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Abstract

We introduce the first Neural Architecture Search (NAS)
method to find a better transformer architecture for image
recognition. Recently, transformers without CNN-based
backbones are found to achieve impressive performance for
image recognition. However, the transformer is designed
for NLP tasks and thus could be sub-optimal when directly
used for image recognition. In order to improve the visual
representation ability for transformers, we propose a new
search space and searching algorithm. Specifically, we in-
troduce a locality module that models the local correlations
in images explicitly with fewer computational cost. With the
locality module, our search space is defined to let the search
algorithm freely trade off between global and local infor-
mation as well as optimizing the low-level design choice in
each module. To tackle the problem caused by huge search
space, a hierarchical neural architecture search method is
proposed to search the optimal vision transformer from two
levels separately with the evolutionary algorithm. Exten-
sive experiments on the ImageNet dataset demonstrate that
our method can find more discriminative and efficient trans-
former variants than the ResNet family (e.g., ResNetl0])
and the baseline ViT for image classification. The source
codes are available at https://github.com/bychen515/GLiT.

1. Introduction

Convolutional Neural Networks (CNN) -based architec-
ture (e.g., ResNet [14]) contributes to the great success of
deep learning in computer vision tasks [26, 6, 19] for past
several years. By stacking a set of CNN layers, CNN-based
models can achieve larger receptive filed and perceive more
contextual information on scarifies of the efficiency. Driven
by the great success of transformer [30] in Natural Lan-
guage Processing(NLP) tasks, there are increasing interests
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Figure 1. Top-1 accuracy (y-axis) and FLOPs (x-aixs) for different
backbones on ImageNet. GLiT is our method.

in the computer vision community to develop more efficient
architectures based on the transformer [11, 28, 4, 37] which
can manipulate the global correlations directly. Among
these works, vision transformer (ViT) is a representative
one [ 1] as it does not rely on the CNN-based backbone
to extract features and solely relies on self-attention mod-
ules in transformer to establish global correlations among
all input image patches. While ViT achieves impressive
performance, if extra training data is not used, ViT still has
lower accuracy than the well-designed CNN models such as
ResNet-101 [14]. To further exploit the potential of trans-
former in image recognition tasks, DeiT [28] uses teacher-
student strategy for distilling knowledge to the transformer
token. These two methods rely on the original transformer
architecture but neglect potential gap between NLP tasks
and image recognition tasks in architecture.

In this work, we argue that there are unignorable gaps
between different kinds of data modalities (e.g., image and
text), leading to the disparities between different tasks.
Thus, directly applying the vanilla transformer architecture
to other tasks may be sub-optimal. It is natural that there
exists better transformer architectures for image recogni-
tion. However, hand-designing such an architecture is
time consuming since there are too many influential fac-
tors to be considered. On one hand, Neural Architecture
Search (NAS) has achieved great progress in computer vi-
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sion tasks [13, 22, 2]. It can automatically discover an opti-
mal network architecture without manual try-and-error. On
the other hand, computer vision community still has not in-
vestigated NAS for transformers.

Based on the above observations, we intend to discover
a better transformer architecture by NAS for specific tasks,
e.g., the image classification task in this work.

There are two key factors when designing NAS for trans-
former in vision tasks, a well-designed search space that
contains candidates with good performance and an efficient
searching algorithm to explore the search space.

A naive search space would only contain the architec-
ture parameters in the transformer architecture, such as the
feature dimension for query and value, the number of at-
tention heads in the Mutli-Head Attention (MHA) mecha-
nism, and the number of MHA blocks. However, the search
space does not consider two factors. First, the self-attention
mechanism in transformer cost quadratic memory and com-
putational burden w.r.t the number of input tokens [37] dur-
ing the inference stage. Second, local recurrence in human
visual system [16, 17] is not realized in the transformers
like ViT and DeiT. Inspiration from the local recurrence
in human visual system leads to the success of convolu-
tional layer, locally connected layers for computer vision
tasks [18]. Although theoretically possible, it is hard to
model sparse local correlations by the vaninlla self-attention
mechanism (e.g., a fixed-size neighbor tokens) in practice.

