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Abstract

Reconstructing delicate geometric details with consumer
RGB-D sensors is challenging due to sensor depth and
poses uncertainties. To tackle this problem, we propose
a unique geometry-guided fusion framework: 1) First,
we characterize fusion correspondences with the geodesic
curves derived from the mass transport problem, also
known as the Monge-Kantorovich problem. Compared with
the depth map back-projection methods, the geodesic curves
reveal the geometric structures of the local surface. 2) Mov-
ing the points along the geodesic curves is the core of our
fusion approach, guided by local geometric properties, i.e.,
Gaussian curvature and mean curvature. Compared with
the state-of-the-art methods, our novel geometry-guided
displacement interpolation fully utilizes the meaningful ge-
ometric features of the local surface. It makes the recon-
struction accuracy and completeness improved. Finally,
a significant number of experimental results on real ob-
ject data verify the superior performance of the proposed
method. Our technique achieves the most delicate geomet-
ric details on thin objects for which the original depth map
back-projection fusion scheme suffers from severe artifacts
(See Fig.1).

1. Introduction

With the increasing availability of active optical tech-
niques, RGB-D sensors have become more practical and af-
fordable. For instance, time of flight (ToF) based RGB-D
sensors have been extensively integrated into smartphones
and tablets. They are popular due to their high frame rate
and excellent portability. Many seminal works leverage
these features to reconstruct the indoor scenes in real-time
[26, 15, 17, 35, 42]. However, the resolution and accuracy
of depth maps are usually limited by cost and size. The pose
estimation heavily relies on visual odometry, constrained by
matching accuracy. In all, it is difficult to reconstruct the
delicate geometric details through consumer RGB-D sen-

Figure 1. The state-of-the-art depth map back-projection fusion
methods vs. our geometry-guided displacement interpolation ap-
proach on real object data (Ragnaros, see Tab.2 for reconstruction
details). Our approach achieves the most delicate geometric de-
tails.

sors.
The fusion strategy directly decides reconstruction re-

sults. Moreover, most state-of-the-art methods employ a
depth map back-projection fusion strategy, which differs
by data representation. There are two popular represen-
tations to reconstruct one 3D model from observed RGB-
D data [45]. One is to gather the spatial coordinates in a
3D voxel grid. e.g., InfiniTAM [17], Kinect Fusion[26],
and [27] average the truncated signed distance function
(TSDF) [5] value if the projection on the depth map is
verified. An alternative one to voxel-based representation
is surfel/point-based model [30, 19, 42, 31]. Keller et al.
[19, 42, 31] perform a weighted average between measure-
ments and their back-projections to eliminate the poses and
the measurements uncertainties. However, the depth map
back-projection strategy only considers single-surfel/point
information and ignores the meaningful geometric struc-
ture. Thus, it usually suffers from severe artifacts on recon-
structing delicate geometric details. So that, we conclude
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three basic obversions: 1) the projective correspondences
are typically inaccurate due to sensor depth and poses un-
certainties; 2) those uncertainties are difficult to filter out
by averaging; 3) point to pixel projection and depth map
back-projection fusion can not fully utilize the meaningful
geometric structure of the local surface.

In this paper, we propose a unique fusion framework
called Gaussian Fusion. In contrast to existing depth map
back-projection approaches, the proposed method is based
on geometry-guided displacement interpolation. To over-
come the shortcomings of depth map back-projection tech-
niques, we make the following assumptions: 1) a suffi-
ciently small local surface follows Gaussian distribution
[2, 36]; 2) the metrics between distributions can be char-
acterized by Wasserstein distance; 3) there are independent
transference plans between local surfaces, which are go-
ing to be fused; 4) the transference plans between fusion
candidates should be optimal due to they are two observa-
tions of the same surface interfered by uncertainties. Thus,
there are geodesic curves between measurements, as well
as geodesic curves between Gaussian measures. In all, we
pair measurements with the optimal transference plans by
solving the mass transport problem, which is also known
as the Monge-Kantorovich problem. We move the points
along the geodesic curves and employ a novel advection to
tackle the uncertainties.
This paper makes the following contributions:

• We introduce displacement interpolation into the 3D
reconstruction area for the first time and propose a
unique geometry-guided fusion framework.

• We present a flexible interpolation scheme based on
geodesic curves, which reveal the geometric structures
of the local surface.

