
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for

Autonomous Driving

Kai Chen1 Lanqing Hong2 Hang Xu2 Zhenguo Li2 Dit-Yan Yeung1

1Hong Kong University of Science and Technology 2Huawei Noah’s Ark Lab

kai.chen@connect.ust.hk {honglanqing, xu.hang, li.zhenguo}@huawei.com dyyeung@cse.ust.hk

Abstract

Autonomous driving has attracted much attention over

the years but turns out to be harder than expected, proba-

bly due to the difficulty of labeled data collection for model

training. Self-supervised learning (SSL), which leverages

unlabeled data only for representation learning, might be

a promising way to improve model performance. Existing

SSL methods, however, usually rely on the single-centric-

object guarantee, which may not be applicable for multi-

instance datasets such as street scenes. To alleviate this

limitation, we raise two issues to solve: (1) how to define

positive samples for cross-view consistency and (2) how to

measure similarity in multi-instance circumstances. We first

adopt an IoU threshold during random cropping to transfer

global-inconsistency to local-consistency. Then, we pro-

pose two feature alignment methods to enable 2D feature

maps for multi-instance similarity measurement. Addition-

ally, we adopt intra-image clustering with self-attention

for further mining intra-image similarity and translation-

invariance. Experiments show that, when pre-trained on

Waymo dataset, our method called Multi-instance Siamese

Network (MultiSiam) remarkably improves generalization

ability and achieves state-of-the-art transfer performance

on autonomous driving benchmarks, including Cityscapes

and BDD100K, while existing SSL counterparts like MoCo,

MoCo-v2, and BYOL show significant performance drop.

By pre-training on SODA10M, a large-scale autonomous

driving dataset, MultiSiam exceeds the ImageNet pre-

trained MoCo-v2, demonstrating the potential of domain-

specific pre-training. Code will be available at https:

//github.com/KaiChen1998/MultiSiam.

1. Introduction

Autonomous driving has attracted much attention over

the years [19, 15, 32]. However, it becomes harder than

people have expected in such an age of AI advances. Fully

autonomous cars are still out of reach except in special

trial programs, mainly due to the limitation of model per-

Figure 1. Visualizations of different random crops on

Waymo [20] (left) and ImageNet [9] (right). On ImageNet, im-

ages are small and pre-processed to guarantee only one object in

the center part of it (i.e., single-centric-object) mostly. However,

images from Waymo are of high resolution and contain multiple

instances. Different random crops might represent different se-

mantic meanings (i.e., global-inconsistency), which will restrict

the effectiveness of current self-supervised learning methods.

formance. One of the main restrictions is that the annota-

tion cost of self-driving datasets is much more expensive

than other datasets. Considering that autonomous cars keep

collecting unlabeled data when operating, self-supervised

learning (SSL) might be a promising way to ease the de-

sire for labeled data and improve model performance, which

has achieved remarkable transfer results on different down-

stream tasks using unlabeled data only.

Existing SSL methods are mainly based on the pretext

called instance discrimination and cross-view consistency

framework, whose basic assumption is that different views

(e.g. data augmentation) of a single image should be con-

sistent in the feature space under different metrics, such as

cosine distance [10, 7], clustering assignments [4] and dis-

criminability from negative samples [27, 21, 5, 12, 6, 18],

This assumption is satisfied well with single-centric-object

datasets such as ImageNet. In self-driving, nevertheless, the
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data are usually high-resolution images containing multiple

instances on a single image (see Figure 1 for an illustration).

Here we define instance as any individual object regardless

of its semantic class following Wu et al. [27]. In this case,

different crops may correspond to different instances and

represent different semantic meanings, which results in the

global-inconsistency of multi-instance images. The effec-

tiveness of instance discrimination and cross-view consis-

tency can no longer be guaranteed.

To adapt current instance discrimination and cross-view

consistency framework to multi-instance circumstances, we

need to solve two problems: (1) how to define positive

samples for cross-view consistency and (2) how to calcu-

late the similarity of two randomly generated views within

multi-instance images. Considering the locality of images,

we first add an IoU threshold during random cropping as a

proxy to control the two views not too far from each other

and transfer global-inconsistency to local-consistency. In

order to distinguish different instances, we maintain the fi-

nal 2D feature maps of the backbone networks and propose

the RoI alignment and offset alignment to solve the feature

misalignment introduced by it (see Figure 4(a)), which is

usually neglected when global pooling layers are adopted.

