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Figure 1: Learning to image from only measurements. Training an imaging network through just measurement consis-
tency (MC) does not significantly improve the reconstruction over the simple pseudo-inverse (A†y). However, by enforcing
invariance in the reconstructed image set, equivariant imaging (EI) performs almost as well as a fully supervised network.
Top: sparse view CT reconstruction, Bottom: pixel inpainting. PSNR is shown in top right corner of the images.

Abstract

In various imaging problems, we only have access to
compressed measurements of the underlying signals, hin-
dering most learning-based strategies which usually require
pairs of signals and associated measurements for train-
ing. Learning only from compressed measurements is im-
possible in general, as the compressed observations do not
contain information outside the range of the forward sens-
ing operator. We propose a new end-to-end self-supervised
framework that overcomes this limitation by exploiting the
equivariances present in natural signals. Our proposed
learning strategy performs as well as fully supervised meth-
ods. Experiments demonstrate the potential of this frame-
work on inverse problems including sparse-view X-ray com-
puted tomography on real clinical data and image inpaint-
ing on natural images. Code has been made available at:
https://github.com/edongdongchen/EI.

1. Introduction
Linear inverse problems are ubiquitous in computer vi-

sion and signal processing, appearing in multiple important

applications such as super-resolution, image inpainting and
computed tomography (CT). The goal in these problems
consists of recovering a signal x from measurements y, that
is inverting the forward process

y = Ax+ ε, (1)

which is generally a challenging task due to the ill-
conditioned operator A and noise ε. In order to obtain a
stable inversion, traditional approaches have used linear re-
construction, i.e. A†y, where the estimate is restricted to the
range space of A>, or model-based approaches that reduce
the set of plausible reconstructions x using prior informa-
tion (e.g. sparsity). Leveraging the powerful representation
properties of deep neural networks, a different approach is
taken by recent end-to-end learning solutions which learn
the inverse mapping directly from samples (x, y). However,
all of these approaches require ground truth signals x for
learning the reconstruction function x = f(y), which hin-
ders their applicability in many real-world scenarios where
ground truth signals are either impossible or expensive to
obtain. This limitation raises the natural question: can we
learn the reconstruction function without imposing strong
priors and without knowing the ground-truth signals?
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Here, we show that typical properties of physical mod-
els such as rotation or shift invariance, constitute mild prior
information that can be exploited to learn beyond the range
space of A>. We present an end-to-end equivariant imag-
ing framework which can learn the reconstruction function
from compressed measurements y alone for a single for-
ward operator. As shown in Figure 1, the equivariant imag-
ing approach performs almost as well as having a dataset of
ground truth signals x and significantly outperforms simply
enforcing the measurement consistency Af(y) = y in the
training process. We show both theoretically and empiri-
cally that the proposed framework is able to identify the sig-
nal set and learn the reconstruction function from few train-
ing samples of compressed observations without access-
ing ground truth signals x. Experimental results demon-
strate the potential of our framework through qualitative
and quantitative evaluation on inverse problems. Specifi-
cally our contributions are as follows:

1. We present a conceptually simple equivariant imaging
paradigm for solving inverse problems without ground
truth. We show how invariances enable learning be-
yond the range space of the adjoint of the forward op-
erator, providing necessary conditions to learn the re-
construction function.

2. We show that this framework can be easily incorpo-
rated into deep learning pipelines using an additional
loss term enforcing the system equivariance.

3. We validate our approach on sparse-view CT recon-
struction and image inpainting tasks, and show that our
approach obtains reconstructions comparable to fully
supervised networks trained with ground truth signals.

1.1. Related work

Model-based approaches The classical model-based ap-
proach for solving inverse problems [4, 8], constrains the
space of plausible solutions using a fixed model based on
prior knowledge (e.g. sparsity [27]). Although the model-
based paradigm has typically nice theoretical properties,
it presents two disadvantages: constructing a good prior
model that captures the low-dimensionality of natural sig-
nals is generally a challenging task. Moreover, the recon-
struction can be computationally expensive, since it requires
running an optimization procedure at test time.

Deep learning approaches Departing from model-based
strategies, the deep learning strategies aim to learn the re-
construction mapping from samples (x, y). This idea has
been successfully applied to a wide variety of inverse prob-
lems, such as image denoising and inpainting [24, 40, 39],
super-resolution [9, 37, 22], MRI reconstruction [25, 6] and

CT image reconstruction [15, 38]. However, all of these ap-
proaches require access to training pairs (x, y) which might
not be available in multiple real-world scenarios.