• We propose a novel advection strategy guided by lo-
cal geometric properties, i.e., Gaussian curvature and
mean curvature. A significant number of experimen-
tal results on real data verified the effectiveness of the
proposed method.

2. Related work
This section discusses the most related work and high-

lights our novel non-back-projection fusion framework
while briefly describing their characteristic.
Voxel-based methods. The main idea is based on TSDF
fusion [5], which is widely used due to the highly efficient
expression of reconstruction scenes. The seminal work
Kinect Fusion [26] and the inspired works[27, 43, 44, 4,
6, 35, 16, 17, 20] employ a similar data fusion process,
but the reconstruction capability is quite different. Zhou
et al. [43, 44, 4, 6] aim to tackle accumulated pose error
and integrate global pose optimization. Steinbrücker et al.
[35, 16] enable multiple resolution reconstruction capabil-
ity. Kähler et al. [17, 20] significantly improve the com-

putational efficiency so that 3D reconstruction can be inte-
grated on a mobile device. The first step of fusing the in-
coming depth map is to project the voxel back to the depth
map with pre-estimated rigid body motion and a projective
camera model. Then, it searches the nearest neighbor on
the projected depth map and evaluates the projective dis-
tance. Usually, it computes the weighted average of individ-
ual TSDFs for each depth map in the volume. Nießner et al.
[27] introduced voxel hashing as an essential computation
improvement. They employ an efficient hashing strategy;
it encodes the spatial coordinates with a hashing function.
Unlike the previous implementation, we use voxel hashing
to enable voxel-based association instead of the KD-tree-
based search. Because the nearest neighbor search by KD-
tree is still a bottleneck when the point cloud is dense.
Surfel/point-based methods. Unlike voxel-based meth-
ods, the surfel/point-based methods store accumulated
surfels[30]/points[24] to reconstruct the scanned scene.
Surfel/point-based methods aim to represent local surface
with point samples, encode additional information, like ra-
dius, confidence, timestamp. Several reconstruction algo-
rithms [19, 37, 24, 42, 23, 11, 31] employ this kind of data
representation. Stückler et al. [37] employ octrees to con-
tain multiple resolution surfel maps. Keller et al. [19] in-
troduced a widely used way to fuse each surfel or point.
Points or surfels are projected into each incoming depth
map through an estimated camera pose. They [19] calculate
the exactly projected pixel on the depth map via a super-
sampled index map. Schöps et al. [31] improved the ef-
ficiency by directly obtaining indices from the projection
instead of loading them from an index map. Whelan et al.
[42] label surfels as active and inactive; they only use the
active surfels for depth map fusion. After the projection
on the depth map is determined, the geometry consistency
or photometric consistency is verified. Finally, a weighted
average, typically Gaussian weight, is applied to handle mi-
nor uncertainties. After a certain number of steps, the un-
stable points [19], or conflicting surfels [31] are removed
or replaced. Unlike the previous methods, there are not
any projection or back-projection processes in our fusion
framework. Therefore no image index maps are needed.
Another improvement is that we employ hybrid representa-
tion, which combines voxels and points. Points in a prede-
fined resolution voxel represent the local geometry, missing
from surfel/point-based methods. By utilizing the geomet-
ric information, our approach can handle the uncertainties
explicitly.
Displacement interpolation. McCann[25] first introduced
the concept of displacement interpolation in the context
of quadratic cost on Euclidean space. It gives a mass-
preserving way to interpolate between probability mea-
sures, which is derived from the Monge-Kantorovich prob-
lem. A simple example for the Monge-Kantorovich prob-
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Figure 2. Overview of our pipeline

lem is that there is a heap of cargos f(x) that needs to reshape
to a target shape g(y) in another place with a cost function
c(x, y). The optimal transference plan π is obtained by min-
imizing the integral of the cost function,

min
π

∫
c(x, y)dπ(x, y) (1)

To further elaborate displacement interpolation, we as-
sume the cargo transport has some dynamics, namely, time-
dependent transport. c0,1(x, y) is cost functions related with
a Lagrangian action A(γ) on X × X as below[40],
c0,1(x, y) = inf {A0,1(γ); γ0 = x, γ1 = y; γ ∈ C([0, 1];X )}