Considering the two factors mentioned above, we ex-
pand the search space of the vanilla transformer by intro-
ducing a locality module to the MHA. The locality module
only operates on the nearby tokens, requiring fewer param-
eters and computation. The locality module and the self-
attention module are alternative, which is searched by NAS
to decide which one is used. We rename the expanded MHA
block as the global-local block as it can capture both global
and local correlations among the input tokens. According to
our experiments (Table 1), the flexibility of the transformer
in capturing global and local information is an important
factor for the final performance.

Introducing global-local block should be effective, but
poses challenge to the searching algorithm. The NAS al-
gorithm for our search space should 1) discover the opti-
mal distribution of locality modules and self-attention mod-
ules in each global-local block, and 2) find the detailed
settings of both locality modules and self-attention mod-
ules by searching the module parameters. Such a search
space is extremely huge (10'® times of the possible choices
in [13] and 10'2 times of the possible choices in [22]),
which makes it challenging for existing NAS methods like
SPOS [13] in geting an ideal result. To deal with the prob-
lem mentioned above, we propose a Hierarchical Neural
Architecture Search method to find the optimal networks.
Specifically, we first train a supernet that contains both lo-

cality modules and self-attention modules, and determine
the high-level global and local sub-modules distribution
with evolutionary algorithm. Then, the detailed architecture
within each module are searched in a similar manner. Com-
pared with traditional searching strategies, the proposed hi-
erarchical searching can stabilize the searching process and
improve the searching performance.

Fig. 1 shows that our searched Global Local image
Transfomer (GLiT) achieves up to 4% absolute accuracy in-
crease when compared with the state-of-the-art tranformer
backbone DeiT on ImageNet.

To summarize, the main contributions are as follows:

e So far as we know, concurrent with [8], we are the
first to explore better transformer architecture by NAS
for image classification. Our work finds a new trans-
former variant that achieves better performance than
ResNet101 and ResNeXt101 using the same training
setting without pre-training on extra data.

* We introduce locality modules to the search space of
vision transformer model, which not only decreases
the computation cost but also enables explicitly local
correlation modeling.

* We propose a Hierarchical Neural Architecture Search
strategy, which can handle the huge searching space
in the vision transformer efficiently and improves the
searching results.

2. Related work

Transformers in Vision. The vision community has wit-
nessed bloom of interest and attention in combining trans-
formers with CNN, including DETR [4] and Deformable
DETR [37] for object detection, ViT [1 1] and DeiT [28] for
image classification, and IPT [7] for multi low-level tasks.
Different from DETR [4] and Deformable DETR [37], our
method does not rely on CNNs for feature extraction. In-
stead, the whole model is totally based on transformer ar-
chitecture. Deformable DETR [37] introduces local mech-
anism to reduce computation by only attending to small set
of key sampling points around a reference. The new local
mechanism is not well optimized on GPUs, so training De-
formable DETR still needs quadratic memory costs. Differ-
ently, our proposed locality module helps to reduce not only
the computation but also the memory resources. It is more
efficient than the local attention in Deformable DETR.

Global and Local Attention in NLP. Transformers based
on self-attention technique were proposed in [30] to replace
RNN for sequence learning on machine translation and be-
come state-of-the-art since then. We are inspired by the
use of global and local attention in [12, 3] for NLP. Long-
former [3] splits the original global attention with mask
global attention and masked local attention for long se-
quence learning. Our introduction of local attention is in-
spired by Conformer [12], which combines convolutions
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with self-attention to build the global and local interactions
in Automatic Speech Recognition (ASR) model. However,
it is unknown whether the Conformer for NLP is effective
for image recognition. Different from Conformer and Long-
former for NLP tasks, we introduce the convolution as the
Local Attention in the transformers for the image classifi-
cation task. Besides, our exploration on searching the dis-
tribution of global and local sub-modules in a network by
NAS is not investigated in [3, 12].

Global and Local Attention in Vision. Similar as NLP
field, global and local attention mechanism is also proved
effective in computer vision tasks. SAN [34] proposes pair-
wise and patchwise attention mechanism for image recog-
nition. [15, 31] achieve the performance gain from both
global and local information. SENet [15] introduces the
channel-wise attention in the local connected convolution
network. [31] utilizes Non-local blocks to capture long-
range dependencies in CNNs. Recently, BotNET [27] re-
places the last residual blocks of ResNet through trans-
former blocks to extract global information. All the above
methods manually design attention mechanism to CNNS,
while our focus is to introduce the local attention to vi-
sion transformers and automatically search for the optimal
global-local setting.

