

Lcadv := E
x∼X,z∼p(z)

[log(Df (Ec(x)))+

log(1−Df (E
′

c(D(Ec(x), z))))]
(4)

Lcadv measures the distribution deviation, less sensitive
to the value of its input in comparison with LFP . In addi-
tion, Lcadv together with LFP can promote the similarity in
two dimensions, further improving the performance.

Then the disentanglement branch adopts another encoder
Es together with the content encoder E

′

c and the decoder D
to reconstruct the artistic image. Since E

′

c is constrained to
extract the content information, Es has to extract the style
information to reconstruct the artistic image. Therefore, we
get our desired style encoder Es. We formulate the recon-
struction loss as,

Lrecon := E
y∼Y

[||D(E
′

c(y), Es(y))− y||1] (5)

3.3. Inverse Branch

Armed with the style encoder Es, we can access the
style space of artistic images. To achieve diversity, the in-
verse branch enforces the one-to-one mapping between la-
tent space and style space by employing the inverse loss,

Linv := E
x∼X,z∼p(z)

[||Es(D(Ec(x), z))− z||1] (6)

The inverse loss ensures that the style information of the
generated image D(Ec(x), z) can be inverted to the cor-
responding noise vector z, which implies that D(Ec(x), z)

retains the influence and variability of z. In this way, we can
get diverse stylization results by randomly sampling differ-
ent z from the standard normal distribution N (0, I).

3.4. Final Objective and Network Architectures

Figure 2 illustrates the full pipeline of our approach. We
summarize all aforementioned losses and obtain the com-
pound loss,

Ltotal := λadvLadv + λpLp + λfpLFP+

λcadvLcadv + λreconLrecon + λinvLinv

(7)

where the hyper-parameters λadv , λp, λfp, λcadv , λrecon,
and λinv control the importance of each term. We use the
compound loss as the final objective to train our model.

Network Architectures. We build on the recent AST
backbone [29], and extend it with our proposed changes to
produce diverse stylization results. Specifically, the con-
tent encoder Ec and E

′

c have the same architecture and are
composed of five convolution layers. The style encoder Es

includes five convolution layers, a global average pooling
layer, and a fully connected (FC) layer. Similar to [15], our
decoder D has two branches. One branch takes the con-
tent image x as input, containing nine residual blocks [9],
four upsampling blocks, and one convolution layer. An-
other branch takes the noise vector z as input (notice that at
inference time, we can take either z or the style code Es(y)
extracted from a reference image y as its input), contain-
ing one FC layer to produce a set of affine parameters γ, β.
Then the two branches are combined through AdaIN [10],

AdaIN(a, γ, β) := γ

(
a− µ(a)

σ(a)

)
+ β (8)

where a is the activation of the previous convolutional layer
in branch one, µ and σ are channel-wise mean and standard
deviation, respectively. The image discriminator D is a fully
convolutional network with seven convolution layers. The
feature discriminator Df consists of three convolution lay-
ers and one FC layer. As for P , it is an average pooling
layer. The loss weights are set to λadv = 2, λp = 150, λfp =
100, λcadv = 10, λrecon = 200, and λinv = 600. We use the
Adam optimizer with a learning rate of 0.0002.

4. Experiments
We conduct extensive experiments and comparisons to

evaluate our proposed method. First, in Section 4.1, we
show the diverse artworks generated by our model and per-
form qualitative comparisons. Next, we provide quantita-
tive results in Section 4.2. Finally, in Section 4.3, we ablate
single components of our model to show their importance.

Dataset. Like [29, 17, 18, 33], we take Places365
[45] as the content dataset and Wikiart [14] as the style
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Figure 3: Stylization examples generated by DIST. The first row shows the artworks of different artists. The second row
shows the content images. The other three rows show the diverse stylized images generated by our model.

dataset (concretely, we collect hundreds of artworks for
each artist from WikiArt and train a separate model for
him/her). Training images were randomly cropped and re-
sized to 768×768 resolutions.

Baselines. We take the following methods that can pro-
duce diversity as our baselines: Gatys et al. [7], Li et al.
[23], Ulyanov et al. [35], DFP [37], and MUNIT [11]. Apart
from above methods, we also compare with AST [29] and
Svoboda et al. [33] to make the experiments more sufficient.
Note that we use their officially released codes and default
settings of hyper-parameters for experiments.

4.1. Qualitative Comparisons

In this section, we present images generated by our
method to confirm the quantitative results in terms of di-
versity and quality. Figure 3 shows our stylization results
based on different artists’ styles. We can see that for each
artist’s style, our model produces significantly diverse artis-
tic images with remarkable visual quality.

In Figure 4, we show the qualitative comparison results

between the proposed DIST and the seven baselines men-
tioned above. We observe that AST [29] and Svoboda et al.
[33] fail to generate diverse outputs. Gatys et al. [7], Li et
al. [23], and Ulyanov et al. [35] only produce slight varia-
tions, which are hard to notice. DFP [37] achieves notice-
able diversity but introduces many distortions in the stylized
image, failing to preserve the main content structures. MU-
NIT [11] yields highly diverse yet poor-quality stylizations.
As can be seen from the zoom-in part in Figure 4, MU-
NIT [11] only changes the color of the content image and
does not learn any texture patterns, resulting in unsatisfying
results. This is because MUNIT [11] is built on the assump-
tion: images in different domains have different style spaces
but share a common content space, which implies that it can
only perform image translation between visually similar do-
mains (for example, day scene↔night scene). In contrast,
DIST does not require the content image and style image to
be similar in content. The results in Figure 3 and 4 verify
the effectiveness and superiority of our method. Additional
results are provided in the supplementary material.
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Figure 4: Qualitative comparisons. The first column shows the content image and van Gogh’s artworks. The other columns
show the stylized images generated by different methods.

