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Abstract

Model inversion (MI) attacks are aimed at reconstruct-
ing training data from model parameters. Such attacks
have triggered increasing concerns about privacy, espe-
cially given a growing number of online model repositories.
However, existing MI attacks against deep neural networks
(DNNs) have large room for performance improvement. We
present a novel inversion-specific GAN that can better distill
knowledge useful for performing attacks on private models
from public data. In particular, we train the discriminator
to differentiate not only the real and fake samples but the
soft-labels provided by the target model. Moreover, unlike
previous work that directly searches for a single data point
to represent a target class, we propose to model a private
data distribution for each target class. Our experiments
show that the combination of these techniques can signif-
icantly boost the success rate of the state-of-the-art MI at-
tacks by 150%, and generalize better to a variety of datasets
and models. Our code is available at https://github.
com/SCccc21/Knowledge-Enriched-DMI.

1. Introduction
Many attractive applications of machine learning (ML)

techniques involve training models on sensitive and propri-
etary datasets. One major concern for these applications
is that models could be subject to privacy attacks and re-
veal inappropriate details of the training data. One type of
privacy attacks is MI attacks, aimed at recovering training
data from the access to a model. The access could either
be black-box or white-box. In the blackbox setting, the at-
tacker can only make prediction queries to the model, while
in the whitebox setting, the attacker has complete knowl-
edge of the model. Given a growing number of online plat-
forms where users can download entire models, such as
Tensorflow Hub1 and ModelDepot2, whitebox MI attacks

*Correspondence to G.-J. Qi, guojunq@gmail.com
1https://www.tensorflow.org/hub
2https://modeldepot.io/

have posed an increasingly serious threat to privacy.
Effective MI attacks have been mostly demonstrated on

simple models, such as linear models, and low-dimensional
feature space [5, 4]. MI attacks are typically cast as an opti-
mization problem that seeks for the most likely input exam-
ples corresponding to a target label under the private model.
When the target model is a DNN, the underlying attack op-
timization problem becomes intractable and solving it via
gradient methods in an unconstrained manner may easily
end in a local minima. Previous MI attack models like [31]
explore the idea of distilling a generic prior from potential
public data via a GAN generator and using it to guide the
inversion process. For instance, to attack a face recogni-
tion classifier trained on private face images, one can train
a GAN with public face datasets to learn generic statistics
of real face images and then solving the attack optimization
over the latent space of the GAN rather than in an uncon-
strained ambient space.

However, there still exists a large room to improve the
attack performance. For instance, the top-one identification
accuracy of face images inverted from the state-of-the-art
face recognition classifier is 45%. A natural question is: Is
the underperformance of MI attacks against DNNs because
DNNs do not memorize much about private data or it is sim-
ply an artifact of imperfect attack algorithm design? This
paper shows that it is the latter.

We reveal a variety of drawbacks associated with the the
current MI attacks against DNNs. Particularly, we notice
that the previous state-of-the-art approach suffers from the
two key limitations: 1) The information about private clas-
sifier is not sufficiently explored for distilling knowledge
from public data. Previous works ignore the important role
of the target classifier in adapting the knowledge distilled
from the public data for training the MI attack model on the
target classifier. Indeed, given a target classifier to attack,
we can also use its output labels to distill which public data
are more useful in inverting the target model to recover the
private training examples of the given labels. 2) Prior works
made a simplified one-to-one assumption in recovering a
single example for a given label of the target model. How-
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ever, in real scenarios, inverting a model should naturally
result in a distribution of training examples corresponding
to the given label. This inspires us to recover a data dis-
tribution in the MI attack in line with such a many-to-one
assumption.

To address the first limitation, we propose to tailor the
training objective of the GAN to the inversion task. Specif-
ically, for the discriminator, we propose to leverage the tar-
get model to label the public dataset and train the discrimi-
nator to differentiate not only the real and fake samples but
also the labels. This new training scheme will force the
generator to retain image statistics that are more relevant to
infer the classes of the target model, which are likely to oc-
cur in the unknown private training data. To overcome the
second limitation, we propose to explicitly parameterize the
private data distribution and solve the attack optimization
over the distributional parameters. Moreover, this will lead
us to explore a distribution in which each point with large
probability mass will achieve a good attack performance.
We perform experiments on various datasets and network
architectures and show that such a distributional MI attack
by distilling public-domain knowledge tailored for private
labels can significantly improve the previous state-of-the-
art attack against DNNs, even when the public data have no
overlap with the private labels of the target network.