Moreover, we observe a hierarchy of clusters existing in

multi-instance circumstances naturally, so to model the re-

lationships between instances, we perform clustering within

a single image not for inter-image similarity [2, 4], but for

further mining intra-image similarity. To ease the ambigu-

ity of cluster assignments, we deploy a self-attention mech-

anism with the predictor for more precise cluster prediction.

Translation-invariance is also enhanced in the learned rep-

resentation, which is beneficial for downstream pixel-level

visual tasks like semantic segmentation.

The main contributions of this work contain three parts:

1. We propose the Multi-instance Siamese Network

(MultiSiam) for extending the cross-view consistency

framework to multi-instance circumstances by dealing

with positive sample definition and similarity measure-

ment of 2D feature maps.

2. Experiments on Cityscapes [8] and BDD100K [31]

show that MultiSiam pre-trained on Waymo [20]

has stronger generalization ability to multi-instance

datasets and achieves state-of-the-art transfer perfor-

mance on downstream autonomous driving bench-

marks compared with MoCo, MoCo-v2 and BYOL.

Moreover, MultiSiam pre-trained on SODA10M [11],

a large-scale autonomous driving dataset, exceeds the

ImageNet pre-trained MoCo-v2, revealing the poten-

tial of domain-specific pre-training.

3. To the best of our knowledge, our work is the first to

perform self-supervised learning on large-scale high-

resolution multi-instance street scene datasets (e.g.

Waymo), which will be beneficial for empowering SSL

in further autonomous driving research.

2. Related Work

Contrastive learning. Contrastive learning is widely

used in self-supervised representation learning, which has

shown promising performance for various tasks [27, 21, 5,

12, 6, 18, 22]. The main idea is to consider every single

image as a separate class and train the model to pull posi-

tive sample pairs closer while pushing negative sample pairs

away using the InfoNCE loss [23]. MoCo [12, 6] proposes

to maintain a queue of negative samples with a Siamese

network and shift one branch of the network into a mo-

mentum encoder to improve the consistency of the queue.

SimCLR [5], however, directly uses negative samples co-

existing in the current batch. Contrastive learning requires

comparing each positive with many other negative sam-

ples to work well, which is usually achieved by crops from

a large amount of single-centric-object images. In multi-

instance data such as street scenes, however, two random

crops from one single image may correspond to different

instances, leading to the possible ineffectiveness of existing

contrastive methods.

Clustering. Clustering is another popular paradigm for

unsupervised representation learning [2, 3, 1, 4]. The main

idea is to consider each cluster as a separate class instead of

each single image as contrastive learning does to capture the

similarity between images by clustering the representations

and learning to predict the cluster assignments alternatively.

Deep Cluster [2] iteratively clusters all the images based on

current representations and treats cluster indexes as pseudo

labels to train a classifier from scratch. Although there is no

need for negative samples, a costly offline clustering pro-

cess is introduced. SwAV [4] conducts online clustering

with a Siamese network by computing the assignment from

one branch and predicting it from the other under a balanced

partition constraint for each batch. Different from previous

methods, in the proposed MultiSiam, we perform cluster-

ing within a single image instead of the whole dataset to

further discover intra-image similarity in multi-instance cir-

cumstances.

Cosine similarity. Both negative samples and clustering

are considered useful to prevent model collapse in self-

supervised learning. BYOL [10] instead proposes a cross-

view consistency framework with cosine similarity only that

can produce meaningful representations with the help of a

momentum target network. SimSiam [7] further points out

that the stop-gradient operation is the critical component

to prevent model collapse based on an EM-like hypothesis.

Due to its simplicity and effectiveness, we adopt BYOL as

our baseline model and show that intra-image clustering is

a better similarity metric in multi-instance circumstances.
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Figure 2. Model architecture of MultiSiam. (a) Two views v and v′ are fed for further calculation only when their IoU value is larger than

a given threshold. (b) We maintain the 2D feature maps and propose two methods for feature alignment after projection and flipping back

(more details in Figure 4). RoI alignment extracts features of the intersection region only, while offset alignment provides the coordinate

offset map to the predictor for implicit feature alignment. (c) Intra-image clustering is performed on the aligned target feature map and the

online network needs to predict the cluster centroids. We deploy a self-attention mechanism to deal with the ambiguity of clustering.