Neural Architecture Search. Recently, NAS methods
make great progress on the vision tasks [5, 9, 23, 35,20, 21].
Early NAS mothods apply RL [2, 38] or EA [25] to train
multiple models and update the controller to generate model
architectures. To reduce the searching cost, weight-sharing
methods are proposed. These methods construct and train
the supernet which includes all architecture candidates.
Darts [22] proposes a differentiable method to jointly op-
timize the network parameters and architecture parameters.
SPOS [13] proposes a single-path one-shot method, which
trains only one subnet from the supernet in each training
iteration. After supernet training, the optimal architecture
is found through Evolutionary Algorithm (EA). However,
due to the memory restriction (Darts [22]) or low correla-
tion problems (SPOS [13]), these two methods cannot han-
dle our search space with too many candidate architectures.
We propose the Hierarchical Neural Architecture Search to
solve problem caused by huge search space.

NAS has been used to search an optimal architecture for
NLP models. AutoTrans [36] designs a special parameter
sharing mechanism for RL-based NAS to reduce the search-
ing cost. [29] proposes a sampling-based one-shot architec-
ture search method to get a faster model. NAS-BERT [32]
constructs a big supernet including multiple architectures
and find optimal compressed models with different sizes in
the supernet. Different from the above methods, we focus
on NAS for transformer on image classification instead of
NLP tasks. Concurrent with our work, [8] proposes Weight
Entanglement method to search the optimal architecture for

original ViT model. Different from [8], we introduce local-
ity into vision transformer models and propose Hierarchical
Neural Architecture Search to handle huge search space.

3. Method

We propose Global-Local (GL) transformer and search
its optimal architecture. The GLIT consists of multiple
global-local blocks (Sec. 3.1) which are constructed by in-
troducing local sub-modules to the original global blocks,
as shown in Fig. 2. Based on the global-local blocks,
we design the specific search space for vision transformer
(Sec. 3.2), as described in Table 2. Accordingly, the hi-
erarchical neural architecture search method (Sec. 3.3) is
proposed for better searching results, with which we first
search the high-level global-local distribution and then de-
tailed architecture for all modules, as shown in Fig 4.

Similary with other vision transformers [11, 28], the
GLiT receives a 1D sequence of token embeddings as in-
put. To handle 2D images, we split each image into several
patches and flatten each patch to a 1D token. The features
of an image is represented by F' € R¥*"*¢ where ¢, w
and h are the channel size, width and height of the image.
We split the image features I into patches of size m x m
and flatten each patch to a 1D variable. Then, F' € R¥*hx¢
is reshaped to F' € R™ % %, which consists of m? input
tokens. We combine the m? input tokens with a learnable
class token (shown in green at the ‘Input’ of Fig. 2) and
send all m? + 1 tokens to the GLiT. Finally, the output class
token from the last block is sent to a classification head to
get the final output.

3.1. Global-local block

There are two kinds of modules in the global-local block,
including global-local module (in the green dotted box) and
Feed Forward Module (FFN), as shown in the Fig 2.

3.1.1 Global-local module

Self-Attention as the Global Sub-module.  All m? +
1 input tokens are linearly transformed to queries @ €
RM*+1)xdi | keys K € ROW+DXdr and values V €
R(m*+1) Xdv where dj, and d,, are the dimension of features
for each token in the query (keys) and value. d = d,, in the
design of transformer. The global attention is calculated by:

QK"

Vg
This module calculates the attention results by considering
the relationship among all input tokens, so we named this
self-attention head as the global sub-module in this paper.

The formulation in Equation (1) is further modi-
fied to Multi-Head Attention (MHA) mechanism, where

Attention(Q, K, V) = softmaz( Wooo (1)
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Figure 2. The construction of GLiT. ‘S-ATT’ is self-attention head,
‘CONV’ denotes convolution head, G and L are the numbers of
self-attention and convolution heads. The original transformer
consists of only global module and Feed Forward module, i.e. the
"FEN’ in the figure. We further introduce local sub-module to the
global module and get the Global-Local module. GLiT is con-
structed by M GL blocks. The distribution of global and local
sub-modules may be different in different GL blocks. For exam-
ple, GL-Block_2 in this figure has G = 1 global sub-module and
L = 2 local sub-modules.
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Figure 3. Convolution layers in the local sub-module.

the queries, keys and values are split into N parts
along the dimensions, whose outputs are denoted as
heady, heady, ..., head;, ..., heady,