The paper is organized as follows. We introduce related
works in Section 2 and describe our proposed inversion-
specific GAN and distributional recovery in Section 3.
In Section 4, we assess the performance of the proposed
method and show the extend application to a new attack
setting: multi-target MI attacks. Finally, we conclude and
discuss our key findings in Section 5.

2. Related work
The general goal of privacy attacks against ML models

is to gain knowledge which is not intended to be shared,
such as knowledge about the training data and informa-
tion about the model. Attacks can be categorized into
four types according to the specific goals: model extrac-
tion [19, 14, 22, 3], membership inference [25], property in-
ference [1, 6, 18], and model inversion [5, 4, 31, 28]. Model
extraction attacks try to create a substitute model that learns
the same task as the target model while performing equally
good or even better; and the other three focus on exposing
secrets about training data. MI attacks, which are of par-
ticular interest, aims to recreate training data or sensitive
attributes.

The first MI attack algorithm was proposed in [5], which
follows the Maximum a Posterior (MAP) principle and con-
structs the input features that maximize the likelihood of ob-
serving a given model response and other possible auxiliary
information. The authors applied the algorithm to attack
a linear regression model that predicts medical dosage and

showed that the algorithm can successfully invert genetic
markers which are used as part of the input features.

Fredrikson et al. [4] applied the MAP attack idea to more
complex models, including decision trees and shallow neu-
ral networks. Specifically, for neural networks with high-
dimensional input features, the authors proposed to utilize
gradient descent to solve the underlying attack optimization
problem. Although the algorithm significantly outperforms
random guessing when tested on some shallow networks
and single-channel images, the reconstructions are blurry
and can hardly reveal private information. Besides, the al-
gorithm completely fails when tested on DNNs and three-
channel images.

To improve the attack performance for DNNs with high-
dimensional input, a two-pronged attack approach [31] was
proposed which trains a GAN on public data (which could
have no class intersection with private data and no labels),
and then uses the GAN to search for the real examples that
maximize the response to given classes. However, the resul-
tant GAN fails to distill the private knowledge customized
for the specific classes of interest in the target network, and
the associated MI attack cannot recover the distribution of
examples corresponding to those private classes.

The aforementioned works for attacking neural nets fo-
cused on the white-box setting and attacking a single model
that is learned offline. Recent work has also looked into
other attacker models. For instance, Yang el al. [28] studied
the blackbox attack and proposed to train a separate model
that swaps the input and output of the target model to per-
form MI attacks. Salem et al. [23] studied the blackbox MI
attacks for online learning, where the attacker has access to
the versions of the target model before and after an online
update and the goal is to recover the training data used to
perform the update.

Moreover, the algorithms of MI attacks resemble an or-
thogonal line of work on feature visualization [21, 29],
which also attempts to reconstruct an image that maximally
activates a target network. The proposed work differs from
these existing works on feature visualization in that our al-
gorithm customizes the public-to-private knowledge distil-
lation to train the GAN and a novel formulation is presented
for data distribution synthesis which results in more realistic
image recovery.

3. The Proposed Approach

3.1. Overview of our attack

Attack model This paper focuses on the whitebox MI at-
tack, in which the attacker has complete access to the target
network T . The goal of the attacker is to discover a repre-
sentative input feature x associated with a specific label y.
We will use face recognition as a running example for the
target network. Face recognition classifiers label an image
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containing a face with the label corresponding to the iden-
tity depicted in the image. The corresponding attack goal is
to recover a representative face image for any given identity
based on the target classifier parameters.

Existing MI attacks boil down to synthesizing the most
likely input for the target network. Specifically, the follow-
ing optimization problem is solved to synthesize the input
for a given label y: maxx log Ty(x), where Ty(x) is the
probability of label y output by the model T given the input
x. When T is a DNN and x is high-dimensional (e.g., im-
ages), the corresponding optimization becomes nonconvex
and performing gradient descent easily gets stuck in local
minima, which might not be semantically meaningful at all.
For instance, when the model input is an image, such local
minima could be meaningless patterns of pixels.

The proposed proposed attack algorithm consists of two
steps. The first step is to train a GAN having knowledge
about the private classes of the target model from public
data. Instead of training a generic GAN, we customize the
training objective for both generator and discriminator so
as to better distill the private-domain information about the
target model from public data. In the second step, we make
use of the generator learned in the first step to estimate the
parameters of the private data distribution. The overall ar-
chitecture of our method is shown in Figure 1.