3. Method

In this section, we will first introduce the BYOL [10]

in Section 3.1, which can achieve state-of-the-art transfer

performance without the need for either negative samples

or clustering. Due to its effectiveness and simplicity, we

choose BYOL as our baseline model. Then we extend

the cross-view consistency framework to multi-instance cir-

cumstances by discussing two problems: how to define

positive samples and how to measure similarity in multi-

instance images and propose our final MultiSiam model in

Sections 3.2 and 3.3, respectively.

3.1. Preliminary: BYOL

Given a single image x, BYOL learns the representation

by maximizing the similarity of two random views v and v′

in the feature space. BYOL first randomly generates two

views v ∼ T (x) and v′ ∼ T ′(x), which are then fed into

the online and target networks separately. The online net-

work consists of a backbone with a global pooling layer,

an MLP projector, and an MLP predictor, while the target

network shares the same architecture except for the final

predictor. To prevent model collapse, BYOL adopts a stop-

gradient operation on top of the target network. Finally,

BYOL minimizes the cosine distance between the online

network’s prediction q and the target network’s projected

feature z′ as the 1D image-level consistency by:

L1D img ≜ −cos(q, z′) = −
⟨q, z′⟩

||q||2 · ||z′||2
, (1)

where cos(·, ·) is the cosine similarity and q and z′ are both

1D feature vectors.

To further improve performance, BYOL updates the pa-

rameters of the target network ξ as the exponential moving

average of the online network’s parameters θ as:

ξ ← τξ + (1− τ)θ, (2)

where τ ∈ [0, 1] is the momentum and will increase to 1.0

until the end of training.

3.2. Positive Samples in Multi-instance Data

The basic assumption of instance discrimination is that

different views of the same image should be consistent in

the feature space. However, this strong assumption is only

satisfied well on ImageNet [9] with single-centric-object

guarantee but not scalable to more realistic datasets with

multiple instances on a single image like Waymo [20], as

shown in Figure 1. A new definition of positive samples is

definitely needed to extend cross-view consistency frame-

work to multi-instance circumstances.
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(b) IOU = 0.3 (c) IOU = 0.5 (d) IOU = 0.7

(a) Original image

Figure 3. Random crops with different Intersection-over-Union

values on Waymo (each column). (a) Original image; (b) IoU =
0.3; (c) IoU = 0.5; (d) IoU = 0.7. When IoU = 0.3, the

two random crops suffer from global-inconsistency. As the IoU

value raises, the two random views are restricted within a local

region, and the local-consistency increases. When IoU = 0.7,

the two views seem nearly the same. As shown in Section 4.3,

IoU controls a trade-off between noise and data complexity during

data augmentation.

Intersection-over-Union as a proxy. Images are contin-

uous natural signals and have strong locality. One of the

main reasons why inconsistency happens in multi-instance

cases is that the two random crops may be far away from

each other. Considering the locality of images, if the two

views are ªcloseº enough, it is reasonable to assume that

they represent the same semantic meanings in a local region

and transfer global-inconsistency to local-consistency.

Here we propose to use the Intersection-over-Union

IoU(v, v′) as a proxy about how ªcloseº the two random

crops are and set an additional IoU threshold during data

augmentation. Two views are used for further calculation

only when their IoU(v, v′) is larger than the pre-defined

threshold. We show how different IoU values will affect

the consistency of the two random crops in Figure 3. When

IoU(v, v′) = 0.3, we can still see the car in the bottom crop

but the top crop has been mainly occupied by the garage. As

the IoU(v, v′) rises gradually, the semantic meanings of the

two crops align better and when IoU(v, v′) = 0.7, the two

views seem nearly the same.

