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Abstract

Survival outcome prediction is a challenging weakly-
supervised and ordinal regression task in computational
pathology that involves modeling complex interactions
within the tumor microenvironment in gigapixel whole slide
images (WSIs). Despite recent progress in formulating WSIs
as bags for multiple instance learning (MIL), representation
learning of entire WSIs remains an open and challenging
problem, especially in overcoming: 1) the computational
complexity of feature aggregation in large bags, and 2) the
data heterogeneity gap in incorporating biological priors
such as genomic measurements. In this work, we present a
Multimodal Co-Attention Transformer (MCAT) framework
that learns an interpretable, dense co-attention mapping
between WSIs and genomic features formulated in an em-
bedding space. Inspired by approaches in Visual Ques-
tion Answering (VQA) that can attribute how word embed-
dings attend to salient objects in an image when answer-
ing a question, MCAT learns how histology patches attend
to genes when predicting patient survival. In addition to
visualizing multimodal interactions, our co-attention trans-
formation also reduces the space complexity of WSI bags,
which enables the adaptation of Transformer layers as a
general encoder backbone in MIL. We apply our proposed
method on five different cancer datasets (4,730 WSIs, 67
million patches). Our experimental results demonstrate that
the proposed method consistently achieves superior perfor-
mance compared to the state-of-the-art methods.

1. Introduction

Though deep learning has revolutionized computer vi-
sion in many disciplines, gigapixel whole-slide imaging

(WSI) in computational pathology remains a complex com-
puter vision domain with barriers that render current ap-
proaches infeasible for supervised learning tasks such as
cancer prognosis. In image classification of natural images,
the goal is usually to assign an image-level label to an im-
age with approximate size 256 ⇥ 256 pixels, with the la-
bel clearly visible and well-represented in the image. In
pathology, WSIs break these assumptions as images exhibit
enormous heterogeneity and can be as large as 150,000 ⇥

150,000 pixels. Depending on the problem, labels for slide-
level classification may be: 1) localized in a small pixel re-
gion that occupies a tiny proportion of the total image (i.e. -
a needle-in-a-haystack problem such as differentiating nor-
mal tissue vs micro-metastases) [4, 3, 5, 45], or 2) spanning
the entire composition of a WSI and dependent on the inter-
actions of its components (i.e. - a fine-grained visual recog-
nition problem such as one that involves understanding the
complex milieu of stroma, tumor aggregates, immune cells
and other visual concepts) [68, 7, 47, 22, 40, 21, 6, 39, 15].

Due to the enormous gigapixel resolutions of WSIs,
many approaches adopt a two-stage multiple instance
learning-based (MIL) approach for tractable representation
learning of WSIs, in which: 1) instance-level feature rep-
resentations are extracted from randomly sampled image
patches in the WSI, and then 2) global aggregation schemes
are applied to the bag of instances to obtain a WSI-level rep-
resentation for subsequent supervision [23, 59, 11, 38, 69].
Though unable to model complex interactions between in-
stances, MIL is able to solve many needle-in-a-haystack
problems in pathology, as the classification of normal tissue
vs micro-metastases depends on discriminating only binary
instance-level visual concepts [3, 35]. Survival outcome
prediction, however, is a challenging ordinal regression task
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that aims to predict relative risk of cancer death, and fits
into the latter class of fine-grained visual recognition prob-
lems [70]. In contrast to needle-in-a-haystack problems,
survival outcome prediction requires modeling a heteroge-
neous spectrum of visual concepts in the tumor microen-
vironment that are indiscernable by conventional MIL ap-
proaches, e.g. - the co-localization of tumor cells with lym-
phocyte infiltrates that is associated with favorable progno-
sis, which would require modeling mid-to-long range inter-
actions between instances in the WSI [48, 25, 1].

Though often approached as a weakly-supervised task
using only gigapixel WSIs, survival outcome prediction is
traditionally framed as a multimodal learning task in which
genomic information can be used as an additional modal-
ity for supervision or integration. In the current state-of-
the-art, the manual assessment of histology and genomics
by pathologists is the gold standard for patient triage, risk
assessment, stratification into treatment groups [33]. In fur-
ther extending weakly-supervised learning with multimodal
fusion mechanisms, survival prediction faces an additional
challenge due to the large data heterogeneity gap between
WSIs and genomics: WSIs represented as bags containing
tens of thousands of image patches as instances, while ge-
nomic features are often represented as 1 ⇥ 1 tabular at-
tributes. As a result, many approaches use late fusion mech-
anisms for feature integration, which prevents learning im-
portant multimodal interactions [42, 9, 10]. Overall, can-
cer prognostication using WSIs is both a difficult weakly-
supervised learning and multimodal learning problem, and
is a grand challenge in the characterization of disease pro-
gression of many cancer subtypes.