Q.K]
\V dheadi

where );, K; and V; are the iy, part of Q, K and V', dpead,
is the dimension of each head and is equal to dﬁ. The output
values of N heads are concatenated and linearly projected
to construct the final output.

head;(Q;, K;, Vi) = softmax( Wi 2)

Convolution heads as Local Sub-module. 1D convo-
lution has been used in NLP tasks [33, 12] to model local
information. Inspired by the Conformer blocks in [12], we
apply 1D convolution to establish local connections, which
is named local sub-module in the following description. As
shown in Fig. 3, one convolution head consists of three con-
volutional layers, including two point-wise convolutional
layers with one 1D depth-wise convolutional layer between
them. Each convolutional layer is followed by normaliza-
tion, activation (such as GLU [10]) and dropout layers. The
first point-wise convolutional layer followed by Glu activa-
tion has an expansion ratio F to expand the feature dimen-
sion to E times. After that, the 1D depth-wise convolu-
tional layer with kernel size K does not change the feature

dimension. Finally, the last point-wise convolutional layer
projects the feature dimension back to the input dimension.

We utilize 1D convolution layer instead of 2D convolu-
tion layer in local sub-modules, as it is more suitable for 1D
sequence of input tokens. Besides, the m? + 1 input tokens
in GLiT can not be directly reshaped to a 2D array.

Constructing Multi-head Global-Local Module. Given
global and local sub-modules, next question is how to com-
bine them. We construct the global-local module by replac-
ing several heads in the MHA with local sub-modules. For
example, if there are N = 3 heads in the MHA, we can keep
one MHA head (heady) unchanged and replace two heads
(head; and heads) with our local sub-module. If all heads
in MHA are global sub-modules, then the global-local block
degenerates to the transformer block used in ViT [11] and
DeiT [28]. In the global-local module, queries, keys and
values are only calculated for the heads implemented by
global sub-module. For the heads implemented by local
sub-module, inputs are directly sent to convolution layers.
Table 1 shows the experimental results of evaluating
the GLiT with different ratios of the global and local sub-
modules in the global-local block. As we can see, the ratio
of global and local sub-modules has obvious influence on
the performance. Simply replacing all self-attention heads
by convolution heads will cause a huge performance drop
due to the lack of global information. On the other hand, the
network with 1 self-attention head and 2 convolution heads
in every global-local module performs the best among all
models, improving 1.8% Top-1 accuracy compared with the
baseline model. The performance variation with different
ratios between self-attention and convolution heads demon-
strates that introducing local information brings more per-
formance gains only with proper global-local ratio.

Table 1. Performance comparisons of different head distributions
in DeiT-Tiny model [28] on ImageNet dataset. All blocks utilize
the same distribution of heads. Here, the total head number in
each transformer block is 3. The first row with 3 self-attention
heads and 0 Conv1d head is the baseline model corresponding the
the ViT in [1 1]. In the 2nd, 3rd and 4th rows, we gradually replace
self-attention heads (global sub-modules) with more Convolution
heads (local sub-modules).

Self-attention

head number

Convld Acc
head number | (%)

3 0 72.20
2 1 72.89
1 2 73.98
0 3 71.02

3.1.2 Feed Forward Module

Apart from the global-local module, there is a Feed For-
ward Module (FFN) in each GL-block to further transform
input features. The FFN consists of a Layer Normaliza-
tion and two fully-connected layers with a Swish activation
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and dropout layer between them. Mathematically, the FFN
f(X) forits input X € R™**4 can be represented as:

J(X) =a(LN(X)W1 + b1)Ws + ba, 3)

where LN (-) denotes Layer Normalization [1], o(.) is the
Swish activation function, W € R%*dm and W, € Rdm xd
are weights of fully-connected layers, b; € R% and by €
R? are the bias terms, d and d,,, are respectively the feature
dimension of input for the first and the second FC layers.
We denote d, = d&” as the expansion ratio of FFN.

3.2. Search space of the global-local block

The search space of proposed global-local block in-
cludes the high-level global-local sub-module distribution
and low-level detailed architecture of each sub-module. At
the high-level, we aim to search the distribution of convolu-
tion and self-attention heads over all global-local blocks. At
the low-level, we search the detailed architecture of all sub-
modules. Table 2 summarizes the high-level and low-level
search space implemented in this paper.