3.2. Building an Inversion-Specific GAN

To distill the useful knowledge about the target model
from public data, we propose to adopt a discriminator that
is not only able to differentiate real data from the fake, but
also to discriminate between the class labels under the target
network.

Suppose that the target network classifies a sample into
one of K possible classes. Our discriminator D is a (K +
1)-classifier [24], where the first K classes correspond to
the labels of the target network and the (K + 1)-th class
represents fake samples. To train such a discriminator, we
use the target network T to generate a soft label T (x) for
each image from the public dataset.

Formally, the training loss for D has two parts:

LD = Lsupervised + Lunsupervised (1)

where

Lsupervised = −Ex∼pdata (x)

K∑
k=1

Tk(x) log pdisc(y = k | x)

(2)

and

Lunsupervised = −{Ex∼pdata (x) logD(x)+ (3)
Ez∼noise log(1−D(G(z)))}. (4)

Here pdata is the distribution of public data, and pdisc(y|x) is
the probability that the discriminator predicts x as class y.
The random noise z is sampled from N (0, I), and Tk(x) is
the k-th dimension of the soft label produced by the target
network. The discriminator D(x) outputs the probability
of x being a real sample, and therefore we have D(x) ≜
pdisc(y < K + 1|x).

Intuitively, using the public data with soft-labels to train
the discriminator encourages the generator to produce im-
age statistics that help predict the output classes of the target
model. Such image statistics are also likely to be present
in the private training data. Hence, the proposed training
process can potentially guide the generator to produce im-
ages that share more common characteristics with the pri-
vate training data.

For training the generator, we adopt the following
feature-matching loss [24] to align the generated images
with the real counterparts based on the learned features f(x)
encoded in an intermediate layer of the discriminator:

LG = ∥Ex∼pdataf(x)− Ez∼noise f(G(z))∥22 + λhLentropy
(5)

where Lentropy is an entropy regularizer [7].
The intuition of the entropy regularization term is sim-

ple. Because the target network is trained on the private
data, the private data should have high confidence when fed
into the target network and in turn should get low prediction
entropy. In order to encourage the data distribution learned
from public data to mimic the private data, we explicitly
constrain the entropy in the loss function so that the gener-
ated data will have low entropy under the target network.

3.3. Distributional Recovery

Given the GAN trained above on the public data under
the guidance of the target network, the second step of the
MI attack tries to find the private data which achieves the
maximum likelihood under the target classification network
while containing realistic images. While existing works fo-
cus on generating a representative image of a given identity,
there ought to be a variety of training examples correspond-
ing to one identity – indeed, the classifier is a many-to-one
mapping. To this end, we propose to recover a data distri-
bution instead of a single point to invert the target model for
a given label k of identity.

Specifically, given an identity label k, we model the pri-
vate data distribution by G(z′), where G is the generator
trained in the first step and z′ is sampled from pgen =
N (µ, σ2) with two learnable parameters µ and σ2. We then
minimize the following objective function to generate the
samples for the given class k from the private classifier T
by estimating µ and σ:

L = Lprior + λiLid (6)

16180



Figure 1. Overall architecture of the proposed attack algorithm. Step 1. Build an inversion-specific GAN to distill private information. Step
2. Recover the distribution of private domain. Note that both the generator and discriminator are fixed at Step 2.

where λi is a positive balancing hyperparameter, and

Lprior = −Ez′∼pgen logD(G(z′)) (7)
Lid = −Ez′∼pgenTk(G(z′)) (8)

Here the prior loss Lprior penalizes unrealistic images and
the identity loss Lid encourages the estimated private data
distribution to have high likelihood of being assigned to the
given target label k under the targeted network T .