Learning with compressed observations In general,
given a fixed forward model A with a non trivial nullspace,
it is fundamentally impossible to learn the signal model be-
yond the range space ofA> using only compressed samples
y. This idea traces back to blind compressive sensing [11],
where it was shown that is impossible to learn a dictionary
from compressed data without imposing strong assumptions
on the set of plausible dictionaries.

Self-supervised learning More recently, there is a grow-
ing body of work on self-supervised learning exploring
what can be learnt without ground truth. For example,
there is a collection of studies in the mould of Noise2X
[18, 1, 17, 26] where image denoising is performed with-
out access to the ground truth. However, the denoising task
does not have a non trivial nullspace since A is the identity.
Although some follow-up works including [13] and [21]
have tried to solve a more general situation, the former does
not consider a nontrivial null space while the latter requires
the exploitation of the diversity of multiple forward oper-
ators to learn a denoiser and eventually solves the inverse
problem in an iterative model-based optimization [30]. Fi-
nally, some unconditional [3] and conditional [28] gener-
ative models, were proposed to learn to reconstruct from
compressed samples, but again requiring multiple different
forward operators. In contrast, we are able to learn this for
a single forward operator.

2. Method
2.1. Problem Overview

We consider a linear imaging physics model A : Rn →
Rm, and the challenging setting in which only a set of
N compressed observations {yi}i=1,...,N are available for
training. The learning task consists of learning a reconstruc-
tion function fθ : Rm → Rn such that fθ(y) = x. As the
number of measurements is lower than the dimension of the
signal space m < n, and the operator A has a non trivial
nullspace.

Measurement consistency Given that we only have ac-
cess to compressed data y, we can enforce that the inverse
mapping f is consistent in the measurement domain. That
is

Af(y) = y. (2)

However, this constraint is not enough to learn the inverse
mapping, as it cannot capture information about X outside
the range of the operator A>. As shown in Section 3, there
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are multiple functions fθ that can verify (2), even if we have
infinitely many samples yi.

Invariant set consistency In order to learn beyond the
range space of A>, we can exploit some mild prior infor-
mation about the set of plausible signals X . We assume that
the set presents some symmetries, i.e. that it is invariant to
certain groups of transformations, such as shifts, rotations,
reflections, etc. This assumption has been widely adopted
both in multiple signal processing and computer vision ap-
plications. For example, it is commonly assumed that natu-
ral images are shift invariant. Another example is computed
tomography data, where the same organ can be imaged at
different angles making the problem invariant to rotation.

Under this assumption, the set of signals X is invariant
to a certain group of transformations G = {g1, . . . , g|G|}
which are unitary matrices Tg ∈ Rn×n such that for all
x ∈ X , we have

Tgx ∈ X (3)

for ∀g ∈ G, and the sets TgX and X are the same.
According to the invariance assumption in (3), the com-

position f ◦A should then be equivariant to the transforma-
tion Tg , i.e.

f(ATgx) = Tgf(Ax) (4)

for all x ∈ X , and all g ∈ G. It is important to note that (4)
does not require f to be invariant or equivariant, but rather
the composition f ◦ A to be equivariant. As discussed in
Section 3, as long as the range of A> itself is not invariant
to all Tg , this additional constraint on the inverse mapping
f allows us to learn beyond the range space.

Invariant distribution consistency In most cases, not
only is the signal set X invariant but also the distribution
p(x) defined on this set is invariant, i.e.

p(Tgx) = p(x) (5)

for all g ∈ G. Hence, we can also enforce this distributional
constraint when learning the inverse mapping f .

2.2. Equivariant Imaging

We propose to use a trainable deep neural network Gθ :
Rn → Rn and an approximate linear inverse (for example a
pseudo-inverse) A† ∈ Rn×m to define the inverse mapping
as fθ = Gθ ◦ A†. We emphasize that while in principle
the form of fθ is flexible, here we use the linear A† to first
project y into Rn to simplify the learning complexity. In
practice A† can be chosen to be any approximate inverse
that is cheap to compute.