In Section 4.3, we will show that using different IoU

thresholds is actually a trade-off between noise and data

complexity during data augmentation. If not specified, we

set the IoU threshold to be 0.5 in all experiments by default.

view 𝑣𝑣
view 𝑣𝑣𝑣misalignment

(a) Feature misalignment

(b) RoI alignment (c) Offset alignment

view 𝑣𝑣
view 𝑣𝑣𝑣 view 𝑣𝑣

view 𝑣𝑣𝑣(Δ𝑥𝑥,Δ𝑦𝑦)

Figure 4. Feature misalignment of two random views (i.e., blue

and green boxes) in a local region (i.e., the black box). (a) Feature

misalignment: top right corners of v and v′ represent different pix-

els, so one-to-one correspondence no longer exists; (b) RoI align-

ment: use RoI Align [13] to extract features of overlapping regions

(i.e., the red box) only; (c) Offset alignment: calculate the coor-

dinate offset of each pixel pair at the same relative position to get

the offset map ∆C, which is then concatenated with the projected

online 2D feature map G = gθ(F ) and fed into the predictor.

Consistency learning via 2D feature map. Even with the

IoU threshold, there might be multiple instances in a single

crop, as shown in Figure 3(d). State-of-the-art methods all

deploy a global pooling layer at the end of the backbones to

produce a 1D feature vector, which will lose the spatial and

structural information of 2D feature space, and the model

cannot distinguish different instances any more.

As a result, we discard the global pooling layers and

maintain the final 2D feature maps F, F ′ ∈ RH×W×C of

both online and target backbone networks. Meanwhile, we

replace the MLPs in the projectors and predictor with 1× 1
convolution layers in order to match the 2D structure while

keeping the amount of parameters unchanged.

Feature misalignment. However, there is no free lunch.

Using 2D feature maps introduces another feature misalign-

ment problem that has not been taken into account when

global pooling layers are available, as shown in Figure 4(a).

The top right corners of v and v′ lie in different positions.

The one-to-one correspondence (e.g., the top right corner

of v corresponds to the top right corner of v′) no longer ex-

ists because we apply different spatial augmentations to the

two views. To retrieve the correspondence, we propose two

alignment methods: RoI alignment and offset alignment.

(1) RoI alignment. Since the IoU threshold guarantees a

non-trivial overlapping between v and v′, RoI alignment

treats the overlapping area as the Region of Interest for both

views and uses RoI Align [13] to extract the feature of inter-
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section region only. We denote the relative box coordinates

of the overlapping in two views as B,B′ ∈ R4, then the

aligned feature R,R′ ∈ RH×W×C can be represented as:

R = RoIAlign(gθ(F ), B), (3)

R′ = RoIAlign(gξ(F
′), B′), (4)

where gθ(·) and gξ(·) are the projectors of online and target

networks. If not specified, we keep the spatial resolution of

R and R′ the same as F and F ′ by default.

(2) Offset alignment. Although guaranteeing precise fea-

ture alignment, RoI alignment does not make full use of

the information of non-overlapping areas. Motivated by

Liu et al. [16], we provide the coordinate offset map ∆C ∈
RH×W×2 from the projected online 2D feature map G =
gθ(F ) to the projected target feature map G′ = gξ(F

′)
as additional information to the predictor for implicit fea-

ture alignment, as shown in Figure 4(c). Specifically, for

∀i ∈ [1, H], j ∈ [1,W ], we define the offset map ∆C as:

∆Ci,j ≜
coord(G′

i,j)− coord(Gi,j)

coord(GH,W )− coord(G1,1)
, (5)

where coord(·) returns the corresponding coordinates of the

given pixel in the original image. Note that ∆C should be

normalized by the size of v to decrease variance because

the predictor with offset alignment is actually estimating a

conditional expectation (see more details in Section 4.3 and

Appendix A). Then R and R′ can be denoted as:

R = concat(gθ(F ),∆C), (6)

R′ = gξ(F
′). (7)

After feature alignment, the model can recover the one-

to-one correspondence between Ri,j and R′
i,j for ∀i ∈

[1, H], j ∈ [1,W ].

3.3. Similarity Measurement of 2D Feature Maps

With 2D feature maps, we can model the relationships

between different instances. We find there exists a hierarchy

of clusters in multi-instance circumstances naturally from

class cluster down to instance cluster and pixel cluster, as

shown in Figure 5(a). Instance cluster means that pixels be-

longing to the same instance should lie in the same cluster,

which is consistent with the basic assumption of instance

discrimination. On the other hand, class cluster suggests

pixels belonging to different instances of the same seman-

tic class should also form a separate cluster. Besides, pixel

cluster refers to groups of pixels sharing common charac-

teristics like pixel intensity (e.g., super-pixels). This hierar-

chy is more common in autonomous driving datasets (e.g.,

Waymo [20]) whose semantic class set is relatively small.