To estimate µ and σ2 directly through the back-
propagation, we adopt the reparameterization trick [13] to
make Lprior and Lid differentiable:

z′ = σϵ+ µ, ϵ ∼ N (0, I) (9)

We can now form Monte Carlo estimates of expectations of
Lprior and Lid as follows and optimize them with respect to
σ and µ:

Lprior = − 1

L

L∑
l=1

logD(G(σϵl + µ)) (10)

Lid = − 1

L

L∑
l=1

log Tk(G(σϵl + µ)) (11)

where ϵl ∼ N (0, I) for l = 1, . . . , L.
Once µ and σ are estimated, the distribution of the

learned training examples corresponding to the label k
is given implicitly by sampling from G(z′) with z′ ∼
N (µ, σ2). Figure 2 shows some examples obtained by sam-
pling from G(z′). These examples show a variety of face

Figure 2. Examples of images obtained by inverting a target face
recognition model. Each row corresponds to an identity. The num-
bers beneath each image show high softmax scores for the corre-
sponding identity by the evaluation classifier, demonstrating these
generated images successfully attack the target model by exposing
its private information.

images are obtained for each identity by inverting a target
face recognition model, containing variations in face poses,
expressions, hairs and beards. This suggests that a natural
many (faces)-to-one (identity) mapping is learned through
a MI attack. We can also model the distribution by multi-
variant Gaussian to have further improvement. And this will
be left for future work.

4. Experiment

In this section, we will evaluate our proposed attack in
terms of the performance to recover a representative in-
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put from a target model. The baseline that we will com-
pare against is the generative MI attack (GMI) proposed
in [31], which achieved the state-of-the-art result for attack-
ing DNNs.

4.1. Experimental setting

Dataset. We study attacks against models built for dif-
ferent prediction tasks, including face recognition, digit
classification, object classification, and disease prediction.
For face recognition, we use (1) the CelebFaces Attributes
Dataset [17] (CelebA) containing 202,599 face images of
10,177 identities with coarse alignment, (2) Flickr-Faces-
HQ (FFHQ) Dataset containing 70,000 high-quality images
with considerable variation in terms of age, ethnicity and
image background, and (3) FaceScrub consisting of 106,863
face images of male and female 530 celebrities, with about
200 images per person. We use aligned versions of above
face datasets, and crop the images at the center and resize
them to 64 × 64 so as to remove most background. For
digit classification, we use the MNIST handwritten digit
data [16]. For object classification, we adopt the CIFAR-
10 dataset [15]. For disease prediction, we use the Chest
X-ray Database [27] (ChestX-ray8).

Models. Following the settings in [31], we implement
several different target networks with varied complexities.
Some of the networks are adapted from existing ones by
adjusting the number of outputs of their last fully con-
nected layer to our tasks. For the face recognition task,
we use three different network architectures: (1) VGG16
adapted from [26]; (2) ResNet-152 adapted from [9]; (3)
face.evoLve adpated from [2]. For digit classification on
MNIST, we use a network which consists of 3 convolutional
layers and 2 pooling layers. For object classification, we use
VGG16. For the disease prediction on ChestX-ray8, we use
Resnet-18 adapted from [9].

Attack Implementation. We split each dataset into two
disjoint parts: one part used as the private dataset to train the
target network and the other as a public dataset. The public
data, throughout the experiments, do not have class inter-
section with the private training data of the target network.
Therefore, the public dataset in our experiment only helps
the adversary to gain knowledge about features generic to
all classes and does not provide information about private,
class-specific features for training the target network. For
CelebA, we use 30,027 images of 1000 identities as private
set and randomly choose 30,000 images of other identities
as public set to train GAN. For MNIST and CIFAR10, we
use all of the images with label 0, 1, 2, 3, 4 as private set and
rest images with label 5, 6, 7, 8, 9 as public set. For ChestX-
ray8, we use 10,000 images with label ”Atelectasis”, ”Car-
diomegaly”, ”Effusion”, ”Infiltration”, ”Mass”, ”Nodule”,

”Pneumonia” as private set and 10,000 images belongs to
other 7 classes as public set. We train the target networks
using the SGD optimizer with the learning rate 10−2, batch
size 64, momentum 0.9 and weight decay 10−4. For train-
ing GANs, we use the Adam optimizer with the learning
rate 0.004, batch size 64, β1 = 0.5 and β2 = 0.999 as [12].
The weight for entropy regularization term is λh = 1e−4.
For the step of distributional recovery, we set λi = 100; the
distribution is initialized with µ = 0, σ = 1 and optimized
for 1500 iterations.

Evaluation Protocol. For our proposed attack, we draw
5 random samples of ϵ and generate corresponding images
G(σϵ+µ). For the baseline attack, we re-start the attack for
5 times with random initialization. To evaluate the recon-
struction of a representative input, we compute the average
of attack performance on the 5 reconstructed images.