High-level global-local distribution. Suppose there are
N, heads in the mth transformer block m € {1,..., M},
we can keep G € {0,..., N,,} self-attention heads un-
changed and replace L self-attention heads with convolu-
tion heads (L. = N,, — G), so there are N,, + 1 differ-
ent variations of the global-local distribution in the mth
block. The candidate high-level designs for the mth block is
Now = [(0, Np), (1, N — 1), ooy (5, Nen — 7)), -y (N, 0)],
where (j, N,, — j) denotes G = j self-attention heads and
L = N,,, — j convolution heads in the global-local module.
The high-level search space contains the candidate high-
level designs for all M blocks , i.e. N = Ny x N7 X ... X
N X ... x Ny, where x denotes Cartesian product.

Low-level Detailed architecture. The search space of
detailed architecture focuses on four items: the feature di-
mension dy, of queries (keys, values) in self-attention heads,
the expansion ratio d, of FFN, the expansion ratio £ of
the first point-wise convolution layer and the kernel size
K of the 1D depth-wise convolutional layer in the convo-
lution heads. Table 2 lists all the possible choices for dy,
d,, E, and K. Suppose the total candidate numbers of
dg, d,, E, K are V1,V5,V3,V4, we can get the search op-
eration sets Dy = [d},d?,....d}"], D, = [d},d?,...,d"?],
£ =[ELE2, BV and K = [K},K3,...,K}"]. Ran-
dom selecting one operation from each set can form a candi-
date global-local block, so there are totally V;V5V3Vy can-
didates of one global-local block on the low-level.

It should be noted that all convolution heads in one block
share the same architecture, similarly for self-attention
heads. For block m € {1,..., M}, the inner search op-
eration sets for convolution, self-attention and FFN are

Em X Ky Drm and D,,,, where x denotes Cartesian
product. The overall search space for block m is S,, =
Dim X Dop X Eny X Ky, and the final search space in the
low-levelis S = Sp X S1 X ... X S X ... X Sy

Table 2. Search Space for GLiT. ‘Local’ is the local sub-module,
‘Global’ is the global sub-module and ‘FFN’ is the Feed Forward
Module. (G, L) denotes the number of global and local sub-
modules in each block. K is the kernel size of local sub-module,
E is the expansion ratio of local sub-module, dy, is the feature di-
mension of global sub-module, d is the expansion ratio in FFN.

’ High'LeVel H (G,L) ‘ (0,3)’ (1’2)’ (2’1)7 (390) ‘
K 17,31, 45
Low-Level bocal E 1.2,4
w-Lev Global | dj 96, 192, 384
FEN | d. 2,4,6

Search Space Size. Considering both the high-level distri-
bution and detailed architectures on the low-level, the can-
didate number of each block is about (N + 1)V} V2V3V,.
In our search space, different blocks have different high-
level distributions and detailed architectures. If a trans-
former has M blocks, the final search space contains ((N +
1)V1VaV3Vy)M candidate networks, which is an extremely
huge search space. For our implementation in Table 2 for
M = 12blocks, (N+1)V; VaVsV)M 2 1.3x10%, which
is about 10'2 times the search space of DARTS [22] and
10'® times the search space of SPOS [13]. The main-stream
fast Neural Architecture Search methods, such as differen-
tial [22] and one-shot [13] method, can not work well on
this huge search space. For DARTS, the parameters of all
candidate networks are trained for each iteration, leading
to an unacceptable memory requirements. One-shot NAS
method does not have the above problem, because they only
select one candidate network during each training iteration.
However, the correlation between the retrained subnet and
the subnet sampled from the supernet is lower under the
huge search space, so the architectures searched using su-
pernet become unreliable. To solve the searching problem
on the huge search space, we propose the Hierarchical Neu-
ral Architecture Search method to get the optimal network
architecture with suitable memory requirements.

3.3. Hierarchical Neural Architecture Search.

The Hierarchical Neural Architecture Search method
consists of two main stages, as shown in Fig. 4. First, we
search the optimal distribution N'* of the global and local
sub-modules in each block. Then, we fixed the distribu-
tion A* and search the detailed architecture S* of both the
global and local sub-modules.