Intra-image clustering. Clustering is previously used in

SSL mainly for mining inter-image similarity [2, 4] to re-

duce false negative during contrastive learning. However,

𝑷𝑷

(b) Class cluster (c) Instance cluster

Person

The girl The adult

Super-pixels Super-pixels

(Class)

(Instance)

(Pixel)

(a) Hierarchy of clusters

𝑷𝑷 𝑷𝑷
Figure 5. The hierarchy of clusters on Waymo (a) from class

cluster down to instance and pixel clusters; (b) class cluster: pixels

belonging to different instances of the same semantic class; (c)

instance cluster: pixels belonging to the same instance. Cluster

is actually a relative concept. The same pixel P might belong to

different clusters in different contexts of (b) and (c).

based on the analysis above, we think clustering can also

be performed within a single image to capture intra-image

similarity further.

Specifically, we deploy the K-means algorithm on the

aligned target feature map R′ to get the assigned cluster

centroid for each pixel, denoted as Kmeans(R′). The

aligned online feature map R is then fed into the predictor to

predict the cluster assignment qθ(R), which should be con-

sistent with Kmeans(R′) for every pixel due to the one-to-

one correspondence after feature alignment. The network

will extract smoother features for pixels in the same cluster

so that translation-invariance is also encouraged.

Self-attention. As shown in Figure 5 (b) and (c), cluster is

actually a relative concept. The same pixel P might belong

to different clusters under different contexts. Here we con-

sider the Person class cluster and the Adult instance cluster

as different clusters since they have different centroids even

if ideally Adult might be a subset of Person. However, the

predictor qθ(·) only consists of 1 × 1 convolutions which

operate locally. A ªglobalº view is needed to deal with the

ambiguity of cluster assignments. Here we deploy the same

non-local-network style [24] self-attention module as Xie et

al. [29]. Specifically, for ∀i ∈ [1, H], j ∈ [1,W ], the final

cluster prediction Qi,j of Ri,j is defined as:

Qi,j =
H
∑

i′=1

W
∑

j′=1

sim(Ri,j , Ri′,j′) · qθ(Ri′,j′), (8)

where qθ(·) is the original local predictor and sim(·, ·) is

the similarity function defined as:

sim(Ri,j , Ri′,j′) = (max(cos(Ri,j , Ri′,j′), 0))
2. (9)
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Method Pre-train Dataset Epochs
Cityscapes BDD100K

mAP AP50 mIoU mAP AP50 mIoU

Random Init - - 25.4 51.1 65.3 16.4 30.4 50.7

Supervised ImageNet 90 32.9 59.6 74.6 21.9 40.0 58.8

InstDist† [27] ImageNet 200 33.0 60.1 73.3 21.4 38.9 57.2

SwAV† [4] ImageNet 200 33.9 62.4 73.0 22.5 40.8 57.1

BYOL† [10] ImageNet 200 33.8 62.9 75.1 21.8 39.3 59.1

MoCo† [12] ImageNet 200 32.3 59.3 75.3 22.4 40.4 59.7

MoCo-v2† [6] ImageNet 200 33.9 60.8 75.7 23.1 41.3 60.0

BYOL [10] Waymo 325 28.8 55.7 69.4 18.1 33.8 53.7

MoCo [12] Waymo 325 30.5 57.1 73.9 21.0 39.1 57.0

MoCo-v2 [6] Waymo 325 31.4 59.4 73.6 20.9 38.9 56.6

MultiSiam Waymo 325 31.8+3.0 59.6+3.9 74.1+4.7 21.1+3.0 39.3+5.5 57.6+3.9

MultiSiam†† Waymo 325 32.2+3.4 59.9+4.2 75.5+6.1 21.8+3.7 40.2+6.4 56.9+3.2

MultiSiam SODA5M 55 34.1+5.3 61.7+6.0 75.8+6.4 23.5+5.4 42.7+8.9 60.3+6.6

Table 1. Comparisons on Cityscapes and BDD100K instance and semantic segmentation. The metrics include mask mAP and AP50

