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Figure 1: We propose a novel Image-to-UV prediction network (I2UV-HandNet) that estimates accurate and high-fidelity hand mesh from
a single RGB image. Here, we present example results on the HO-3D dataset (left) and the FreiHAND dataset (right). From left to right:
input, estimated coarse mesh, estimated high-fidelity mesh (in two viewpoints).

Abstract

Reconstructing a high-precision and high-fidelity 3D hu-
man hand from a color image plays a central role in repli-
cating a realistic virtual hand in human-computer interac-
tion and virtual reality applications. The results of current
methods are lacking in accuracy and fidelity due to various
hand poses and severe occlusions. In this study, we propose
an I2UV-HandNet model for accurate hand pose and shape
estimation as well as 3D hand super-resolution reconstruc-
tion. Specifically, we present the first UV-based 3D hand
shape representation. To recover a 3D hand mesh from an
RGB image, we design an AffineNet to predict a UV posi-
tion map from the input in an image-to-image translation
fashion. To obtain a higher fidelity shape, we exploit an
additional SRNet to transform the low-resolution UV map
outputted by AffineNet into a high-resolution one. For the
first time, we demonstrate the characterization capability
of the UV-based hand shape representation. Our experi-

ments show that the proposed method achieves state-of-the-
art performance on several challenging benchmarks.

1. Introduction
Observing and understanding the human hand has been

an important task in computer vision and human-computer
interaction, with applications from gesture recognition to
augmented reality (AR) and virtual reality (VR). Recently,
we have witnessed significant progress in 3D hand pose
and shape estimation [5, 7, 8, 10, 14, 36, 52, 49], driven
by efforts in large-scale data collection and annotation
[46, 52, 53], coupled with the development of 3D repre-
sentations and learning methods [6, 33]. This has led to re-
markable advances in 3D hand understanding from a single-
view color image.

Due to the lack of hand surface data, most of the ear-
lier works study 3D pose estimation by estimating 3D joint
location from a single image [3, 7, 20, 37, 52]. However,
the sparse joints representation cannot meet the needs of
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many applications such as interacting a virtual hand with
an object in some immersive VR scenarios [19]. To bet-
ter display the hand surface, previous approaches regress
a parametric hand model (MANO) [34] with articulated
and nonrigid deformations [5, 15, 26, 31, 48]. Although
it is easy to use CNN to predict the MANO parameters
from RGB input and use 3D annotations to supervise this
regression process [17, 53], this high-dimensional nonlin-
ear regression limits the accuracy of reconstructed hands.
Then regression-based methods introduce various interme-
diate representations to guide the training process. In these
methods, the 3D hand reconstruction is decomposed into
two stages, that first regresses a set of intermediate repre-
sentations such as 2D keypoints, masks, or 3D keypoints,
then predicts the model parameters from these intermediate
representations [48, 50]. The performance of these works
largely depends on the design of these intermediate repre-
sentations as well as the usage of reasonable supervision
terms. More recently, [14, 27] remove the dependence of
parametric model prior and directly regress the 3D coordi-
nates of mesh vertices. Even though good performances are
shown, the above methods, which estimate model parame-
ters or vertices coordinate from high-dimensional encoded
features, break the spatial relationship contained in the orig-
inal pixel space. [29] proposes to predict a 1D heatmap
for each mesh vertex coordinate and achieves state-of-the-
art performance, but it only preserves spatial information in
feature transformation while its vertex-wise output is still a
discrete 3D representation. Different to above 3D represen-
tation and learning method, we propose to use UV position
map [13] as the hand representation in this work.

Inspired by recent 3D body recovery methods that map
a 3D mesh of the human body into a UV map representa-
tion [1, 43], we propose to represent 3D hand surface in
UV space and train a neural network to predict 3D hand
shape from a single RGB input. The usage of UV repre-
sentation enables an efficient network to directly regress the
hand surface, without relying on any model prior or inter-
mediate representations. To properly predict the UV posi-
tion map from the RGB input, we present AffineNet that ad-
dresses the single-view 3D reconstruction issue in an image-
to-image translation task. Traditional image-to-image con-
version pipelines are designed for tasks (such as appear-
ance conversion or semantic segmentation) with good spa-
tial alignment between the input and the output [41, 51].
However, in our setup, the hand shape displayed by the UV
position map is different from that in the input RGB image.
To address this problem, we propose a novel affine connec-
tion module to align the encoded feature maps with the UV
maps and then connect the aligned feature maps with the
decoded feature maps. In AffineNet, hierarchical UV posi-
tion maps and multi-level feature maps are employed, and
multiple UV maps can be supervised at the training stage.