(2)
where C is a class of continuous curves on X , and γ is the
curve characterized by a Lagrangian action A(γ), at the be-
ginning of the curve γ0 = x (t = 0), and the end of the
curve is γ1 = y (t = 1). Then, action A(γ) is defined as the
integral of a Lagrangian over the curve:

A(γ) =

∫
γ

L(γt, γ̇t, t)dt (3)

The infimum of the action functional A(γ) over all curves
is the minimizing, constant-speed geodesic curve or sim-
ply geodesic. In the context of fusion, displacement in-
terpolation is to move points along the geodesic curve. In
this paper, we assume a sufficiently small local surface fol-
lows Gaussian distribution. On L2-Wasserstein space, the
geodesic curve between Gaussian measures is known to
have a straightforward solution. However, the points could
be non-uniform sampling and missing data. In these scenar-
ios, it can not be directly applied to the fusion process. An
alternative method based on the Hitchcock-Koopman for-
mulation is employed because covariance can be incorrect
when there are few points in a voxel.

3. Geometry-Guided Displacement Interpola-
tion

Typically, the pipeline of 3D reconstruction via RGB-
D sensors consists of depth map preprocessing, camera
pose estimation, fusion, surface reconstruction. This pa-

per mainly focuses on the fusion stage (Fig.2 provides a
brief overview of our unique fusion pipeline) while giving
a short description of other parts. Our algorithm’s input is
a set of RGB-D frames from a calibrated sensor (see Fig.3
). Our output is an accurate dense point cloud. The surface
reconstruction [18] can be quickly built on our output.

We employ a hybrid representation that stores points in
a voxel hashing style, allowing for efficient voxel search.
Our proposed fusion method leverages the local geometry
through curvatures. It exploits that geometry structure in-
formation directly from the local surface without any pho-
tometric assumptions and can operate on both align to depth
and align to RGB settings. It provides high flexibility and
adaptiveness for various kinds of sensor settings.

3.1. Gaussian Voxel

Our proposed method uses a hybrid representation and
frame to model fashion. We do not apply back-projection
and build any image index map; the neighbors are fre-
quently required. However, the KD-tree-based nearest
neighbor search is a bottleneck when the point cloud is
dense. To avoid costly nearest neighbor search, our hybrid
representation stores points in a voxel hashing style simi-
lar to [22]. Different from [22], which only stores mean
and covariance matrix in each voxel. We store points in
a predefined resolution voxel with hashing function (Fig.2
Voxelized). Each voxel represents a local surface that fol-
lows Gaussian distribution [2, 36]. Thus, we call it Gaussian
voxel. A fast voxel-to-voxel search can be applied between
the incoming depth map and the fused model. Typically,
it searches seven nearby voxels and chooses the one that
has the closest Wasserstein distance (Fig.2 Search Nearby
Voxel, Find the Closest One). If there are no voxels
nearby, the incoming voxel is initialized as a new one in
the fused model(Fig.2 Initialized as New One). Given a
Gaussian measure µi to the point sets in the voxel, each
point pj comprises a world coordinate vector wp (our fu-
sion process primarily focus on updating the coordinate),
a normal vector np, an RGB color vector cp, an advection
count fp, and a lifetime lp used to eliminate the outliers.
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Each point should be advected a certain number of times in
a given lifetime. Otherwise, it will be removed at the end
of its lifetime. Our approach’s key part is to find the proper
advection between local surfaces along the geodesic curves.
For Gaussian measures, an obvious solution has been intro-
duced by [8, 12, 21, 28]. We will give a detailed discussion
in the next section.

3.2. Linear Map on L2-Wasserstein Space

The linear map can be easily derived from the covariance
matrix (Fig.2 Linear Map). The algorithm steps are given
at the end of this subsection. First, we introduce some fun-
damental ideas of L2-Wasserstein space [38]. The central
idea is that there are pairs of subsets on a separable, com-
plete, metric space equipped with Borel δ−algebra. The
distance function between them is derived from the Monge-
Kantorovich problem. We give brief definitions that follow
[40, 38]. Without loss of generality, first, we give the defi-
nition based on Borel probability measures. Then, we give
the linear map for Gaussian measures.
L2-Wasserstein space. Let (X , d) be a separable, com-
plete, metric space. Given two Borel probability measures
µ0, µ1 ∈ P2(X ) with finite second moments on X satisfy-
ing [38] ∫