for instance segmentation and mIoU for semantic segmentation. (1) BYOL, MoCo and MoCo-v2 all suffer from global-inconsistency and

performance degradation from ImageNet to Waymo, (2) but MultiSiam directly based on BYOL recovers its decrease and shows better

generalization ability, achieving state-of-the-art performance among Waymo pre-trainings. (3) By pre-training on SODA5M, MultiSiam

exceeds the ImageNet pre-trained MoCo-v2, revealing the potential of domain-specific pre-training. †: we take the officially released

pre-trained weights and report fine-tuning results. ††: a simple implementation of MoCo-based MultiSiam.

The final 2D clustering consistency loss is defined as:

L2D cluster ≜
1

HW

H
∑

i=1

W
∑

j=1

−cos(Qi,j ,Kmeans(R′
i,j)).

(10)

Incorporated with 1D image-level consistency. We also

keep the 1D image-level consistency branch as defined in

Section 3.1 due to its effectiveness to improve classifica-

tion performance. Both classification and localization are

important for visual perception tasks like semantic segmen-

tation. We formulate MultiSiam in the multi-task learning

manner and the final loss function is a weighted sum of 1D

image-level consistency and 2D clustering consistency as:

LMultiSiam = λL1D img + (1− λ)L2D cluster, (11)

where the balanced weight λ is set to be 0.5 by default.

4. Experiments

4.1. Implementation Details

Dataset. We pre-train our MultiSiam on the widely used

Waymo Open [20] autonomous driving dataset mainly,

which consists of around 790 thousand training images. The

image sizes range from (1920, 968) to (1920, 1280).

Data augmentation. We follow the standard data aug-

mentation pipeline in BYOL [10] with the proposed IoU

threshold. Two random crops whose IoU is larger than

the pre-defined threshold (0.5 by default) are generated and

then resized to 224 × 224, followed by random horizon-

tal flip, color jitter, Gaussian blur and solarization. We flip

back the projected 2D feature map before feature alignment

if the horizontal flip is applied previously. All the augmen-

tation parameters are kept the same with BYOL.

Training details. We adopt standard ResNet-50 [14] as

the backbone network. The momentum starts at 0.996 and

increases gradually to 1.0 at the end of the training process.

We use the LARS [30] optimizer with a cosine learning rate

scheduler for large batch training. The base learning rate

is set to 1.0, which will scale linearly with the batch size

(lr = lrbase× bs/256). Weight decay is set to 1e-5. We use

a batch size of 1024 running on 8 Tesla V100 GPUs per ex-

periment. We pre-train 325 epochs on Waymo to maintain

similar training iterations with training 200 epochs on Ima-

geNet for a fair comparison. For ablation studies, we adopt

150 epochs pre-training and then evaluate on Cityscapes [8]

val set for semantic segmentation.

4.2. Transfer Settings and Results

Baseline. In this paper, we choose the strong BYOL [10],

MoCo [12] and MoCo-v2 [6] as our baseline methods. We

use OpenSelfSup 1 as our codebase to pre-train all base-

line methods on Waymo and tune the hyperparameters ac-

cording to the transfer results on Cityscapes val set of 150

epochs pre-training for better performance.

Transfer settings. We choose widely used Cityscapes [8]

and BDD100K [31] instance and semantic segmentation for

autonomous driving as downstream tasks, adapting the set-

tings of Cityscapes in MoCo [12] for both datasets using

Detectron2 [26]. For instance segmentation, we fine-tune a

1https://github.com/open-mmlab/OpenSelfSup
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IoU Thre
Feature Alignment

mIoU
RoI Offset Offset nonorm

(a) IoU threshold

0.3 ✓ 69.2

0.4 ✓ 68.6

0.5 ✓ 70.0

0.6 ✓ 69.7

0.7 ✓ 69.2

(b) Feature alignment methods

0.5 68.8

0.5 ✓ 70.0

0.5 ✓ 69.5

0.5 ✓ 69.4

Table 2. Ablations on positive sample definition. (a) IoU thresh-

old; (b) feature alignment. All results are evaluated on Cityscapes

val set over three independent trials.