For 3D pose estimation, we obtain a set of 3D keypoints
from the output hand mesh via a pre-defined mapping.

Another advantage of the UV-based representation is that
the dense UV position map enables reconstructing a 3D sur-
face with more vertices by sampling in the valid area of
the UV position map. Motivated by this observation, we
present a UV-based 3D hand super-resolution reconstruc-
tion module named SRNet to realize high-fidelity 3D hand
reconstruction from the coarse 3D hand shape. In order to
make the best of the proposed hand UV position map repre-
sentation, we restore high-fidelity hand shape by using a
CNN to map the low-resolution UV position map into a
high-resolution one. However, there lacks of high-fidelity
hand surface data to supervise the learning of SRNet. Thus,
we construct a scan dataset called SuperHandScan to learn
the SRNet. We transfer the high-quality 3D hand scan and
the registered coarse MANO model to high/low-resolution
UV position maps, and then use those UV maps to train the
SRNet. Since the input of SRNet is a coarse hand mesh
in UV-based representation, there is wide application scope
for the SRNet, in other words, a well-trained SRNet can be
used for mesh super-resolution reconstruction of any coarse
hand mesh.

In summary, we present an I2UV-HandNet model which
consists of an AffineNet for 3D hand pose and shape esti-
mation and an SRNet for hand mesh super-resolution recon-
struction. Overall, the main contributions of this paper are
summarized as follows:

• To our best knowledge, we are the first to introduce UV
map representation in 3D hand pose and shape estima-
tion. Based on our novel representation, we propose an
end-to-end network named AffineNet to predict hand
mesh from a single color image.

• For the first time in hand reconstruction, we propose
SRNet, a hand mesh super-resolution reconstruction
network to predict a high-fidelity hand mesh from a
coarse hand mesh.

• Our method can predict accurate and high-fidelity
hand meshes from RGB inputs. Experimental results
show that our method surpasses other state-of-the-art
methods on multiple challenging datasets.

2. Related Work
This section introduces related work on 3D hand pose

estimation, hand pose and shape recovery, and dense shape
representation. Below, we compare our contribution with
prior works.

2.1. 3D Hand Pose Estimation

The task of 3D hand pose estimation aims to predict the
3D position of hand joints. Recently, estimating 3D hand
pose from depth image or RGB image is well-explored. For
works on depth-based hand pose estimation, please refer to
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Figure 2: Overview of the propose framework. The proposed I2UV-HandNet model, which consists of the AffineNet and the SRNet,
enables to predict high-precision and high-fidelity hand meshes from a single-view color image.

[2, 44]. Here, we mainly compare RGB-based hand pose
estimation methods.

Because the 3D joint annotations are hard to directly ob-
tain from the 2D images, many methods make use of the
correspondence of 3D joints and their 2D projections to
boost 3D pose estimation. [36] proposes to detect 2D hand
keypoints of multi-view color images, and then these 2D
detections are triangulated in 3D using multi-view geome-
try. After the emergence of many datasets with 3D annota-
tions [46, 52], methods are explored to directly regress 3D
joints from RGB images by using 3D annotations to super-
vise network training [52]. Then, many methods follow this
strategy and improve the performance either by introducing
intermediate representations [20] or using more supervision
terms [7, 37]. Recently, a 3D joint is represented as three 1D
heatmaps in [29], where the results are also convincing. In
this paper, we only use the output 3D joints to help evaluate
the performance of hand mesh modeling.

2.2. Hand Pose and Shape Estimation

Since sparse keypoints have a limited representation of
3D shapes, recent works combine sparse pose estimation
with dense shape reconstruction to provide a more compre-
hensive shape representation. Methods in this area can be
split into two categories with differences in the shape prior
model used or not.

To solve the problem that 2D image lacks sufficient
depth information and shape knowledge for 3D shape re-
covery, parametric shape models (e.g., 3DMM for face [4],
SMPL for body [28], and MANO for hand [34]), which
are built using 3D scan data, use low-dimension parame-
ters to represent the complex 3D surface. Recent works
[5, 15, 25, 39, 48] integrate a parametric-based hand model
(MANO) with the end-to-end deep network for hand pose
and shape estimation. The basic idea is to regress MANO
parameters from the input image and then recover 3D joints
and shape according to the regressed parameters, where 3D
joints and meshes or fitted MANO parameters are used to
supervise network training [5, 17, 48, 50]. There are also
method which attempt to remove 3D supervision [9, 37] or
recover 3D shape from 3D pose [11].