X
d(x, y)2 dµ(y) <∞ (4)

Let π be the transference plan between µ0 and µ1 on X ×X
[40]. The marginals of π are µ0 and µ1, thus

π [ψ ×X ] = µ0 [ψ] , π [X × ψ] = µ1 [ψ] (5)

(5) holds for all Borel sets ψ ∈ X . The L2−Wasserstein
distance function W2(µ0, µ1) between µ0 and µ1 in P2(X )
is defined by

W2(µ0, µ1) =

(
inf

π∈Π(µ0,µ1)

∫
X×X

d(x, y)2 dπ(x, y)

) 1
2

(6)
where Π(µ0, µ1) is the collection of transference plans
between µ0 and µ1, the infimum over Π(µ0, µ1) is the
L2−Wasserstein distance, and the corresponding transfer-
ence plan is optimal. The W2(µ0, µ1) is the distance func-
tion on P2(X ), and (P2(X ),W2) is called L2−Wasserstein
space over X [38].

For Euclidean space, the optimal transference plans are
characterized by push-forward. There is a measurable map
M : Rn → Rn. Define the push-forward for a Borel proba-
bility measure µ0 on Rn as follow

M♯µ0[ψ] = µ1[ψ], if µ1[ψ] = µ0[M
−1(ψ)] (7)

(7) holds for all Borel sets ψ ∈ Rn. The identity map on
Rn is denoted by id.
W2 distance between Gaussian measures. In this paper,
we assume the local surfaces follow Gaussian distribution.
The L2-Wasserstein distance between Gaussian measures
was explicitly given by: I.Olkin et al. [28, 8, 12, 21] as

follow
W2(N(m1, Σ1), N(m2, Σ2)) =

|m1 −m2|2 + trΣ1 + trΣ2 − 2tr

√
Σ

1
2
2 Σ1Σ

1
2
2 (8)

where N(m,Σ) is Gaussian distribution, tr is the trace of a
matrix, m is the mean, and Σ ∈ Sym+(n,R) is covariance
matrix (in practical the covariance matrix should be sym-
metric positive definite when there are multiple points in a
Gaussian voxel). Since Σ is a symmetric positive definite
matrix, we define

√
Σ = Σ

1
2 , and Σ

1
2 ·Σ 1

2 = Σ. McCann
[25] shows that the displacement interpolation between any
two Gaussian measures is also a Gaussian measure.
Displacement interpolation as geodesics. Based on [25]
the linear map M between two centralized Gaussian distri-
bution N(0, Σ1),N(0, Σ2) can be given by

M = Σ
1
2
2 (Σ

1
2
2 Σ1Σ

1
2
2 )

− 1
2Σ

1
2
2 , f(x) =Mx (9)

f(x) = Mx push-forward N(0, Σ1) to N(0, Σ2), the
optimal transference plan between N(0, Σ1), N(0, Σ2) is
[id× f ]♯N(0, Σ1). Define advection A(α) by

A(α) = [(1− α)I + αM ] (10)

where I is the identity matrix. The geodesic fromN(0, Σ1)
to N(0, Σ2) is N(0, A(α)Σ1A(α)) for α ∈ [0, 1]. Al-
though, we focus on Gaussian measures in this paper. With-
out loss of generality, we give the corollary of [40] Theorem
Displacement interpolation which states displacement in-
terpolation as geodesics on L2-Wasserstein space as follow

Corollary 1 (Displacement interpolation as geodesics on
L2-Wasserstein space)
Given two Borel probability measures µ0, µ1 ∈ P2(X ) on a
complete, separable, metric, locally compact space (X , d),
where P2(X ) is the probability measures with finite moment
of order 2. (P2(X ),W2) is L2−Wasserstein space paired
with Wasserstein distance W2. There is a continuous curve
(µα)0≤α≤1 ∈ P2(X ).
Given two equal properties:
(1) (µα)0≤α≤1 is the law of (γα)0≤α≤1. (γ0, γ1) is an opti-
mal coupling, and γ is a geodesic with constant speed.
(2) (µα)0≤α≤1 is a geodesic curve in the space
(P2(X ),W2).