We propose a training strategy that enforces both the
measurement consistency in (2) and the equivariance con-
dition in (4) using only a dataset of compressed samples

Algorithm 1 Pseudocode of EI in a PyTorch-like style.
# A.forw, A.pinv: forward and pseudo inverse operators
# G: neural network
# T: transformations group
# a: alpha

for y in loader: # load a minibatch y with N samples
# randomly select a transformation from T
t = select(T)

x1 = G(A.pinv(y)) # reconstruct x from y
x2 = t(x1) # transform x1
x3 = G(A.pinv(A.forw(x2))) # reconstruct x2

# training loss, Eqn.(6)
loss = MSELoss(A.forw(x1), y) # data consistency

+ alpha*MSELoss(x3, x2) # equivariance

# update G network
loss.backward()
update(G.params)

{yi}i=1,...,N . In the forward pass, we first compute x(1) =
fθ(y) as an estimate of the actual ground truth x which is
not available for learning. Note the data consistency be-
tween Afθ(y) and y only ensures that Ax(1) stays close to
the input measurement y but fails to learn beyond the range
space of A>. According to the equivariance property in (4),
we subsequently transform x(2) = Tgx

(1), for some g ∼ G,
and pass it through f ◦ A to obtain x(3). The computations
of x(1), x(2) and x(3) are illustrated in Figure 2.

𝑥(1) 𝑥(2) 𝑥(3)𝑦 𝑇𝑔 𝐴𝑓𝜃 𝑓𝜃

𝑔 ∼ 𝒢

Figure 2: Equivariant learning strategy. x(1) represents
the estimated image, while x(2) and x(3) represent Tgx(1)

and the estimate of x(2) from the measurements ỹ = Ax(2)

respectively.

The network weights are updated according to the error
between y and Ax(1), and the error between x(2) and x(3),
by minimizing the following training loss

argmin
θ

Ey,g{L(Ax(1), y) + αL(x(2), x(3))}, (6)

where the first term is for data consistency and the second
term is to impose equivariance, α is the trade-off parameter
to control the strength of equivariance, and L is an error
function.

After training, the learned reconstruction function fθ =
Gθ ◦A† can be directly deployed either on the training sam-
ples of observations or on new previously unseen observa-
tions to recover their respective ground-truth signals. Algo-
rithm 1 provides the pseudo-code of the Equivariant Imag-
ing (EI) where L is the mean squared error (MSE).
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Figure 3: Learning with and without equivariance in a toy 1D signal inpainting task. The signal set consists of different scaling of a
triangular signal. On the left, the dataset does not enjoy any invariance, and hence it is not possible to learn the data distribution in the
nullspace of A. In this case, the network can inpaint the signal in an arbitrary way (in green), while achieving zero data consistency loss.
On the right, the dataset is shift invariant. The range of A is shifted via the transformations Tg , and the network inpaints the signal correctly.

Adversarial extension We can add an additional penalty
to enforce the invariant distribution consistency (5). In-
spired by generative adversarial networks [12], we use a
discriminator network D and adopt an adversarial training
strategy to further enforce that x(1) and x(2) are identically
distributed. The resulting adversarial equivariance learning
strategy consists in solving the following optimization:

min
G

max
D

Ey,g{L(Ax(1), y) + αL(x(2), x(3))

+ βLadv(x
(1), x(2))},

(7)

and Ladv(x
(1), x(2)) = Ex(1){D(x(1))} + Ex(2){1 −

D(x(2))} i.e. a least square adversarial loss [23] is adopted
and β is to control the strength of invariant distribution con-
straint. Our experimental findings (see in Supplemental ma-
terial) suggest that the adversarial invariance learning only
provides a very slight improvement against the equivariant
learning in (6). Thus in the next sections we mainly focus
on equivariant learning.

3. Theoretical analysis
We start with some basic definitions. A measurement

operator A ∈ Rm×n with m < n has a non-trivial linear
nullspace NA ⊆ Rn of dimension at least n−m, such that
∀v ∈ NA we have Av = 0. The complement of NA is the
range space RA = range(A>), such that RA ⊕NA = Rn,
which verifies that ∀v ∈ RA we have Av 6= 0.