Although the parametric model brings 3D shape priors,
estimating model parameters from an RGB image breaks
the spatial relationship between 2D pixels. To address this
issue, I2L-MeshNet [29] predicts 1D heatmaps for each
mesh vertex coordinate instead of directly regressing the
parameters. [14] and [27] regress per-vertex position via
graph convolution networks (GCNs). Unlike them repre-
senting 3D hands in 3D space, we represent the surface of
3D hands by 2D UV maps which can be mapped from the
input image in an image-to-image translation fashion like
[21].

For the number of vertice of the output mesh, [27, 29]
use 778 vertices and use the same mesh topology as MANO,
and [14] outputs a mesh with 1,280 vertices via GCN. Deep-
HandMesh [30] regresses a high-fidelity mesh with 12,553
vertices, but it needs to be trained (or pre-trained) on the
data captured from the controlled environment and still suf-
fers from the highly non-linear regression problem due to
it represents the hand via parameter. In this work, we pro-
pose a more general solution for high-fidelity hand recon-
struction, where we input a low-resolution UV position map
(MANO-level hand mesh) and output a high-resolution UV
position map (high-fidelity hand mesh).

2.3. Dense Shape Representation

Although representing 3D shape via parametric models
or 3D triangular mesh is straightforward and easy to em-
ploy supervision, there are works [1, 13, 43, 45, 47] which
propose to represent 3D surface in a denser fashion, i.e.,
UV representations are introduced to represent the image-
to-surface correspondences and then powerful 2D CNN can
be directly utilized to learn the image-to-UV mapping. The
UV representation can be divided into IUV and UV loca-
tion maps, where the same position on the IUV and the
RGB image shows spatial consistency, while the UV loca-
tion map is inconsistent with RGB. Here, we call this incon-
sistency a coordinate ambiguity. The IUV representation is
used in single-view 3D face reconstruction [13] and body
reconstruction[42, 43]. Recently, [1, 45] combine IUV, UV
position maps and SMPL model [28] to reconstruct 3D hu-
man. Even though these methods achieve good results, the
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Figure 3: Three UV unfolding forms in terms of different cutting
and combination strategies.

coordinate ambiguity of the RGB and UV position map is
not well addressed. In this paper, we introduce UV position
maps to the hand reconstruction task for the first time and
propose to reduce the coordinate ambiguity via an affine
connection module (Section 3.2.1).

3. Method
The proposed I2UV-HandNet model enables to repre-

sent 3D hand surface by UV position map (Section 3.1) and
learn to estimate accurate and high-fidelity hand shape from
a single-view image in a image-to-image translation fashion
(Section 3.2 and 3.3). In the following, we describe the pro-
posed method in detail.

3.1. 3D Hand Representation

Parametric Hand Model. MANO is a parameterized
hand model learned from hand scans. It defines a mapping
from pose and shape parameters to a mesh of 778 vertices
and 1538 faces, where the face topology is fixed to indicate
the connection of the vertices in the hand surface. From
the given mesh topology, a set of 21 joints can be directly
formulated from the hand mesh. Here, we use the MANO
model to infer 16 joints and obtain 5 fingertips according to
pre-defined vertex indexes [17].
Hand Surface as UV Position Map. Given a hand sur-
face, such as the MANO hand mesh, we can unfold the
surface into one UV map1, which allows representing 3D
surfaces as an image. Here, U and V denote the two axes
of the image. The UV mapping defines the correspondence
between the mesh vertices and the image pixels. Three UV
mapping forms are shown in Figure 3 in terms of different
cutting and combination strategies, and the ablation com-
parison is conducted in Section 4.6. In our pipeline, the
AffineNet directly outputs a UV position map from the in-
put image, and the SRNet outputs a UV position map from
a UV position map input, and then 3D hand meshes are re-
covered from UV position maps via the above-defined UV
mapping. To learn our model, the hand mesh annotations
are transferred into UV maps to supervise the UV map pre-
diction. Specifically, the hand mesh is spatially aligned with
the corresponding RGB image using orthographic projec-

1https://www.autodesk.com.sg/products/maya

tion, so that the 3D hand mesh matches the 2D hand in the
image plane. For each 3D vertex on the mesh, its 3D coordi-
nate is mapped into the RGB channel value of a point in the
UV position map [43]. Interpolation is applied to generate
continuous images.