Table 1: The deception rate, user study, and LPIPS distance for different methods. The higher the better.

Gatys et al. [7] AST [29] Svoboda et al. [33] Li et al. [23] Ulyanov et al. [35] DFP [37] MUNIT [11] DIST

Deception Rate 0.206 0.454 0.278 0.072 0.079 0.027 0.121 0.525
User Study 0.089 0.316 0.242 0.010 0.012 0.006 0.004 0.321

LPIPS Distance 0.256 0.000 0.000 0.175 0.163 0.431 0.538 0.464

4.2. Quantitative Comparisons

In this section, we assess our model with some evalu-
ation metrics. Specifically, we adopt deception rate [29]
and user study [27, 40, 4, 44] to measure quality, and em-
ploy LPIPS (Learned Perceptual Image Patch Similarity)
distance [42] to measure diversity.

Deception rate. This is a quantitative metric proposed
by Sanakoyeu et al. [29]. In particular, a VGG-16 network
[31] was pre-trained to classify artists on Wikiart [14]. The
deception rate is then calculated as the fraction of generated
images which were classified by the network as the artworks
of an artist for which the stylization was produced. We re-
port the deception rate in Table 1 in the second row, where
we can see that our approach performs the best while DFP
[37] performs the worst.

User study. We also perform human evaluation studies
to compare the performance of DIST with other methods.
Given a content image, we stylize it with different methods
and show the stylization results alongside the content image
to participants. We then ask these participants to choose the
stylized image which resembles the style of the target artist
the most. We show 20 groups of images to 50 participants
and finally collect 1000 votes. We report the percentage
of votes for each method in the third row of Table 1. We
observe that the stylized images generated by DIST are top-

rated on average, while MUNIT [11] has the lowest score.
To measure diversity, we use 5 content images and 6

artists’ artworks to get 30 different combinations, and for
each combination, we require each method to produce 20
outputs. Therefore, we obtain 5700 pairs (30×C2

20 = 5700)
of stylized images generated by each method.

LPIPS distance. LIPIS [42] measures the average fea-
ture distances between generated images. The fourth row in
Table 1 shows the LPIPS distance of each method. It can be
observed that DIST achieves the second-highest score, after
MUNIT [11].

In summary, although DFP [37] and MUNIT [11]
achieve notable diversity, they perform badly in quality. In
contrast, DIST achieves both significant diversity and supe-
rior visual quality.

4.3. Ablation Study

According to above analyses, the disentanglement
branch and inverse branch are our key to achieving diversity.
In this section, we explore the effect of these two branches
by ablation studies.

With and without disentanglement branch. To inves-
tigate the effect of the disentanglement branch, we evaluate
the performance of DIST when this branch is removed. We
report the experimental result in Figure 5 (c), where we ob-
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Figure 5: Ablation results. (a) The results of AST (deception rate = 0.454, LPIPS = 0.000), (b) DIST (deception rate =
0.525, LPIPS = 0.464), (c) DIST w/o disentanglement branch (deception rate = 0.112, LPIPS = 0.446), and (d) DIST w/o
inverse branch (deception rate = 0.531, LPIPS = 0.034). Zoom in for a better view and details.

serve a serious degradation in image quality. The reason
could be that it is unreasonable to invert the whole gener-
ated image to the input noise vector, since the input noise
vector only influences the style of the generated image and
has nothing to do with its content.

Figure 6: The inverse loss in the training stage.

With and without inverse branch. Here, we train a
DIST model that does not involve the inverse branch. As
expected, the result in Figure 5 (d) shows that there are
few style variations in generated images. This is because
the network tends to neglect the input noise vectors. This
problem can be solved by employing the proposed inverse
branch. As shown in Figure 6, with the inverse branch, the
inverse loss is close to 0 at the end of the training stage,
suggesting that the DIST model learns an invertible map-
ping between the latent space and style space. The input
noise vectors now can greatly influence the network output.

Note that the noise vector z can be replaced with the style
code Es(y) extracted from a reference image y to produce
more controllable stylization results, as shown in Figure 7.

The ablation results indicate that the disentanglement
branch and the inverse branch are two essential ingredients
of our method. Without these two branches, our method
cannot generate diverse and high-quality stylized images.

Figure 7: Reference-guided stylization results.

5. Conclusion
In this paper, we propose a Diverse Image Style Trans-

fer (DIST) framework which achieves significant diversity
without loss of quality by encouraging the one-to-one map-
ping between the latent space of input noise vectors and the
style space of generated artistic images. The framework
consists of three branches, where the stylization branch is
responsible for stylizing the content image, and the other
two branches (i.e., the disentanglement branch and the in-
verse branch) are responsible for diversity. Our extensive
experimental results demonstrate the effectiveness and su-
periority of our method. In the future work, we would like
to extend our method to other tasks, such as text-to-image
synthesis and image inpainting.
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