Learning without invariance The problem of learning
the signal set X only using compressed samples was first
explored in the context of blind compressive sensing [11],
for the special case where X is modelled with a sparse dic-
tionary. The authors in [11] showed that learning is im-
possible in general, becoming only possible when strong
assumptions on the set of plausible dictionaries are im-
posed. A similar result can be stated in a more general set-
ting, showing that there are multiple possible reconstruction
functions f that satisfy measurement consistency:

Proposition 1 Any reconstruction function f(y) : Rm 7→
Rn of the form

f(y) = A†y + v(y) (8)

where v(y) : Rm 7→ N is any function whose image be-
longs to the nullspace of A verifies the measurement con-
sistency requirement.
Proof: For f any form (8) the measurement consistency can
be expressed as Af(y) = AA†y + Av(y) where the first
term is simply y asAA† is the identity matrix, andAv(y) =
0 for any v(y) in the nullspace of A. �

For example, the function v(x) can be as simply as v = 0
and the resulting f will be measurement consistent. Inter-
estingly, some previous supervised approaches [33, 5] sepa-
rate the learning of the range and the nullspace components.
Proposition 1 shows that without ground truth signals, there
is no information to learn the nullspace component.

Learning with invariance In the proposed equivariant
imaging paradigm, each observation can equally be thought
of as a new observation with a new measurement operator
Ag = ATg , as

y = Ax = ATgT
>
g x = Agx̃ (9)

where x̃ = T>g x is also a signal in X . Hence, the invariance
property allows us to see in the range of the operatorsAg , or
equivalently, rotate the range space RA through the action
of the group G, i.e.

RAg = range(T>g A
>) = T>g RA. (10)

This idea is illustrated in Figure 3 for inpainting a simple
1D signal model. A necessary condition to recover a unique
model X is that the concatenation of operatorsAg spans the
full space Rn:
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Theorem 1: A necessary condition for recovering the signal
model X from compressed observations is that the matrix

M =

 AT1
...

AT|G|

 ∈ R|G|m×n (11)

is of rank n.
Proof: Assume the best case scenario where we have an ora-
cle access to the measurements associated with the different
transformations of the same signal1 x, that is yg = ATgx
for all g. Stacking all the measurements together into
ỹ ∈ R|G|m, we observe ỹ = Mx and hence M needs to
be of rank n in order to recover x. �

This necessary condition provides a lower bound on how
big the group G has to be, i.e. at least satisfy m|G| ≥ n.
For example, if the model is invariant to single reflections
(|G| = 2), we need at least m ≥ n/2. Moreover, this condi-
tion also tells us that the range spaceRA cannot be invariant
to G.
Corollary 1: A necessary condition for recovering the sig-
nal modelX from compressed observations is that the range
RA withm < n is not invariant to the action of G, i.e., there
is g ∈ G such that

RA 6= RATg
(12)

Proof: If RA = RATg for all g then NA = NATg for all g.
From (11) we have that M shares the same null space and
is therefore rank m < n. �

Corollary 1 tells us that not any combination of A and
G is useful for learning beyond the range space. For exam-
ple, shift invariance cannot be used to learn from Fourier
based measurement operators (which is the case in deblur-
ring, super-resolution and magnetic resonance imaging), as
A> would be invariant to the shifts. It is worth noting that
the necessary condition in Theorem 1 will in general not
be sufficient. For example, for shift invariant models, a
forward matrix composed of a single localized measure-
ment A = [1, 0, . . . , 0]> verifies the necessary condition
but might not enough to learn a complex model X .

4. Experiments
We show experimentally the performance of the pro-

posed method for diverse image reconstruction problems.
Due to space limitations, we present a few examples here
and include more in the Supplementary Material (SM).

4.1. Setup and Implementation

We evaluate the proposed approach on two inverse imag-
ing problems: sparse-view CT image reconstruction and im-
age inpainting, where the measurement operator A in both

1This is also the case for the simplest signal model where X is com-
posed of a single atom.

tasks are fixed and have non-trivial nullspaces, illustrating
the models’ ability to learn beyond the range space. We de-
signed our experiments to address the following questions:
(i) how well does the equivariant imaging paradigm com-
pare to fully supervised learning? (ii) how does it com-
pare to measurement consistent only learning (i.e. with the
equivariance loss term removed)?

Throughout the experiments, we use a U-Net [31] to
build Gθ with a residual connection at the output, i.e. Gθ =
I +Gres

θ and fθ(y) = A†y+Gres
θ (A†y), to explicitly let the

learning target of Gres
θ recover the nullspace component of

x. We compare our method (EI) with four different learn-
ing strategies: measurement-consistency only (MC) with
the equivariance term in (6) removed; the adversarial ex-
tension of EI (EIadv) in (7) using the discriminator network
from [37]; supervised learning (Sup) [15] that minimizes
Ey{L(fθ(y), x)} using ground truth signal-measurement
pairs; and EI regularized supervised learning (EIsup) with
the data consistency term replaced by L(fθ(y), x) in (6).
For a fair comparison with EI, no data augmentation of
ground truth signals are conducted for both supervised
learning methods, Sup and EIsup. We use the residual U-
Net architecture for all the counterpart learning methods to
ensure all methods have the same inductive bias from the
neural network architecture. Note that while there are many
options to determine the optimal network architecture such
as exploring different convolutions [29, 40, 20, 39] or dif-
ferent depths [36], these aspects are somewhat orthogonal
to the learning beyond the range space question.