3.2. I2UV-HandNet

As presented in Figure 2, the proposed I2UV-HandNet
model achieves accurate and high-fidelity hand shape es-
timation via an AffineNet to realize UV position maps pre-
diction and an SRNet to restore high-resolution UV position
maps.

3.2.1 AffineNet

To predict the UV position map of the hand shape, an
encoder-decoder mechanism is adopted to map the input
image into a UV image. Similar to the U-net[35], the
AffineNet, consisting of a contracting path and an expan-
sive path (as shown in Figure 2). Give a color image I
with a hand in its scope, a ResNet-50 backbone [18] is
used to encode the image into a series of encoded features
{Ei|i = 1, 2, 3, 4, 5} with different resolutions. In the ex-
pansive path, each step upsamples the feature map and UV
map prediction along with making use of the corresponding
encoded feature maps, resulting in a series of decoded fea-
tures {Di|i = 0, 1, 2, 3, 4} and predicted UV position maps
{IiUV |i = 0, 1, 2, 3, 4}:{

D4 = fup(E
5)

I4UV = fcon(D
4)

(1)

and  A3 = fup(fac(π(I
4
UV ), E

4))
D3 = fup(D

4),
I3UV = fcon(A

3, D3, fup(I
4
UV )),

(2)

and
Ai = fup(fac(π(I

i+1
UV ), Ei+1)),

Di = fup(fcon(D
i+1, Ai+1, Ii+1

UV )), i = 0, 1, 2

IiUV = fcon(A
i, Di, fup(I

i+1
UV )),

(3)
Here, Ei is the feature map encoded at the i-th pyramid
level, Ai is the UV-aligned feature by an affine transforma-
tion, Di is the feature map, fup indicates 2× up-sampling,
fac indicates the affine connection operation, fcon indicates
convolutional layers, and π indicates the projection from
UV position map to image coordinate system. Smaller i
indicates a higher resolution. We note that the affine con-
nection fac aligns encoding features to decoding features
through an affine-operation before connecting them, where
the affine-operation, similar to the STN [22], is based on the
2D projection of each vertex coordinate in the currently pre-
dicted UV map. We provide more details in the Appendix.
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3.2.2 SRNet

Since the network of our 3D hand surface is represented by
UV position maps, we propose to get a more refined hand
surface via a super-resolution in UV image space. We pro-
pose an SRNet to transfer the low-resolution UV position
map into a high-resolution map. The network architecture
of the SRNet is similar to the super-resolution convolutional
neural network (SRCNN) [12], but the input and output are
UV position maps instead of RGB image. After regressing
a high-resolution UV position map via the SRNet, a hand
mesh with higher fidelity can be reconstructed (as shown in
the right part of Figure 2). More details about SRNet archi-
tecture are provided in the Appendix.

3.3. Training Objective

3.3.1 Losses of the AffineNet

To learn the AffineNet, we enforce UV alignment EUV , UV
gradient alignment Egrad, and mesh alignment Everts:

Eaffine = λ1EUV + λ2Egrad + λ3Everts (4)

UV Alignment. We propose a UV alignment loss EUV

base on the L1 distance between the ground truth UV posi-
tion map ÎUV and the output UV position map IUV :

EUV =
∣∣∣(IUV − ÎUV ) ·M

∣∣∣ (5)

Here, M is UV map mask since only the valid region of the
UV position map has corresponding region on the 3D hand
surface.
UV Gradient Alignment. The ideal hand surface should
be continuous, so does the UV position maps. To this end,
we introduce a UV gradient alignment to encourage the pre-
dicted UV position map share the same gradient with the
ground-truth UV position map:

Egrad = |∂u(IUV ·M)− ∂u(I
∗
UV ·M)|

+|∂v(IUV ·M)− ∂v(I
∗
UV ·M)|

(6)

where ∂u and ∂v are gradients along the U-axis and V-axis,
respectively.
Mesh Alignment. Apart from EUV and Egrad that mea-
sure the shape reconstruction in 2D UV position map space,
we also introduce a mesh alignment loss Everts to enforce
the predicted 3D hand mesh to be closed with the ground
truth one:

Everts =
1

Nvert

Nvert∑
i=1

|vi − v̂i| (7)

Here, vi and v̂i are the 3D coordinate of the i-th vertex from
the output mesh and the ground truth mesh, respectively.
Nvert indicates the number of vertices of the mesh.