To address these challenges, we propose an interpretable,
weakly-supervised, multimodal learning framework called
MCAT (Multimodal Co-Attention Transformer) that learns
a dense co-attention mapping between WSIs and genomics
for interpretable survival outcome prediction. Inspired by
deep learning approaches in Visual Question Answering
(VQA) that learn relationships attributing how word embed-
dings attend to salient objects in an image when answering
a question [34, 29, 64, 28, 44, 63], in our framework, we
learn how instance-level histology features attend to genes
when predicting patient survival. One of the key contribu-
tions of our work is that we use a cross-modality attention
(or co-attention) called genomic-guided co-attention (GCA)
as an early fusion strategy for identifying informative in-
stances from a large permutation-invariant set / MIL bag
using genomic features as queries (formulated in an embed-
ding space). This yields two advantages for survival out-
come prediction:

1. In comparison to late fusion-based architectures that
concatenate the WSI-level bag representation with ge-
nomic features, our GCA layer captures multimodal
interactions that relate histology-based visual concepts

to gene embeddings similar to VQA, visualized as a
WSI-level attention heatmap for each genomic embed-
ding.

2. We demonstrate how the GCA layer also reduces the
effective ”sequence length” of WSI bags from M

instance-level patch features to N gene-guided visual
concepts, where N is the effective sequence length
of set of gene embeddings (and M � N ). This al-
lows us to develop more sophisticated feature aggre-
gation strategies using self-attention and Transformers
for supervision using entire WSIs, which has previ-
ously been impossible. In § 3.3, we draw connections
between MIL that operate on set-based data structures
(bags), and Transformers.

Results in Table 1 shows that MCAT outperforms ex-
isting state-of-the-art weakly-supervised methods for sur-
vival outcome prediction using gigapixel WSIs, as well as
multimodal networks (augmented from existing methods)
that would conventionally integrate WSI with genomics
via late fusion. We conduct our ablation study on five
large publicly-available cancer datasets, and demonstrate
that MCAT consistently improves on all prior approaches
by 3.0% � 6.87%. Lastly, we visualize the gene-guided
visual concepts as heatmaps to analyze feature interactions
between WSIs and genomics, shown in Figures 2 and 3,
and assess patterns that emerge from how morphological
features attend to each gene. Our code is made available at:
https://github.com/mahmoodlab/MCAT.

2. Related Work

2.1. Weak Supervision in Gigapixel Images

Recent work has demonstrated remarkable progress in
using multiple Instance Learning (MIL) and other set-based
deep learning approaches for learning tasks in gigapixel
images [23, 5, 52, 51, 62, 69, 37, 36]. Edwards and
Storkey [17] and Zaheer et al. [67] proposed one of the
first neural network architectures for supervised learning on
sets, followed by Ilse et al. [24] later extending set-based
deep learning as a general framework for MIL, with ap-
plications to pathology. Xu et al. [60] proposed an MIL-
based label enrichment approach for tissue semantic seg-
mentation without pixel-annotations. Lu et al. [38], Zhu et
al. [70], Yao et al. [61, 62], Zhao et al. [69] explored differ-
ent strategies for global pooling over patch-based instances.
Though demonstrating impressive results in cancer classifi-
cation, MIL-based approaches in pathology have generally
focused only on instance-level feature extraction, and have
not yet explored modeling global, long-range interactions
through permutation-equivariant feature aggregation tech-
niques such as attention mechanisms.
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Figure 1: Overview of the Multimodal Co-Attention Transformer (MCAT) architecture. From gigapixel WSIs and genomic
features, we formulate both modalities as bags representations, from which we use: 1) Genomic-Guided Co-Attention to
capture multimodal interactions, and 2) set-based MIL Transformers as feature aggregation for survival outcome prediction.