Corollary 1 is admitted by Theorem Displacement interpo-
lation and its corollaries [40] where the p > 1. There is
an important remark that for different p > 1, the geodesic
curves in Pp(X ) are also different. Namely, geodesic on
L2-Wasserstein space is not the same as Lp-Wasserstein
space (p > 2). [40] also gives the uniqueness of displace-
ment interpolation, the displacement interpolation is unique
if the optimal transference plan is unique.
Linear map between Gaussian voxels. It is easy to com-
pute the mean and covariance for each Gaussian voxel,
assume N(m1, Σ1) is from the fused model, N(m2, Σ2)
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is from the incoming frame. For each voxel in the in-
coming frame, we find seven nearby voxels in the fused
model. First, we compute the Wasserstein distance through
(8) and choose the closest one; then, we shift N(m1, Σ1)
to N(0, Σ1) in the voxel from the fused model, the lin-
ear map can easily be calculated by (9); finally, we ap-
ply the advection from (10) on the fused model and
transform N(0, A(α)Σ1A(α)) back to N((1 − α)m1 +
αm2, A(α)Σ1A(α)). Then, the coordinates of the points in
the fused voxel are updated. Before introducing geometry-
guided constraint to determine proper α in (10), we dis-
cuss this method’s limitation and give a complementation
method in the next section.

3.3. Fusion with Hitchcock-Koopman Formulation

The presented method in the previous section depends
on the covariance matrix. The core idea is to interpolate
one Gaussian distribution to another through the covari-
ance matrix. However, the points in Gaussian voxels can
be non-uniform sampling and missing data. Namely, the
covariance matrix can not represent the actual distribution
through a few points. It should be at least 20 points by ex-
perience [33]. Therefore, the map could be incorrect with
a few points in one voxel. For this reason, we introduce a
complementation method, which is based on the Hitchcock-
Koopman formulation [9].
Simplified Hitchcock-Koopman formulation. For Gaus-
sian voxel with few points, we follow the simplified
Hitchcock-Koopman formulation [9]. The original one can
handle the distribution of a product from several sources of
supply to numerous targets. It means the supplies may vary
from the demands. The transport goods can be divided into
several parts. In our case, we prefer to point-to-point fu-
sion. To perform the point-to-point fusion, the number of
points will be equal after removing the redundant ones far
from the center. Given a set of points from source (fused
model) S = {si, i = 1...n} and a set of points from the
target (incoming depth map) T = {tj , j = 1...n}, and a
transport cost di,j to move one point from S to T . Assume
the number of points from S, and T are equal. Then the
mass transport problem is simplified to an assignment prob-
lem. The computation is also reduced. The energy is given
by

min
a

∑
i

∑
j

di,jai→j

such that : ai→j =

{
1 if assign i to j
0 if not assign i to j∑

i

ai→j = 1,
∑
j

ai→j = 1

(11)

Thus, the collection of ai→j is our assignment plan [1],
which is a special case of the minimum-cost flow problem
(MCFP). There are two ways to solve (11): transportation-

simplex-based methods and network-simplex-based meth-
ods. Bonneel et al. [3] analyze these two main categories.
Their experiment shows that network simplex is more effi-
cient than transportation simplex. So that we employ a net-
work simplex algorithm [7] similar to [3](Fig.2 Network
Simplex). The network simplex algorithm is efficient in
solving the MCFP. It has a known complexity in O(n3)
[41]. The covariance-based linear map is more computation
efficient when the number of points is getting larger. Our
flexible interpolation scheme allows switching between two
methods according to the number of points in a voxel (Fig.2
Voxel Size Check).
Advection between points. After the assignment plan is
determined, the advection can be defined as

wi = (1− α)si + α
∑
j

ai→jtj , i, j = 1...n (12)

where wi is the updated coordinate, α ∈ [0, 1], si ∈ R3 rep-
resents coordinate of a point from the fused model S, and
tj ∈ R3 is from the incoming frame T . The next question is
how to determine the proper α. To tackle sensor depth and
poses uncertainties, we give a geometry constraint based on
curvatures. The detail will be given in the next section.