We demonstrate that the equivariant imaging approach is
straightforward and can be easily extended to existing deep
models without modifying the architectures. All methods
are implemented in PyTorch and optimized by Adam [16].
We tuned the α for specific inverse problems (see SM for
training details).

4.2. Sparse-view CT

The imaging physics model of X-ray computed tomog-
raphy (CT) is the discrete radon transform. The physics
model A is the radon transformation where 50 views (an-
gles) are uniformly subsampled to generate the sparse-view
sinograms (observations) y. The Filtered back projection
(FBP) function, i.e. iradon, is used to approximate A†.
In this task, we exploit the invariance of the CT images
to rotations2, and G is the group of rotations by 1 degree
(|G|=360). We use the CT100 dataset [7], a public real CT
clinic dataset which comprises 100 real in-vivo CT images
collected from the cancer imaging archive3 which consist
of the middle slice of CT images taken from 69 different

2It is worth noting that shift invariance is not useful for the CT case, as
the forward operator is shift invariant itself (see Corollary 1).

3https://wiki.cancerimagingarchive.net/display/
Public/TCGA-LUAD
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Figure 4: Examples of sparse-view CT image reconstruction on the unseen test observations. We train the supervised model
(FBPConvNet [15]) with observation-groundtruth pairs while train our equivariance learned model with observations alone.
We adopt the random rotation as the transformation T for our equivariance learning. We obtained results comparable to
supervised learning in artifacts-removal. Corresponding PSNR are shown in images.
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EI(train)

FBP (test)
Supervised (test)
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Figure 5: Reconstruction performance
(PSNR) as a function of training epoch
for supervised trained FBPConvNet and
our method (learn without groundtruth) on
sparse-view CT observations for training
and testing.

patients. The CT images are resized to 128 × 128 pixels
and we then apply the radon function on them to generate
the 50-views sinograms. We used the first 90 sinograms for
training while the remaining 10 sinograms for testing. Note
in this task, the supervised trained residual U-Net is just

the FBPConvNet proposed in [15] which has been demon-
strated to be very effective in supervised learning for sparse-
view CT image reconstruction. We train our model with
equivariance strength α = 102 (see SM for more results
and the equivariance strength effect). using the sinograms
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Figure 6: Examples of pixelwise image inpainting on the unseen test observations. We train the supervised model [15] with
observation-groundtruth pairs while train our equivariance learned model with observations alone. We adopt the random shift
as the transformation T for our equivariance learning. We obtained results comparable to supervised learning in recovering
missing pixels. Corresponding PSNR are shown in images.

y alone while the FBPConvNet is trained with the ground
truth pairs (x, y).

A qualitative comparison is presented in Figure 4. The
sparse-view FBP contains the line artifacts. Both the FBP-
ConvNet and our methods significantly reduce these arti-
facts, giving visually indistinguishable results. Figure 5
shows the value of PSNR of reconstruction on the train-
ing measurements and test measurements and we have the
following observations: (i) We would naturally expect the
network trained with ground truth data to perform the best.
However, we note that the equivariant test error is almost
as good despite having no access to ground truth images
and only learning on the sparse sinogram data. Furthermore
the EI solution is about 7 dB better than the FBP, clearly
demonstrating the correct learning of the null space com-
ponent of the image. (ii) We note that there is a significant

gap between training and test error for the FBPConvNet,
suggesting that the network may be overfitting. We do not
observe this in the EI learning. This can be explained by the
fact that the EI constrains the network to a much small class
of functions (those that are equivariant on the data) and thus
can be expected to have better generalization properties.