Evaluation Metrics. Evaluating the MI attack perfor-
mance requires gauging the amount of private information
about a target label leaked through the synthesized images.
We conduct both qualitative evaluation through visual in-
spection as well as quantitative evaluation. The quantita-
tive metrics that we use to evaluate the attack performance
largely follow the existing literature [31], including attack
accuracy and K-nearest neighbor feature distance. They are
generally aimed at measuring the semantic similarity be-
tween private data and reconstructions. In addition, we in-
corporate a metric for image quality, namely, Fréchet In-
ception Distance (FID) [10], as part of our evaluation. The
metrics are expounded as follows.

• Attack Accuracy (Attack Acc). We build an evalua-
tion classifier that predicts the identity based on the
input reconstructed image. If the evaluation classi-
fier achieves high accuracy, the reconstructed image
is considered to expose private information about the
target label. It is shown in [31] that the reconstructed
images may overfit the target network; in other words,
reconstructed images could be meaningless pixel pat-
terns but achieve high prediction accuracy when eval-
uated with the target network. Hence, the evaluation
classifier should be different from the target network.
Moreover, the evaluation classifier should achieve high
performance, because we are using it as a proxy for
a human observer or an oracle to judge whether a re-
construction captures sensitive information. The attack
accuracy is measured by the prediction accuracy of the
evaluation classifier on reconstructed images. For all
the face image datasets, we use the model in [2] as our
evaluation classifier, which is pretrained on MS-Celeb-
1M [8] and fine-tuned on the training set of the target
networks. For MNIST, we train a new evaluation clas-
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sifier which consists of 5 convolutional layers and 2
pooling layers on all of the 10 digits. For ChestX-ray8,
the evaluation classifier is adapted from [26]. For CI-
FAR10, we use ResNet-18 adapted from [9].

• K-Nearest Neighbor Distance (KNN Dist). KNN Dist
is the shortest feature distance from a reconstructed
image to the real private training images for a given
class. The feature distance is measured by the l2 dis-
tance between two images when projected onto the
feature space, i.e., the output of the penultimate layer
of the evaluation classifier.

• FID. FID score measures feature distances between
real and fake images, and lower FID values indicate
better image quality and diversity. We found that re-
constructed images which the evaluation classifier pre-
dicts into the target label tend to achieve lower FID
scores. Hence, the FID score and attack accuracy are
correlated with one another. To make FID a comple-
mentary metric to attack accuracy, we only calculate
the FID score of those reconstructions which are suc-
cessfully recognized as the target class by the evalua-
tion classifier. The idea of this FID score is to measure
how much more detailed information is leaked from
a reconstruction that can successfully recover the se-
mantics.

4.2. Result

Comparison with previous state-of-the-art. We com-
pare our attack with the baseline for attacking various mod-
els built on the same dataset, namely, CelebA. The models
include VGG16, ResNet152, and face.evolve, which have
increased complexity. Among these models, face.evolve
achieves state-of-the-art face recognition performance. The
results for attacking these models are shown in Table 1,
showing that our approach significantly improves the GMI
on all the target models. Notably, our approach also enjoys
lower performance variance across different target identities
compared with the GMI.

The performance improvement achieved by our attack
is further corroborated by Figure 3, which exhibits ground
truth private images and corresponding reconstructions
given by our attack and the GMI. We can see that our re-
constructions can mostly better preserve the facial features
of a given identity than the baseline. Since both our ap-
proach and the GMI are based on a GAN trained over pub-
lic data, a natural question is whether these two approaches
simply memorize the public data and output a public exam-
ples similar to the target identity? To answer this question,
we also exhibit the nearest neighbors in the public dataset
for each of the target images in Figure 3. We calculate the
nearest neighbors based on the distance between deep fea-
ture representations extracted from the evaluation classifier

in order to capture the perceptual similarity between two
images [30]. Comparison between the nearest neighbors
and our generated samples shows that both GMI and our
approach do not simply “memorize” the similar images in
the public domain; instead, they attempt to synthesize new
images that expose sensitive attributes while remaining re-
alistic.

Moreover, we examine the performance of the proposed
attack for recovering some implicit attributes of the private
images, such as gender, age, hair style, among others. Ta-
ble 2 shows that our attack also outperforms GMI in terms
of recovering the implicit attributes.