Since there are multiple predicted UV position maps, we
employ Eaffine on multi-scale UV maps. When training
the AffineNet, the last four UV maps are used with equal
weights.

3.3.2 Losses of the SRNet

The output of the SRNet is UV position map is similar to the
output of the AffineNet except that the SRNet can produce
a UV map with higher resolution. Here, we adopt similar
loss functions with AffineNet.

ESR = EUV SR + Everts SR (8)

Here, we replace the component in EUV with the corre-
sponding component from the SRNet to formulate EUV SR,
e.g., the UV position map is replaced by the UV position
map with higher resolution. Also, the Everts SR is formu-
lated in the same manner.

4. Experiments

In this section, we first present datasets (Section 4.1)
and evaluation metrics (Section 4.2), and implementation
details (Section 4.3). Then, the overall performance of the
proposed method and comprehensive analysis are presented
(Section 4.4, 4.5 and 4.6).

4.1. Datasets

FreiHAND. The FreiHAND dataset [53] contains real-
world hand data with various poses, object interactions, and
varying lighting. It contains 130,240 training samples and
3,960 test samples. Each training sample contains a single-
view RGB image, annotations of MANO-based 3D hand
joints and mesh, as well as camera pose parameters. The
result of the test set is evaluated via an online submission
system2.
HO3D. The HO3D dataset [15] is a recently released
dataset that collects color images of a hand with object in-
teractions. This dataset has 66,034 training samples, which
consists of single-view RGB images, MANO-based hand
joints and meshes, and camera poses. For the test set,
11,524 RGB images are provided along with the annotation
of the detection bounding box. The objects in this dataset
are mainly from the TCB-Video dataset [11]. The results of
the test set need to be evaluated through its online submis-
sion system3.
ObMan. The ObMan dataset [17] is a large-scale syn-
thetic dataset containing hand-object interaction images. It
contains 141,550 training samples, 6463 validation sam-
ples, and 6285 test samples. Each sample has an RGB-D

2https://competitions.codalab.org/competitions/21238
3https://competitions.codalab.org/competitions/22485

12933



image, 3D hand joints, 3D hand mesh, object mesh as well
as camera pose parameters.
YT-3D. The YouTube-3D-Hands (YT-3D) dataset col-
lects images of various real-world hand from YouTube and
annotate those images via an automated collection system
[27]. The training set, which is generated from 102 selected
videos, has 47,125 hand images with 3D joint and mesh an-
notation. The validation and test sets cover 7 videos and
contain 1525 samples each.
SHS. We build the SuperHandScan (SHS) dataset using a
collection of high-quality 3D hand scans via a laser scan-
ner. The motivation of SHS is that the MANO hand mesh,
which represents the hand surface via 778 vertices (with
1538 faces), can only show coarse surface information, but
the UV-based method can produce a hand surface with more
details. Thus, we obtain three times higher resolution hand
meshes based on a collection of hand scans and the given
MANO model. Specifically, we first up-sample the original
MANO hand mesh from 778 vertices (with 1538 faces) to
3093 vertices (with 6152 faces) using the edge-based un-
pooling method as [40]. Then, the iterative closest point
(ICP) algorithm is used to register the upsampled 3D mesh
to the 3D point cloud (from the scanner). Our SHS dataset
provides 6000 scans with dense 3D point clouds and the cor-
responding hand meshes. The hand mesh, which has 3093
vertices and 6152 faces, is denser than MANO hand mesh,
thus can supervise SRNet to learn higher quality hand mesh.
HIC. The Hands in Action Dataset (HIC) [38] contains
images of hand-object interaction. Each sample has the
RGB-D image, 3D object shape, and MANO-fitted hand
shape. We use all of the samples to evaluate the SRNet.

4.2. Evaluation Metrics

To evaluate the performance of the proposed method,
multiple metrics are used for hand pose estimation and mesh
reconstruction. The Pose error measures the average Eu-
clidean distance between the predicted and the ground truth
3D joints. The Mesh error measures the average Euclidean
distance between the predicted and the ground truth mesh
vertices. The Pose AUC indicates the area under the curve
(AUC) for the plot of the percentage of correct keypoints
(PCK) and the Mesh AUC indicates the AUC for the plot
of the percentage of correct vertices (PCV). We also com-
pare the F-score [24] which is the harmonic mean of the
recall and precision between two meshes given a distance
threshold. We report the F-score of mesh vertices at 5mm
and 15mm by F@5mm and F@15mm. Following the re-
cent works, we compare aligned prediction results with Pro-
crustes alignment.