Mask R-CNN detector (FPN-backbone) for 24k iterations,

while a FCN-16s [17] is trained for 90k iterations for se-

mantic segmentation. We train the models on both train

sets and evaluate on the corresponding val sets separately.

Discussion. We report the final transfer results in Table 1.

All baseline methods suffer from significant performance

degradation adapted from ImageNet to Waymo, revealing

the vulnerability to global-inconsistency of current models.

Our MultiSiam, however, recovers the decrease and general-

izes better to multi-instance circumstances. Compared with

our direct BYOL baseline, MultiSiam improves 3.0%/3.0%

mAP and 4.7%/3.9% mIoU for instance and semantic seg-

mentation separately, surpassing the strong MoCo baselines

and achieving state-of-the-art performance among Waymo

pre-trainings. To verify the guidance effect of clustering,

we also train MultiSiam without K-means (more details in

Appendix B.1) and achieve 71.0% and 54.8% mIoU on

Cityscapes and BDD100K, which is significantly worse

than MultiSiam, suggesting that K-means might help pro-

duce more robust targets during self-supervised learning.

Domain-specific pre-training. Although being a self-

driving dataset, Waymo still has disadvantages in both

quantity (0.79M vs 1.28M) and quality (e.g., imbalance

of foreground and background) compared with ImageNet,

which may hurt the performance of Waymo representations.

We further pre-train MultiSiam on SODA10M [11], a large-

scale autonomous driving dataset, with similar GPU hours

of ImageNet pre-trainings and surpass the ImageNet pre-

trained MoCo-v2 as shown in Table 1, revealing the poten-

tial of domain-specific pre-training. Due to the hardware re-

sources, here we only use a 5-million subset of SODA10M

(split 0, 2, 4, 6, 8), denoted as SODA5M. Note that due to

single-centric-object guarantee, it is costly to collect a large

amount of ImageNet-like samples, making multi-instance

self-supervised learning more valuable in practice.

#Cluster K Dist metrics Dense mIoU

(a) Number of Clusters K

3 Cosine 70.0

4 Cosine 68.4

5 Cosine 69.7

(b) Dense Clustering & Distance Metrics

3 Cosine 70.0

3 Cosine ✓ 69.0

3 Euclidean 69.3

Table 3. Ablations on intra-image clustering. (a) Cluster number

K; (b) dense clustering and clustering distance metrics.

Method Components mIoU ∆
BYOL 67.2

MultiSiam

+ IoU thre 0.5 69.2 + 2.0

+ Lcluster 70.0 + 0.8

+ self-attention 71.2 + 1.2

+ offset align 71.9 + 0.7

/+ offset align nonorm 71.2 + 0.0

Table 4. Ablations on proposed components. The model’s per-

formance continues to increase after each component is deployed.

Flexibility. As shown in Table 1, BYOL has a significant

performance gap with MoCo because pure cross-view con-

sistency framework might be more vulnerable to global-

inconsistency than contrastive methods, which is comple-

mentary to the improvement of MultiSiam. As a flexible

plug-and-play module, MultiSiam can be naturally extended

to contrastive learning based SSL methods. Here we deploy

a simple implementation of MoCo-based MultiSiam (more

details in Appendix B.2) and obtain further improvements

(e.g., 0.4% mAP and 1.4% mIoU on Cityscapes in Table 1).

More delicate design is definitely needed to achieve the best

performance, which we will dig into in future work.

Generalization. Although originally designed for multi-

instance circumstances, our MultiSiam also demonstrates

remarkable generalization ability to single-centric-object

datasets. As shown in Appendix C, ImageNet-pretrained

MultiSiam still achieves state-of-the-art performance even

when compared with more recent SSL methods [25, 28].

4.3. Ablation Study and Analysis

Setup. We conduct 150 epochs pre-training with a base

learning of 0.3 for all ablation studies. The batch size is set

to 1024, and parameters are updated every four iterations

to mimic a batch size of 4096 following the BYOL [10].

We report the average result of three independent trials to

reduce variance. See more ablations in Appendix D.