Table 3 compares the attack performance of our attack
and the GMI on various datasets. We can see that our
method outperforms the GMI by a large margin. One in-
teresting finding is that, when attacking digit recognition
model trained on MNIST, GMI generates images that can
be successfully recognized as the target digits by the target
classifier but cannot be predicted into the target digits by
the evaluation classifier and the average attack accuracy is
close to 0. As shown in Figure 4, when attacking digit “0,”
GMI tends to generate “6” because it only sees “6” in the
public data. However, the generated samples can achieve
high prediction accuracy under the target network, because
it is trained to only predict 0-4, while having low prediction
accuracy under the evaluation classifier which can predict
all ten digits. In contrast, our attack can successfully re-
construct “0” even though it also only sees 5-9 in the pub-
lic data. This demonstrates that our customized training of
GAN can indeed help retain those features in the public data
that are more likely to appear in private data.

Cross-dataset experiment. We study the effect of dis-
tribution shift between public and private data on the at-
tack performance. We train our GAN on Flickr-Faces-HQ
Dataset (FFHQ) [11] and FaceScrub [20] to attack the tar-
get network VGG16 trained on CelebA. The attack results
are presented in Table 4, which shows that both GMI and
our attack suffer from a performance drop while ours still
outperforms GMI. We notice that the performance drop on
FaceSrub is larger than that on FFHQ. One possible rea-
son is that images in FaceScrub have much lower resolu-
tion (64 × 64), and there are a number of images under
poor lighting conditions or only showing partial faces. This
performance drop could potentially be resolved by using a
GAN combined with unsupervised domain adaptation tech-
niques and we will leave the exploration of this line of work
to future work.

Ablation study. We proposed a couple of ideas to im-
prove the GMI attack in [31], including (1) soft-label dis-
crimination (SD), which enables the discriminator to dif-
ferentiate soft-labels produced by the target network, (2)
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face.evolve IR152 VGG16
GMI Ours GMI Ours GMI Ours

Attack Acc ↑ .31±.0039 .81±.0016 .32±.0027 .81±.0015 .21±.0020 .72±.0018
Top-5 Attack acc ↑ .53±.0015 .96±.0004 .57±.0005 .96±.0001 .43±.0014 .92±.0003

KNN Dist ↓ 1703.52 1358.23 1673.05 1324.72 1772.50 1380.22
FID ↓ 33.81 25.28 50.11 26.35 52.51 23.72

Table 1: Attack performance comparison on various models trained on CelebA. ↑ and ↓ respectively symbolize that higher
and lower scores give better attack performance.

Figure 3. Qualitative comparison for attacking a face recognition model trained on CelebA. The first row shows ground truth images for
target identities. The second row shows nearest neighbors of the target images from public domain. And the third and last rows demonstrate
the reconstructions produced by the GMI attack and our attack, respectively.

Attributes Attack Acc ↑
GMI Ours

Blond Hair 84 85
Bushy Eyebrows 85 85

Glasses 95 96
Male 86 94

Mustache 90 93
Young 72 82

5 o’clock shadow 83 87
Arched Eyebrows 65 70

Big Nose 73 78
Heavy Makeup 61 72
Narrow Eyes 78 82

No Beard 84 90
Wearing Lipstick 57 74

Table 2: Comparison of implicit attributes recovering be-
tween GMI and our proposed method. Attack accuracy is
measured by an attributes classifier trained on CelebA.

entropy minimization (EM), which minimizes the predic-
tion entropy of images produced by the generator, and (3)
distributional recovery (DR), which explicitly models and
estimates the private data distribution. Note that EM can
only be combined with our SD. This is because a canonical

Figure 4. MNIST samples generated by GMI and our method
when attacking digit “0”.

discriminator only performs real vs. fake classification and
minimizing the entropy of the prediction outputs in this case
would not encourage the embedding to retain features that
are more likely to appear in private data. We have shown
that the combination of all these ideas can lead to signifi-
cant attack performance improvement over the GMI. Here,
we conduct an ablation study to investigate the improve-
ment introduced by each individual idea as well as any rea-
sonable combinations of these ideas. Table 5 presents the
result of ablation study for attacking VGG16 trained on the
CelebA dataset. We observe that both the attack accuracy
and image quality get improved when we apply the idea of
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CelebA MNIST ChestX-ray8 CIFAR10
GMI Ours GMI Ours GMI Ours GMI Ours

Attack Acc ↑ .21±.0020 .72±.0018 .08±.0120 .68±.0208 .21±.0163 .47±.0155 .56±.0264 .96±.0072
KNN Dist ↓ 1772.50 1380.22 126.61 72.54 360.32 220.30 139.09 123.07

FID ↓ 52.51 23.72 8.95 0.45 8.46 6.51 1.69 1.32

Table 3: Attack performance comparison on various datasets. ↑ and ↓ respectively symbolize that higher and lower scores
give better attack performance.