First Stage. At the first stage, we fixed the low-level de-
tailed architecture parameters dy, d., E and K for global
and local sub-modules. The one-shot NAS method SPOS
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Figure 4. The framework of Hierarchical Neural Architecture Search. First, we find the optimal distribution of local (L) and global (G)
sub-modules in the high-level search space. For example, . = 1,G = 2 means 1 local sub-module and 2 global sub-modules in the
global-local module. Then, the detailed architecture for all sub-modules is searched in the low-level search space (detailed in Table 2).

in [13] is applied to search the optimal distribution of global
and local sub-modules from the search space N. There
are three main steps when the SPOS is applied: supernet
training, subnet searching and subnet retraining. In each
iteration of supernet training, we 1) randomly sample in-
dices [jo, J1, ---, jam]; 2) use these indices to sample a sub-
net from the supernet, where the number of global and local
sub-modules in the M blocks is [(jo, No — Jo), (j1, N1 —
jl)"'v (j’rm Ny — .jm)7 ] (jhf)NM' - ]M)], and 3) train
the subnet. After supernet training, we utilize Evolution-
ary Algorithm [13] at the subnet searching step to find the
top-5 optimal architectures according to validation accu-
racy. Finally, at the subnet retraining step, we retrain the
five networks and choose the architecture with the highest
validation accuracy as the output model, where the distribu-
tion of global and local sub-modules is N* = [(j&, No —
36)s U1y N1 = 31)-es Ui Nom = G ), -+ (G, N — 53]
Second Stage. After obtaining the optimal the distribution
of global-local modules in all blocks at the first stage, we
fix this distribution and search the detailed architecture of
all modules. Similar to the first stage, we adopt SPOS [13]
to find the optimal architecture S* in the search space. The
main difference is changed search space and correspond-
ingly the random index of a block is an array with four el-
ements, instead of a single number j,,,. The random index
of block m is (jL,,42,,72,, 42 ), which corresponds to the
index of (Dim, Dzm, Em, Km ) Tespectively.

The proposed search method has two main advantages
compared with existing NAS methods [13, 22]. First, the
proposed method divides the huge search space into two
smaller search spaces. As mention above, the size of orig-
inal search space is ((N + 1)V;VaV3V,)™. With our pro-
posed search method, the total size of two smaller search
space is (N + 1)M + (V1 VaV3Vy)™, which is reduced to
less than 10~7 times the original search space for our imple-
mentation in Table 2. Second, the size of low-level search
space (V1V2V3V4)M can be further reduced with a fixed
global-local distribution. As shown in Fig. 5, after the first
searching stage, most blocks in the searched architecture
include either global or local sub-modules and only two
blocks have both global and local sub-modules. For most
blocks, the size of low-level search space is V1 V5 or V3V,

instead of V1 Vo V3 V. To fix the size of search space for each
block, we reduce the search space for the blocks with both
global and local sub-modules, by only searching d, and £
for these blocks. With the hierarchical search method, the
final search space falls into the effective search space range
of existing NAS methods. The significantly reduced search
space makes it easier for SPOS in obtaining better model.

4. Experiments

We evaluate our GLiT on image classification task. In
Section 4.2, we compare our searched transformer archi-
tectures with DeiT [28], which is a recently published al-
gorithm on vision transformer. In Section 4.3, we design
more experiments to show the necessity of our search space
and search method. All experiments are tested on NVIDIA
GTX 1080Ti GPU with the Pytorch framework.

4.1. Implementation Details

Dataset.  All experiments are conducted on ImageNet,
which consists of 1.28M images in train set and 50,000
validation images in test set. We split S0K samples from
train set to construct val set. The val set is used for subnet
evaluation during the searching process.
Hyper-parameters. We adopt mini-batch Nesterov SGD
optimizer with a momentum of 0.9 during the supernet
training. We utilize the learning rate 0.2 and adopt co-
sine annealing learning rate decay from 0.2 to 0. We train
the network with a batch size of 1024 and L2 regulariza-
tion with weight of 1e-4 for 100 epochs. Besides, the label
smoothing is applied with a 0.1 smooth ratio. For subnet
searching, we follow the EA setting in [13], which samples
N, = 1000 subnets under the FLOPs constraint in total.
For the searched model retraining, we follow the training
settings in DeiT [28].