2.2. Attention in Set-Based Deep Learning

Since the seminal work by Vaswani et al. [53], attention
mechanisms have since seen widespread adoption across
many different domains outside of neural machine transla-
tion such as language model pretraining [14, 55, 56], vi-
sual recognition [46, 16], visual question answering [34,
29, 64, 28, 44, 63], graph neural networks [54], and point
clouds [31, 18]. Outside of language modeling, Lee et
al. [31] developed the Set Transformer framework, which
extends the original language Transformer to general set-
structured data structures such as point clouds and count-
ing problems similar to [67]. Dosovitskiy et al. [16] pro-
posed using Transformer architectures for vision pretrain-
ing in natural images, in which 224 ⇥ 224 images were
formulated as a sequence flattened 16 ⇥ 16 image patches.
Recently, Kalra et al. [26] used Set Transformers for lung
cancer subtyping using bags of 100 randomly sampled his-
tology patches. For large-scale representation learning of
entire WSIs, though WSIs can be naturally formulated as
a sequence / bag of histology patches, in comparison to
word embeddings that have a max sequence length of at
most 512, the average bag size of a WSI contains approxi-
mately 15,000 256⇥ 256 image patches at 20⇥ magnifica-
tion. with a max sequence length of 200,000 patches. Due
to the large space complexity of WSI bags, using Trans-
formers and other stacked self-attention network architec-
tures in MIL-related tasks is computationally infeasible.

2.3. Multimodal Deep Learning

Learning joint representations via multimodal deep
learning is a challenging task due to the heterogeneous sta-
tistical properties and noise levels across modalities [43,
2]. To learn shared representations, fusion operators such
as vector concatenation, element-wise sum, element-wise

multiplication (Hadamard Product), bilinear pooling (Kro-
necker Product), and co-attention mechanisms are often
used in many multimodal learning tasks such as VQA [19,
29, 28, 20], sentiment analysis [65], survival analysis [42,
9, 10], and other tasks in medicine [8, 41]. In pathology,
Mobadersany et al. [42] uses vector concatenation to inte-
grate histology and genomic features for survival outcome
prediction. Later, Chen et al. [9] uses Kronecker Prod-
uct fusion to integrate image, graph, and genomic-based
features. Though multimodal, many of these approaches
are late fusion-based, in that features are only fused to-
wards the penultimate network layers and provide limited
interpretability of multimodal interactions. Moreover, in
contrast with multimodal fusion approaches in VQA that
can relate image features to word embeddings using co-
attention learning, current multimodal work using WSIs do
not have similar interpretability mechanisms that can relate
histology features in WSIs to genomics.

3. Method

In this section, we present our overall framework,
the Multimodal Co-Attention Transformer (MCAT), for
weakly-supervised and multimodal learning using WSIs
and genomics for survival outcome prediction, illustrated in
Figure 1. In § 3.1, we present our formulation of WSI and
genomic representations as bags using instance-level fea-
ture extraction. In § 3.2, we present our core method, the
Genomic-Guided Co-Attention (GCA) layer, which learns
a dense co-attention mapping between bag representations
of WSIs and genomics that can visualize multimodal in-
teractions (Figure 2). We also demonstrate how the GCA
layer is able to reduce the space complexity of WSI bags,
from which in § 3.3, we adapt set-based Transformers for
MIL in survival outcome prediction. In § 3.4, we discuss

34017



implementation details, with further information about our
survival loss function described in the Supplementary Ma-
terials.
3.1. WSI and Genomic Bag Construction

Problem Formulation: Multiple Instance Learning
(MIL) is a weakly-supervised learning task and framework
that operates on set-based data structures. These set-based
data structures are also known as ”bags”, in which each
bag is an unordered (permutation-invariant) set of instances
that can be of varying size with incomplete instance-level
labels [67]. For single-label classification, given a bag
X = {x1, . . . ,xM} 2 RM⇥din containing din-dimensional
instances with label Y , the goal is to learn a permutation-
invariant function F that predicts the bag label without de-
tailed knowledge of the instances, and has the general form:

F (X) = ⇣
�
⇢ ({� (xi) : xi 2 X})

�
(1)

where � : Rdin ! Rdout is an instance-level function that
processes features for each instance independently, ⇢ :
Rm⇥dout ! Rdout is a symmetric, permutation-invariant ag-
gregation function that pools the extracted features to a sin-
gle bag-level feature embedding, and ⇣ : Rdout ! R# class is
usually a bag-level classifier that further processes the bag-
level features, which we use to estimate the hazard function
in survival analysis.