3.4. Geometry-Guided Advection

To obtain a proper advection, namely, choose a suitable
α ∈ [0, 1]. We employ a geometry constraint based on local
geometry. We compute some approximate results for dif-
ferential geometry using the covariance techniques. Then,
a geometry-guided advection based on these results is pro-
posed.
Approximate curvatures. For a Gaussian voxel, we first
need to find the tangent plane TpM on the center p. Thus,
we need to calculate the orthogonal frame n0, n1, n2 ∈ R3,
which are eigenvectors of the covariance matrix. Consider
the normal n0 is orthogonal to TpM , which is obtained as
the eigenvector corresponding to the smallest eigenvalue.
For brevity, we abbreviate n0 as n. Define function as

L =⟨ruu, n⟩ = −⟨ru, nu⟩
M =⟨ruv, n⟩ = −⟨ru, nv⟩
N =⟨rvv, n⟩ = −⟨rv, nv⟩

(13)

where r(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) is the pa-
rameter of the local surface. ru, rv, ruu, ruv, rvv, nu, nv are
partial derivatives. The normal curvature is defined as:

kn =
II

I
=

−⟨dr, dn⟩
⟨dr, dr⟩

=
Ldudu+ 2Mdudv +Ndvdv

⟨dr, dr⟩

(14)

where dr = rudu+rvdv, I is the first fundamental form, II
is the second fundamental form. n = ru∧rv/|ru∧rv| is the
normal vector which is perpendicular to tangent plane TpM .
The first fundamental form is the arc length of point pi to
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p, which can be approximate with ∥ pi − p ∥22. The second
fundamental form II can be represented by the algebraic
distance δ between TpM and arbitrary point pi in Gaussian
voxel,

δ(pi, TpM) = ⟨n,−→pip⟩ (15)
−→
pip = ∆r =r(u0 +∆u, v0 +∆v)− r(u0, v0)

=ru(u0, v0)∆u+ rv(u0, v0)∆v

+
1

2
(ruu(u0, v0)∆u∆u

+ 2ruv(u0, v0)∆u∆v + rvv(u0, v0)∆v∆v)

+ o(∆u∆u+∆v∆v)
(16)

since ru, rv are perpendicular to n and o(∆u2 + ∆v2) is
high-order infinitesimal. (15) is reduced to

δ(pi, TpM) ≈ 1

2
(L∆u∆u+2M∆u∆v+N∆v∆v) (17)

Then we have
II ≈ δ(pi, TpM) (18)
II ≈ (pi − p)T · n (19)

Finally, the approximate solution of normal curvature is

kn =
II

I
≈ (pi − p)T · n

∥ pi − p ∥22
(20)

Optimization for advection. The largest normal curvature
and smallest normal curvature are called principal curva-
tures k0, k1. The Gaussian curvature is defined as k0 · k1.
Mean curvature is defined as (k0+k1)/2. To tackle the sen-
sor depth and poses uncertainties, we want the result of ad-
vection as smooth as possible, while the uncertainties usu-
ally lead to sharp artifacts (see Fig.1). The optimization of
advection is given as follow

argmin
α

(∥k0 · k1∥22 + ∥ (k0 + k1)

2
∥22) (21)

(21) can be easily computed by iteration.
Eigenvalue perturbation. This covariance matrix-based
advection remains some limitations. The main concern is
the eigenvalue perturbation [10, 39]. Noises that come with
sensors can not be obliterated. Some additive noises in the
Gaussian voxel are added to the coordinates(x, y, z). The
covariance matrix C̃ with additive noises and without addi-
tive noises C are considered as positive definite real sym-
metric matrices (eigenvalue λ is always larger than zero in
our case). We assume that perturbations are sufficiently
small, i.e., C̃ − C = ∆C for some small ∆C, which re-
sults in a small perturbation in eigenvector ni and λi, i.e.,
ñi −ni = ∆ni and λ̃i − λi = ∆λi. The TpM is spaned by
n1, n2. n0 is the normal vector perpendicular to the plane,
the corresponding eigenvalues are λ0 ≤ λ1 ≤ λ2 . An
ideal situation is λ0 < λ1 = λ2. However, in the actual
case, there are two situations as follow: 1) ∥λ̃0 − λ̃1∥ < ϵ,
∥λ̃1 − λ̃2∥ < ε, where ε is sufficiently small and ϵ is much