We also compared the EI with its adversarial extension
in (7) and the supervised learning regularized by equivari-
ance objective. The quantitative results are given in table 1
below. First, MC learning obtains a small improvement in
performance over FBP which may be attributable to the fact
that FBP is only an approximation to A†. Alternatively it
may be due to the inductive bias of the neural network ar-
chitecture [35]. Second, the adversarial extension provides
a slight improvement to EI and similarly the EI regulariza-
tion helps the vanilla supervised learning obtain a further
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FBP MC EI EIadv Sup EIsup

50-views CT 30.24 31.01 36.94 36.96 38.17 38.79

A†y MC EI EIadv Sup EIsup

Inpainting 5.84 5.84 25.14 23.26 26.51 26.75

Table 1: Reconstruction performance (PSNR) of 50-views
CT reconstruction and image inpainting for different meth-
ods on the CT100 and Urban100 test measurements, respec-
tively.

0.6 dB improvement. These results suggest that it is indeed
possible to learn to reconstruct challenging inverse prob-
lems with only access to measurement data.

4.3. Image inpainting

As a proof-of-concept of the generality of the method,
we also applied our method on an image inpainting task
with a fixed set of deleted pixels. This is relevant for exam-
ple to the problem of reconstructing images from cameras
with hot or dead pixels.

In the image inpainting task, the corrupted measure-
ment is given by y = b � x where b is a binary mask,
� is the Hadamard product, and the associated operator
A = diag(b) and A = A†. Here, we consider pixelwise
inpainting where we randomly drop 30% of pixel measure-
ments. We train our model by applying random shift trans-
formations. We evaluate the reconstruction performance
of our approach and other learning methods using the Ur-
ban100 [14] natural image dataset. For each image, we
cropped a 512x512 pixel area at the center and then resized
it to 256x256 for the ground truth image. The first 90 mea-
surements are for training while the last 10 measurements
are for testing.

The reconstruction comparisons are presented in Fig-
ure 6 and Table 1. We have the following observations:
First, the MC reconstruction is exactly equal to A†y as
the exact pseudo inverse is used, the reconstruction qual-
ity of MC is very poor as it completely failed to learn the
nullspace at all. Second, the EI reconstruction is about
20 dB better than A†y and MC reconstruction, the miss-
ing pixels are recovered well, again demonstrating the cor-
rect learning of the null space component of the image (the
adversarial EI was not competitive in this application). Fi-
nally, there is only a 1.37 dB gap between the reconstruction
of EI and the fully supervised model. As with the CT imag-
ing, we again find the generalization error of EI is also much
smaller than for the supervised model (see SM).

5. Discussion
The equivariant imaging framework presented here is

conceptually different from recent ideas on invariant net-

works [19, 32, 10] where the goal is to train an invariant
neural network for classification problems, which generally
performs better than a non-invariant one [34]. In contrast,
the equivariant imaging goal is to make the composition
fθ ◦ A equivariant but not necessarily fθ, promoting in-
variance across the complete imaging system. Moreover,
our framework also differs from standard data augmentation
techniques, as no augmentation can be done directly on the
compressed samples y. The proposed method overcomes
the fundamental limitation of only having range space in-
formation, effectively solving challenging inverse problems
without the need of ground truth training signals. As shown
in the experiments, our equivariant constraint can also be
applied in the fully supervised setting to improve the per-
formance of the networks.

The equivariant imaging framework admits many
straightforward extensions. For example, while we have
shown how to use shift-invariance and rotation-invariance
to solve the inpainting task and CT reconstruction. We be-
lieve that there are many other imaging tasks that could ben-
efit from equivariant imaging. It would also be very inter-
esting to investigate whether the benefits seen here can be
extended to nonlinear imaging problems.

Mixed types of group transformations can also be applied
at the training time and may help improve convergence time
and performance. However, as we have shown, the strength
of different transformations will depend on the nature of the
signal model and the physics operator.

We have also found that equivariant imaging can be used
to improve the performance for single image reconstruction
and have reported some preliminary results in the Supple-
mentary material. However, as single image reconstruction
itself relies heavily on the strong inductive bias of the net-
work [35] the role is EI in this scenario is less clear.

6. Conclusions
We have introduced a novel self-supervised learning

strategy that can learn to solve an ill-posed inverse prob-
lem from only the observed measurements, without having
any knowledge of the underlying signal distribution, other
than assuming that it is invariant to the action of a group
of transformations. This relates to an important question
on the use of deep learning in scientific imaging [2]: can
networks learn to image structures and patterns for which
no ground truth images yet exist? We believe that the EI
framework suggests that with the addition of the basic phys-
ical principle of invariance, such data-driven discovery is
indeed possible.
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