4.2. Overall Results on ImageNet

We compare the searched transformer with two CNNs
(ResNet and ResNeXt) and the state-of-the-art vision trans-
former DeiT [28]. Table 3 shows the results under different
computational budgets. The results for the existing models,
such as R18 (Resnet-18) and R50 (Resnet-50), in Table 3
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Table 3. Classification accuracy of different models on ImageNet.
‘Acc’ denotes the Top-1 accuracy and ‘°’ denotes the models
trained using the training configurations in DeiT [28]. R18 de-
notes Resnet-18, X50 denotes Resnext-50.

| Models | Params(M) | FLOPS(G) | Acc(%) |
RI8 117 1.8 69.8
R18 11.7 1.8 68.5
DeiT-Tiny* 5.7 13 72.2
GLiT-Tiny* 7.2 14 76.3
R50 256 41 76.1
R50° 25.6 4.1 78.5
X50-32x4d 25.0 43 71.6
X50-32x4d* 25.0 43 79.1
DeiT-Small* 22.1 4.6 79.6
GLiT-Small* 24.6 4.4 80.5
X101-64x4d 835 15.6 79.6
X101-64x4d* 83.5 15.6 81.5
Vit-Base 86.6 17.6 71.9
DeiT-Base® 86.6 17.6 81.8
GLiT-Base* 96.1 17.0 82.3

are copied from the results reported in [28]. We also use the
training setting in [28] and report the results for R18, R50,
X50-32x4d (Resnext-50), and X101-64x4d (Resnext-101),
with ¢ followed by these models in Table 3 for denoting the
same training configurations. Our models achieve better ac-
curacy than all compared networks under similar FLOPS
restrictions. For example, our searched model with 1.3G
FLOPS restriction achieves 76.3% accuracy score, which is
higher than both DeiT-Tiny and ResNet18 (R18) by more
than 4 points and 6 points respectively. Our searched mod-
els achieves obvious improvement in accuracy from the
symphony our two designs: local information and architec-
ture search. The local information brought by Conv1d with-
out proper distribution has limited improvement according
to Table 1. However, the searched global and local informa-
tion distribution shows much better performance according
to our ablation study and the detailed architecture search
will further improve the performance of our GLiT model.

4.3. Ablation study

In this section, we conduct experiments to demonstrate
the necessity of our searching space and effectiveness of Hi-
erarchical Neural Architecture Searching method. All abla-
tion studies are based on our GLiT-Tiny model on ImageNet
using the same training setting as before.

Searching Space. The proposed searching space includes
two levels, the global-local distribution and the detailed
architecture of all modules. To verify the effectiveness
of both levels, we investigate our model with the model
searched only on global-local distribution (‘Only distribu-
tion’ in Table 4), and the baseline model DeiT-Tiny with
human design. The model with only global and local dis-
tribution searched performs much better than the baseline

model DeiT-Tiny without NAS. It also outperforms the best
human-designed architecture with global-local information
(73.98% in Table 1), improving the accuracy by about 1.5%.
The performance gains come from the optimal transformer
architecture with proper global-local information distribu-
tion searched by our method. After considering the detailed
architecture of all modules, the final model (‘Ours’) further
improves the accuracy about 1%, which is significant on
ImageNet. Besides, we also compare our search space with
that in NLP-NAS [29]. The search space in [29] includes the
expansion ratio (query, key and value) and MLP ratio. The
searched model from the NLP-NAS search space achieves
a 73.4% top-1 accuracy on ImageNet, which is 1.2% higher
than DeiT but 2.9% lower than ours. Directly using the
search space in [29] limits performance improvements. Our
search space and search method are more effective, which
are our two main contributions. The experimental results in
Table 4 demonstrate all components in our searching space
is essential for an excellent vision transformer.

Table 4. Performance comparisons of models from different
searching spaces on ImageNet. ‘DeiT-Tiny’ is the baseline model
which totally relies on hand-designing. ‘Only distribution’ is the

model searched only on global-local distribution. ‘Ours’ is the
model searched from the complete searching space.
Method | Flops(G) | Acc
DeiT-Tiny 1.3 72.2
Only distribution 14 75.4
Ours 1.4 76.3
NLP-NAS 1.4 73.4