larger than ε; 2) ∥λ̃0− λ̃1∥ < ϵ, ∥λ̃1− λ̃2∥ < ε, where both
ε and ϵ are sufficiently small. Situation 1) is a double-edged
sword. A small perturbation may not affect the computation
of principal curvatures. However, situation 1) implies the
local surface may be a flat plane. It is detrimental to choose
the proper advection. It usually happens when there are
only three points in one Gaussian voxel since three points
always fit a plane. A larger voxel is required. But it may
lead to situation 2), all eigenvalues are close to each other.
If the voxel is too large, it fails to capture the property of
local geometry. Then, it isn’t easy to find a proper tangent
plane. A small perturbation may lead to eigenvalue perver-
sion, which means the normal vector can be disordered.
Adaptive voxel resolution. Adaptive voxel resolution is
required to solve this dilemma. A reasonable choice is to
compute the average point radius of the incoming depth
map and the fused models, then choose the maximum one as
the voxel resolution. It means the voxel resolution changes
over time.

Figure 3. Illustration for handheld RGB-D real dataset, from left-
top to bottom-right, RGB image, depth map, mask, our reconstruc-
tion. A markerboard [29] is used for mask and sensor (L515) pose
estimation.

Acc.

Methods
Threshold 1mm 2mm 3mm 4mm 5mm

ElasticFusion[42] 28.40 44.86 55.56 63.56 69.79
SurfelMeshing[31] 67.94 83.24 90.32 93.80 95.63

GaussianFussion(ours) 80.90 92.05 95.92 97.64 98.49

Com.
ElasticFusion[42] 35.32 74.22 86.45 91.62 94.20
SurfelMeshing[31] 68.35 87.93 95.15 97.30 98.32

GaussianFussion(ours) 71.67 87.24 93.70 96.20 97.40

Table 1. Qualitative comparison on Skeleton between our method,
ElasticFusion[42] and SurfelMeshing[31](Accuracy[%], Com-
pleteness[%]). Our method achieves the highest precision.

4. Experimental Results

In this section, we evaluate our fusion framework and the
rivals, including [31, 42] on our real object dataset.
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points/

Methods
Data House 0 House 1 House 2 House 3 Ragnaros Exia 0 Exia 1 Skeleton Fighter Squirtle Roshan

surfels

65f 98f 64f 300f 300f 199f 300f 195f 100f 300f 300f
ElasticFusion[42] 0.05M 0.10M 0.08M 0.07M 0.13M 0.11M 0.08M 0.09M 0.07M 0.08M 0.07M
SurfelMeshing[31] 0.21M 0.40M 0.30M 0.59M 1.16M 0.54M 0.80M 0.67M 0.35M 0.77M 0.27M

GaussianFussion(ours) 0.31M 0.64M 0.41M 1.20M 1.29M 0.88M 0.99M 1.02M 0.44M 0.82M 0.51M
Table 2. Qualitative comparison between our method, ElasticFusion[42] and SurfelMeshing[31](M = million, f = frames).
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Figure 4. Completeness and accuracy plot for wide evaluation
thresholds (1mm, 2mm, 3mm, 4mm, 5mm, 10mm, 20mm,
30mm, 40mm, 50mm).

4.1. Reconstruction on Real Object

RGB-D sensor. The quality of the depth map is the es-
sential factor for 3D reconstruction. The depth map must
have enough resolution to sense the delicate geometric de-
tails. Since we focus on accurate 3D reconstruction with a
consumer-level RGB-D sensor, the real object data is ob-
tained by the latest low-cost device Intel RealSense LiDAR
Camera L515 [13]. The average depth accuracy error at 1m
is less than 5mm, and the standard deviation is 2.5mm at
VGA resolution [14]. To achieve a full depth map, L515
is equipped with an IR laser beam and utilizes a Micro-
Electro-Mechanical System (MEMS) to scan the entire field
of view (FOV). The onboard vision ASIC processes the
original signal from the photodiode and outputs a depth map
[14]. To our best knowledge, L515 is the most accurate off-
shelf RGB-D sensor in terms of size and cost for the indoor
scene. Thus, we do not evaluate our framework on the old
model RGB-D sensors.
Data acquisition. We use handheld L515 to scan several
objects indoor. The initial pose is computed through a
markerboard [29] placed under the item. Then, the vox-
elized GICP [22] is applied to minimize the registration
error. To accelerate the reconstruction process, we esti-
mate a mask through the markerboard. The masked depth
maps, RGB images, and poses are the input for the evalu-
ated methods. The input is shown in Fig.3. There are two
different align settings for L515: align depth maps to RGB
frames and align RGB frames to depth maps. The former
introduces extra depth estimation errors due to the interpo-
lation of the depth map. RGB frame has a higher resolution
(1280× 720) than the depth map (1024× 768) so that each
depth pixel is extended to a 2×2 patch in the former setting
[34]. Since the depth map’s quality is more important for
3D reconstruction, we employ the latter setting. To make
the input data consistent for all evaluated methods, we use