We use PSNR and RMSE to evaluate the performance
of hand super-resolution reconstruction. The PSNR indi-
cates computes the peak signal-to-noise ratio, in decibels,
between two images and is used as a quality measurement

between the original and a reconstructed image. The higher
the PSNR, the better the quality of the reconstructed sur-
face. The RMSE (Root Mean Square Error) is the stan-
dard deviation of the residuals. In this work, we use PSNR
and RMSE to evaluate the difference between the rendered
depth map and the corresponding ground truth.

4.3. Implementation

We train our model on four NVIDIA Tesla V100 GPUs.
Adam [23] is used to optimize the network and PyTorch
[32] is used for implementation. The proposed model con-
sists of two parts, i.e., the AffineNet and the SRNet, where
the AffineNet aims to reconstruct hand mesh at MANO
model level and the SRNet is designed to predict hand mesh
with more detail. No image set provides both MANO-level
and super MANO-level mesh annotations. Thus we adopt
a stage-wise training strategy to optimize the network mod-
ules by using different data supervision for different parts,
i.e., use the image dataset (such as FreiHAND) to train the
AffineNet while use scan data (such as SHS) to train the
SRNet.

The AffineNet is trained for 200 epochs with the batch
size of 128 and the learning rate initialized to 1× 10−4 and
changed according to a Cosine Learning rate decay. The
input image is cropped to 3×256×256. During its training,
the input image is augmented by scaling, rotation and, color
channel permutation. The SRNet is trained for 100 epochs
with the batch size of 512 and the learning rate is set to
1× 10−3. The input and output UV position map of SRNet
is 3 × 256 × 256. For each sample in the SHS dataset,
there are two sources of SRNet’s input, one is the UV of the
corresponding MANO mesh, and the other is the UV map
after Gaussian smoothing.

4.4. Comparison with State-of-the-art Methods

Since our SRNet part is trained by scanning data, we
only compare the results of AffineNet with other methods
to ensure the fairness of the comparison. We compare the
proposed method with several state-of-the-art approaches
[5, 11, 16, 27, 29, 53] for hand pose and shape estimation
on the FreiHAND dataset. The results are shown in Table 1.
In general, methods without directly regressing MANO pa-
rameters ([11, 27, 29] and our method) perform better than
methods using MANO parameters regression ([5, 17, 53]).
When no extra training data is used, our method surpasses
all previous methods whether or not they use MANO model
prior. When the additional training data (the training set
of ObMan and YT-3D) is used, our method achieves bet-
ter performance (see “Ours* (AffineNet)” in the table). We
further plot the 3D PCK and PCV of the FreiHAND test set
compared with some state-of-the-art methods [27, 29, 53],
where our method shows better performance.

In the hand-object interaction scenario, we compare with
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Method Pose Error↓ Pose AUC↑ Mesh Error↓ Mesh AUC↑ F@5 mm↑ F@15 mm↑
Boukhayma et al. [5] 3.50 0.351 1.32 0.738 0.427 0.894
Zimmermann et al. [53] (Mean Shape) 1.71 0.662 1.64 0.674 0.336 0.837
Zimmermann et al. [53] (Mano Fit) 1.37 0.730 1.37 0.729 0.439 0.892
Hasson et al. [16] 1.33 0.737 1.33 0.736 0.429 0.907
Spurr et al. [37] 1.13 0.78 - - - -
Zimmermann et al. [53] (MANO CNN) 1.10 0.783 1.09 0.783 0.516 0.934
Kulon et al. [27] 0.84 0.834 0.86 0.830 0.614 0.966
Choi et al. [11] 0.77 - 0.78 - 0.674 0.969
Moon et al. [29] 0.74 0.854 0.76 0.850 0.681 0.973
Ours (AffineNet) 0.72 0.856 0.74 0.852 0.682 0.973
Ours* (AffineNet) 0.68 0.865 0.69 0.862 0.706 0.977

Table 1: Comparison of main results on the FreiHAND test set. * indicates the system is trained on a combination of datasets.