FFHQ→CelebA FaceScrub→CelebA
GMI Ours GMI Ours

Acc ↑ .15±.0015 .36±.0015 .03±.0004 .13±.0008
Acc5 ↑ .35±.0017 .61±.0012 .11±.0011 .30±.0015

KNN Dist ↓ 3014.45 2994.32 3003.90 2997.52
FID ↓ 69.12 36.02 112.83 60.05

Table 4: Attack performance comparison where there is
large distributional shift between public and private data.
A → B represents the setting when the target network is
trained on dataset B and the GAN is trained on dataset A
to distill a generic prior for reconstructions. ↑ and ↓ respec-
tively symbolize that higher and lower scores give better
attack performance.

SD or DR. Adding entropy minimization can further im-
prove the performance. The combination of the three ideas
leads to the largest improvement.

GMI SD SD+EM DR SD+DR SD+EM+DR

Acc .21±.0020 .35±0042 .43±.0035 .47±.0022 .62±.0028 .72±.0018
Acc5 .43±.0014 .60±.0013 .68±.0017 .74±.0024 .87±.0003 .92±.0003

KNN Dist 1772.50 1653.53 1618.51 1562.48 1418.46 1380.22
FID 52.51 33.75 31.09 45.28 23.82 23.72

Table 5: Ablation study of ideas introduced in this paper,
including soft-label discrimination (SD), entropy minimiza-
tion (EM), and distributional recovery (DR).

F&I F&V
GMI Ours GMI Ours

Attack Acc .51±.0030 .90±.0009 .51±.0048 .90±.0005
Top-5 Attack acc .78±.0025 .99±.0001 .75±.0043 .98±.0002

KNN Dist 1527.94 1287.45 1528.32 1253.12
FID 54.89 29.37 54.76 28.66

I&V F&I&V
GMI Ours GMI Ours

Attack Acc .52±.0030 .92±.0008 .67±.0030 .95±.0002
Top-5 Attack acc .79±.0023 .99±.0001 .89±.0018 1±0

KNN Dist 1515.62 1251.02 1421.61 1216.96
FID 54.80 28.63 53.73 30.22

Table 6: Attack performance on CelebA under multi-target
setting. F, I, and V refer to face.evolve, IR152, and VGG16
respectively.

Extension to Multi-Target Model Inversion Attacks.
So far, existing MI attack methods mainly focus on attack-
ing a single target model. It is interesting to study attack

performance when multiple different models trained on the
same private dataset are available. Will the attacker gain
more information about this private dataset in this case? The
proposed method can be easily extended to the multi-target
MI attacks by combining the training losses over multiple
target models. The details about the method are given in the
supplementary material.

Table 6 shows the result of our method under the Multi-
Target setting. We attack all possible combinations of the
three target models used in the experiment shown in Table 1.

It is clear from Table 6 that the attack performance in-
creases considerably under Multi-Target setting with both
GMI and our approach. For example, When IR152 or
face.evolve are jointly utilized with VGG16, their attack
accuracy increased by 9% and 11% receptively over their
accuracies under single-target setting, even though VGG16
yields a weaker attack accuracy. Moreover, increasing the
number of target models to three models further improved
the attack performance. By attacking multiple target mod-
els jointly, our approach achieves an attacking accuracy of
over 0.9 in these experiments, which marks a significant
milestone for multi-target MI attacks.

5. Conclusion
In this paper, we propose several techniques that can

significantly improve whitebox MI attacks against DNNs.
Specifically, we propose to customize the training of a GAN
to better distill knowledge useful for performing inversion
attacks from public data. Additionally, we propose to build
an explicit parameteric model for the private data distribu-
tion and present methods to estimate its parameters. Our ex-
periments show that the combination of the proposed tech-
niques can lead to the state-of-the-art attack performance
on various datasets, models, and even when the public data
has a large distributional shift from private data. We also ex-
tend our work to a new attack setting where multiple models
trained on the same private dataset are available. For future
work, we will investigate the potential application of these
techniques to improve the MI attack in the blackbox setting.
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