the same depth maps input and back-project the depth maps
into the point clouds before the fusion stage.
Qualitative results. Our method focuses on accurate real
object reconstruction with a low-cost RGB-D sensor, ex-
cluding the synthetic datasets. Limited by the article space,
we give results of eleven objects. See Table 2 and Fig.5
for an overall reconstruction comparison with the state-of-
the-art methods. To visualize the results, both our technique
and ElasticFusion[42] employ [18] to obtain a triangle mesh
from the output point cloud, while SurfelMeshing [31] can
generate high-quality mesh during reconstruction. With the
same input depth maps, our method achieves the largest
number of points. It indicates our technique achieves ultra-
high geometric detail along with a complete global geomet-
ric shape. For further quantitative evaluation, we obtain the
ground-truth model of object Skeleton through an indus-
trial sensor of resolution 0.08mm. We use voxelized ICP
[22] to align the reconstructions to the ground-truth model.
Then, we compute accuracy and completeness with a given
threshold similar to [32]. Results at 1mm, 2mm, 3mm,
4mm, 5mm are shown in Tab.1. We also give a plot for
wide thresholds, as shown in Fig.4. Our technique always
achieves the highest accuracy score, Tab.1 and Fig.4 show
that this fact does not depend on the threshold.
Global geometric shape. It is challenging to obtain sub-
pixel reprojection error for all input frames. The depth
map back-projection methods cannot explicitly handle the
misalignment when the number of frames gets larger. As
shown in Fig.1 (Ragnaros 300 frames), Fig.5 ( House 3
300 frames, Exia 0 199 frames, Roshan 300 frames), Fig.7
(Squirtle 300 frames, Exia 1 300 frames). Thus, they can
not achieve a complete global geometric shape like ours.
Local geometric detail. Delicate geometric details are hard
to reconstruct correctly. The depth map back-projection
methods require accurate camera poses. The weighted aver-
age between measurements and their back-projections ruin
the local geometric details. As shown in Fig.5 Skeleton,
the nasal septum is visible from our geometry-guided dis-
placement interpolation, while others mess it up. The same
results are shown in Fig.7 fingers of Squirtle, air vent of
Exia 1; and Fig.6 aircraft landing gear.

5. Conclusion
We introduce displacement interpolation into the 3D re-

construction area for the first time and present a novel fu-
sion framework based on the proposed trick of geometry-
guided advection. By integrating the displacement inter-
polation and the curvature constraint, our technique over-

5922



Figure 5. First row images are RGB images of the scanned objects, and the following rows are reconstruction from our technique,
SurfelMeshing[31], and ElasticFusion[42] respectively. Our method achieves the complete global geometric shape and outperforms others
in delicate geometric details. See Table 2 for more details.

Figure 6. The aircraft landing gear on the left-top is small. Our
method can get a reasonable reconstruction, while SurfelMeshing
[31] and ElasticFusion [42] failed.

comes the shortcomings of the depth map back-projection
fusion methods: 1) the geodesic curves resulted from the
mass transport problem reveal the geometric structures of
the local surface; 2) the motions along the geodesic curves
are guided by local geometric properties, i.e., Gaussian
curvature and mean curvature. Our approach makes the
best of the meaningful geometric properties through these
two geometry-guided characteristics. Thus, the proposed
method achieves the most delicate geometric details on thin
objects for which the depth map back-projection fusion
scheme failed. A significant number of experimental results

Figure 7. Our approach outperforms SurfelMeshing[31] and
ElasticFusion[42] in delicate geometric details, like tiny fingers
in Squirtle, air vent of Exia 1.

show that our technique gets the best reconstruction quality
on all items compared with the state-of-the-art methods. In
all, the geometry-guided displacement interpolation makes
our approach prominent.
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