IoU threshold. As shown in Table 4, BYOL simply

equipped with the proposed IoU threshold during random

cropping can achieve a significant improvement of 2.0%

mIoU, showing the effectiveness of local-consistency. We

further find that there is a balanced point when the IoU
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threshold is set to 0.5 in Table 2(a). Interestingly, the model

achieves sup-optimal results when the threshold is set to

0.7, which can generate well-aligned random crops in Fig-

ure 3(d). We think it is because by controlling how ªcloseº

the two crops are, the IoU threshold also controls a trade-

off between noise and data complexity. Remember that the

motivation of data augmentation is to generate two differ-

ent but consistent views. We do not want to differ the two

views too much since it will violate the basic assumption of

instance discrimination. Meanwhile, the two views should

not be exactly the same. Otherwise, the network would tend

to collapse due to the trivial supervision signal.

Feature alignment. We ablate the proposed two feature

alignment methods in Table 2(b). The model suffers from

a performance degradation of 1.2% mIoU without feature

alignment due to the absence of one-to-one correspondence.

Both RoI and offset alignment achieve significant improve-

ments and as we can see in Table 4, offset alignment per-

forms much better when self-attention is available.

We also verify the necessity of coordinate normalization

during the offset alignment in Equation (5). As shown in

Table 2(b) and 4, offset alignment with coordinate normal-

ization performs better whether or not self-attention is avail-

able. We analyze effectiveness of offset alignment based on

the EM-like hypothesis proposed by Chen et al. [7]. Specif-

ically, predictor with offset alignment is actually estimating

an expectation of target cluster centroids conditioned on the

online feature and offset map (see proofs in Appendix A):

qoptimal
θ (R,∆C) = E

[

Kmeans(R′)|∆C,R)
]

. (12)

So to reduce variance during training, using normalized off-

set maps should be a better choice than the absolute values.

Number of clusters K. We ablate the number of clusters

K during the K-means algorithm in Table 3(a). The optimal

performance is obtained when K = 3. One of the reasons

is that self-driving datasets like Waymo usually have a rela-

tively small semantic class set (e.g. size 4 for Waymo). Be-

sides, as we discuss in Section 3.3, the definition of clusters

in multi-instance circumstances is actually a relative con-

cept dependent on the specific context of a random crop,

which is not limited to instance or class only. Keeping the

number of clusters K at a relatively small value will make

the model more robust to different image contexts.

Dense clustering. Instead of predicting cluster centroids,

dense clustering calculates cosine similarity with every

pixel in the corresponding cluster. As shown in Table 3(b),

predicting centroids performs better because as discussed in

Equation (12), the predictor estimates a conditional expec-

tation while dense clustering will increase variance.

Self-attention. As we can see in Table 4, using the local

predictor can only achieve a marginal improvement of 0.8%

mIoU upon BYOL with 0.5 IoU threshold because of the

(a) Image (b) BYOL (c) MultiSiam

Figure 6. Clustering (K = 3) results of BYOL and MultiSiam.

Different colors represent different clusters. MultiSiam can better

capture intra-image similarity in different circumstances.

ambiguity of cluster assignments in Section 3.3. After in-

troducing a ªglobalº view by deploying self-attention with

the predictor, our model can get more precise clustering pre-

dictions and achieve another significant improvement. Note

that offset alignment performs much better together with

self-attention, because introducing relative offset can make

better use of the image locality for clustering prediction.

4.4. Visualization

Figure 6 shows the clustering results on the final back-

bone 2D feature maps of BYOL and MultiSiam in single in-

stance, multi-instance of the same class and multi-instance

of different classes circumstances. BYOL shows random

clustering pattern while MultiSiam can better capture intra-

similarity. It recognizes the car in the first row, separates

the background crowds from the man in the second row and

distinguishes the lady and the car successfully in the third

row. The clustering result of MultiSiam is much smoother,

suggesting that translation-invariance is also enhanced.

5. Conclusion

This paper explores the usage of SSL in general multi-

instance autonomous driving circumstances. We show that

current methods rely on the single-centric-object ImageNet

suffering from performance degradation on multi-instance

datasets like Waymo for pre-training. Targeting this issue,

our proposed MultiSiam demonstrates better generalization

ability and achieves state-of-the-art transfer performance by

dealing with positive sample definition and adopting intra-

image clustering with self-attention. We believe the infor-

mation in multi-instance data is still under-explored (e.g.,

long distance similarity). We hope our simple yet effective

method can bring researchers’ attention to multi-instance

self-supervised learning.
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