Method Pose Error↓ Pose AUC↑ Mesh Error↓ Mesh AUC↑ F@5 mm↑ F@15 mm↑
Hasson et al. [16] 1.14 0.773 1.14 0.773 0.428 0.932
Hasson et al. [17] 1.10 - - - 0.46 0.93
Hampali et al. [15] 1.07 0.788 1.06 0.790 0.506 0.942
Ours (AffineNet) 0.99 0.804 1.01 0.799 0.500 0.943
Ours† (AffineNet) 1.04 0.793 1.09 0.782 0.484 0.935
Ours∗ (AffineNet) 0.81 0.838 0.84 0.831 0.577 0.970

Table 2: Comparison of main results on the HO3D test set. † indicates cross-dataset
evaluation. ∗ indicates trained use extra data.

Set RMSE↓ PSNR↑
Input 28.12 27.58
Output (sampled) 12.06 37.74
Output 7.68 39.18

Table 3: Comparison of main results on HIC.
Note that the depth maps are transferred into point
clouds in world coordinates, and then the distance
is computed between corresponding points.

Losses Pose Error↓ Pose AUC↑ Mesh Error↓ Mesh AUC↑
EUV Egrad Everts

✓ 0.75 0.850 0.77 0.846
✓ ✓ 0.73 0.854 0.75 0.850
✓ ✓ ✓ 0.72 0.856 0.74 0.852

Table 4: Ablation studies for different losses used in our method
on the FreiHAND testing set.

fac Crop Ratio Pose Error↓ Pose AUC↑ Mesh Error↓ Mesh AUC↑
1 0.85 0.831 0.87 0.827

3/4 0.81 0.839 0.82 0.837w/o
1/2 0.76 0.848 0.78 0.845
1 0.77 0.847 0.79 0.843

3/4 0.72 0.856 0.74 0.852w/
1/2 0.74 0.852 0.76 0.849

Table 5: Comparison of the affine connection module fac used or
not, where three crop ratios are compared in each case.

state-of-the-art methods [15, 16, 17] on the HO3D dataset
in Table 2. In the condition that no extra training data is
used, our method outperforms all previous methods. In ad-
dition, when the additional training data (the training set
of FreiHAND, ObMan, and YT-3D) is used, our method
achieves better performance (see “Ours* (AffineNet)” in
the table). We also notice that our cross-dataset evaluation
results (“Ours† (AffineNet)” in the table) surpass other re-
sults, where different from their training on the HO3D train-
ing set, we train the model on a combination of data from
other datasets (the training data of FreiHAND, ObMan, and
YT-3D). Even though most of the samples in the training
set (FreiHAND, ObMan, and YT-3D) represent bare hands
while the samples in the HO3D test set are hand-object in-
teraction images, this cross-dataset evaluation still has good
performance, showing the robustness and effectiveness of
the proposed AffineNet.

4.5. Evaluation of Hand Super-resolution Recon-
struction

The SRNet is trained on the SHS dataset, and the train-
ing detail is shown in Section 4.3. Once trained, our SRNet
can be directly used for hand super-resolution reconstruc-
tion without any fine-tuning. Here, we evaluate the SRNet
on FreiHAND, HO3D and HIC.

The FreiHAND and HO3D are annotated using MANO
fitting, thus their ground truth meshes are as coarse as
MANO hand mesh. We use the output UV position maps of
AffineNet as the input of the SRNet, and the SRNet can out-
put hand meshes with higher fidelity. The qualitative results
on HO3D and FreiHAND are shown in Figure 1. For each
input RGB image, we visualize the output of the AffineNet,
the output of the SRNet in two viewpoints. We find that
the SRNet outputs higher-resolution hand meshes than the
output of the AffineNet while preserving the same pose in-
formation. The high-resolution meshes of the SRNet show
smoother and more realistic skin surface.

To quantitatively evaluate the SRNet, experiments are
conducted on the HIC dataset. The input of the SRNet is
the UV position map converted from its MANO-fitted mesh
with 778 vertices (“Input” in Table 3), and the output is the
high-resolution UV position map that can be converted into
a high-fidelity mesh with 3093 vertices (“Output” in the ta-
ble). Besides, we also down-sample the high-fidelity mesh
to 778 vertices (“Output (sampled)” in the table). In order to
compare these three sets of hand surfaces, we render them
as depth maps based on the viewpoint of the input image
and use the depth map observation to calculate the RMSE
and PSNR of the rendered depth image. Note that the back-
ground is erased by the intersection of these depth maps.
As shown in Table 3, the output of SRNet (“Output” in the
table) shows a better reconstruction quality to the original
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Variants of our Method AUC of PCK↑ AUC of PCV↑
UV1 0.860 0.856
UV2 0.862 0.860
UV3 0.865 0.862

Table 6: The results comparison of different UV forms in dif-
ferent stages.