Searching Method. We compare the proposed searching
method with the baseline NAS method (SPOS) and random
search baseline. All searching methods are used in our pro-
posed search space. For fair comparisons, we train the su-
pernet of SPOS for 200 epochs, which is the same as the
training epochs in ours. After supernet training, we select 5
architectures and retrain them for SPOS and ours. For the
random baseline, we randomly sample and retrain 5 net-
works. The architecture with the highest retraining accu-
racy are chosen as the final model. In Table 5, our method
achieve much better performance than the SPOS method
and random search baseline. The performance improve-
ment is from our hierarchical searching method, which re-
duce the searching space effectively in all stages. For SPOS
method, since the supernet is constructed by the huge search
space, the optimization of the supernet is different, even
with the double training epochs compared with our super-
net. Due to the insufficient training, the subnet with lower
computation will converge faster and the searched result on
the validation set tends to be a model with lower computa-
tion as shown in Table 5. Not only the model in Table 5, but
also the other four models in the top-5 models identified by
SPOS have small flops of 1.0G, 0.9G, 0.9G, and 0.9G. As
a result, the searching result with vanilla SPOS method has
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Figure 5. The architecture of GLiT-Tiny in Table 3. Each box represents a global-local block. The darker the color denotes the more local
sub-modules in the block. L is the number of local sub-modules in each block. G is the number of global sub-modules.

performance even worse than random search.

Table 5. Performance comparisons between SPOS, Random
searching baseline, and our searching method on ImageNet.

Method H Flops(G) \ Acc
Ours 1.4 76.3
SPOS 09 72.7
Random search 1.3 73.3

Methods to introduce locality. We choose ConvlD to
introduce the locality into Vision Transformer. However,
there are other methods such as restricting self-attention in a
local area or using Conv2D. We evaluate these two methods
and compare them with ours. For restricting self-attention
in a local area, we set the candidate local area sizes as (14,
28, 49). We keep the other settings (including the hierar-
chical search) fixed for fair comparison. In Table 6, the
model with local self-attention has only 72.4% top-1 accu-
racy on ImageNet (much lower than ours 76.3%), possibly
due to the lack of communication among different local ar-
eas. However, Conv1D in our GLiT model can solve this
issue. To use Conv2D in our network, we remove the CLS
token and add a global average pooling at the end of the net-
work for classification. The candidate kernel sizes are set
as (3 x 3,5 x 5,7 x 7). The searched model with Conv2D
achieves 76.4% accuracy, which is similar with ours. For
fair comparison with our baseline model ViT and DeiT,
which utilize the CLS token, we adopt Conv1D in our fi-
nal models.

Table 6. Performance comparisons between Self-attention in a lo-
cal area, Conv2D and our searching method on ImageNet.

Method \ \ Flops(G) \ Acc
Local-area 14 72.4
Conv2d 1.4 76.4
Convld 14 76.3

4.4. Discussion.

Searched architecture. Fig. 5 shows the searched archi-
tecture of GLiT-Tiny (Table 3). There are only 25% blocks
consists of both global and local sub-modules. Most blocks
contains either global or local sub-modules. Sequential con-
nection between global and local sub-modules may be more
necessary than parallel connection. There is no 1D convo-
lution layer with kernel size 17 in the searched architecture.
17 is the smallest value of kernel size in the search space. It

DeiT

Figure 6. Visualization of features for DeiT [28] (second row) and
our GLiT (third row). Images in the first row are from ImageNet.

shows that too small kernel size is not suitable for locality
modules in vision transformers. The searched architecture
has a trend of all-local, to local-global mixture, and then
back to all-local blocks. This helps local and global fea-
tures interact through the transformer blocks. This architec-
ture looks like a mechanism similar to the stacked hourglass
in [24], which has stacks local-global CNNs, where ‘local’
corresponds to CNN with high-resolution features and 3 x 3
convolution has smaller receptive fields, while ‘global’ cor-
responds to CNN features with lower resolution and a 3 x 3
convolution looks at more global region of the same image.
Visualization. In Fig. 6, we show the visualization of
learned features of both DeiT (the second row) and our
GLiT (the last row). We calculate the heat maps by reshap-
ing the output tokens to the same size as input images and
averaging the reshaped tokens along channels. By reaching
a good combination of local and global features, our GLiT
focuses on more object regions than DeiT.

5. Conclusion

We exploit better architectures for vision transformers
in this paper through carefully designing the searching
space with local information and the hierarchical searching
method. Transformer is applied to vision community not
long ago. Its architecture is not well exploited for image
recognition. Our method provides a feasible and automatic
network design strategy. In addition to showing better per-
formance compared with existing vision transformers, this
work will inspire more researches on finding optimal trans-
former architecture for computer vision tasks.
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