Variants of our Method AUC of PCK↑ AUC of PCV↑
S0 0.865 0.862
S1 0.862 0.858
S2 0.839 0.834

Table 7: The results comparison of different UV forms in dif-
ferent stages, Si means the i-th pyramid level output IiUV .

Figure 4: Comparison of 3D PCK and 3D PCV on the FreiHAND dataset.
The proposed method is superior to [27], [29] and [53].

depth map. We also notice that the down-sampled output
(“Output (sampled)” in the table) obtains higher accuracy
than the mesh fitted by MANO (“Input” in the table), even
though they have the same mesh resolution.

4.6. Ablation Study

Effect of Each Loss Function. As presented in Table 4,
we give evaluation results of AffineNet on the FreiHAND
test set of settings with different losses used during the train-
ing. From the table, we can see that the best performance is
achieved when all proposed loss functions are used. More
results are shown in the Appendix.
Effect of the Affine Connection. As presented in Table 5,
we give evaluation results on FreiHAND of settings with
the affine connection module fac used or not, where three
crop ratios are compared in each case. Here, the cropping
operation is designed to compare the effect of different fore-
ground and background ratios on the reconstruction result.
For example, when the crop ratio is 1/2, the image is center
cropped by 1/2 of the width and height and then resized into
the original size. In Table 5, for each crop ratio, we find the
“w/ fac” gets better performance than “w/o fac” and it gets
the best performance when the crop ratio is 3/4. Therefore,
we choose 3/4 as the crop ratio in other experiments. In this
case, fac results in an 11.1% reduction in pose error and a
9.8% reduction in mesh error.
Effect of UV unfolding forms. The UV map is obtained
by unfolding the hand mesh. Thus, the valid part of the UV
map is dependent on the crop trajectory of the surface (i.e.,
the black lines on the 3D surface in Figure 3). We com-
pare three different UV position maps using different crop
and combine schemes, and indicate UV1, UV2 and, UV2
from left to right in Figure 3. UV1 separates the front and
back of the hand and the area on the UV position map of
each piece is proportional to the area of the mesh surface.
UV2 and UV3 don’t separate each finger and the area on the
UV position map of each piece is proportional to the vertex
number of the mesh surface, where each piece has a differ-
ent position in UV space. In Table 6, we give evaluation
results on the FreiHAND test set while using a combined
training set (refer to the train data of FreiHAND, ObMan,

and YT-3D). Despite different UV position maps are used,
the performance of hand pose and shape estimation is sim-
ilar, where less than 0.7% difference on AUC of PCK/PCV
is shown. The results show that our method is robust to the
UV position map designing. In this paper, we use UV3 as
the template UV position map.
Comparison of results from UV maps of different stages.
As illustrated in Section 3.3.1, the supervision is used on
multiple-scale UV maps. Thus, the mesh can be recovered
from each UV map. Here, we compare the mesh prediction
results of the last three UV maps (S0, S1, and S2) on the
FreiHAND test set while using a combined training set. S0
indicates the full resolution UV map prediction, while S1
refers to the second last output with 1/2 of the full resolu-
tion and S2 refers to the third last output with 1/4 of the
full resolution. As shown in Table 7, from low-resolution
S2 to high-resolution S0, the AUC of PCK and PCV show
obvious improvement.

5. Conclusion
We have presented a novel I2UV-HandNet approach for

accurate and high-fidelity 3D hand reconstruction from a
single color image. The proposed UV position map enables
representing a 3D hand surface in an image style. For ac-
curate hand pose and shape estimation from the monocular
images, we present an AffineNet to predict the UV posi-
tion map from the RGB input. In AffineNet, a hierarchi-
cal coarse-to-fine regressing architecture is designed with a
novel affine connection module that can resolve the coordi-
nates ambiguity between the RGB image and the UV map.
The proposed AffineNet achieves state-of-the-art perfor-
mances on multiple challenging datasets. For high-fidelity
hand shape reconstruction, we present an SRNet to restore
a high-resolution UV position map from a low-resolution
one. The proposed SRNet is not likely to be affected by
the reconstruction method, and can robustly restore a high-
fidelity hand from the inputted coarse shape. As for the
future study, the UV-based hand representation can be ex-
tended to more complex joint hand-hand or hand-object re-
construction tasks, or the architecture can be modified for
enabling sparse/weak supervision.
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