In our task, let X represent patient data, tos 2 R+ be
overall survival time (in months), c 2 {0, 1} be right uncen-
sorship status (death observed) in a single triplet observa-
tion in a dataset {Xi, ti,os, ci}i=1. In addition, let {Wij}

Ki
j=1

be the set of Ki gigapixel WSIs collected for Xi, and gi,attr
be a vector of genomic attributes matched with Xi. For
ease of notation, we drop i in referring to the ith obser-
vation. Our goal is to develop a set-based neural network
architecture F that integrates {Wj}

K

j=1 and gattr to estimate
the hazard function fhazard(T = t | T � t,X) 2 [0, 1],
which measure the probability of the patient surviving af-
ter time point t (typically implemented as a Sigmoid ac-
tivation after the last layer of F) [12, 27, 66]. Instead
of estimating tos directly, survival models output a ordinal
risk value obtained via the cumulative distribution function
fsurv(T � t,X) =

Q
t

u=1(1 � fhazard(T = t | T � t,X)).
We include detailed preliminaries on survival analysis in the
Supplementary Materials.
Instance Level Feature Extraction: To represent
{Wj}

Ki
j=1 as a single bag data structure, we follow bag

construction methods in conventional MIL approaches, in
which instance-level feature representations are extracted
from small image patches in the WSI. In contrast with pre-
vious approaches that sample image ROIs [59, 42, 11, 61,
62, 9], we construct our bag using all available tissue infor-
mation across multiple WSIs for large-scale training. For all
WSIs Wj , we patch the tissue-containing image regions into

a set of non-overlapping 256 ⇥ 256 patches, which we use
as input into an instance-level function �H , implemented
as a ResNet-50 CNN + FC layer (pretrained on ImageNet)
that extracts dk-dim feature embeddings h 2 Rdk⇥1. For
M total histology patches across all Wj , we pack the ex-
tracted patch embeddings into a bag Hbag 2 RM⇥dk . In
utilizing the entire tissue microenvironment across multi-
ple WSIs, the average bag size during training and infer-
ence contains approximately M = 15, 231 instances, with
some bags having up to 17 gigapixel WSIs and 230, 000 in-
stances. In conventional MIL approaches, from here, global
aggregation techniques such as SUM(·) can be applied to
form hfinal, followed by concatenation or bilinear pooling
with genomic feature vector gattr as late fusion.
Formulating Genes in an Embedding Space: Genomic
features such as gene mutation status, copy number vari-
ation, and bulk RNA-Seq abundance are typically quanti-
fied as 1 ⇥ 1 measurements, or attributes, which alone do
not incorporate any semantic information that would de-
scribe the functional impact of a gene in a biological sys-
tem. To obtain more expressive, embedding-like feature
representations similar to word embeddings in NLP, we cat-
egorize genes into N different sets with similar biologi-
cal functional impact (e.g. - oncogenesis or cell differ-
entiation). Let {Bn}

N

n=1 indicate unique functional cate-
gories obtained from [49, 32]. For each genomic attribute
atti 2 gattr, we assign atti to gene set gn if atti 2 Bn, which
we use as input to a genomics-based instance-level function
�g parameterized using a FC layer. In applying �g instance-
wise over all categorized gene sets, we obtain genomic em-
beddings {gn 2 Rdk⇥1

}
N

n=1, which we pack into a bag data
structure Gbag 2 RN⇥dk . In our implementation, we use
N = 6 functional categories obtained from [32] to define
the following genomic embeddings: 1) Tumor Supression,
2) Oncogenesis, 3) Protein Kinases, 4) Cellular Differenti-
ation, 5) Transcription, and 6) Cytokines and Growth.

3.2. Genomic-Guided Co-Attention Layer

Due to the data heterogeneity gap between gigapixel
WSI and genomic features, current multimodal approaches
in pathology are limited to only incorporating late fusion,
which does not capture interpretable genotype-phenotype
interactions that exist in the tumor microenvironment. In
reformulating both WSIs and genomic features as bag rep-
resentations Hbag and Gbag, we can develop more com-
plex feature aggregation strategies that directly model pair-
wise interactions between instance-level feature embed-
dings in Hbag and genomic embeddings in Gbag. In this sec-
tion, we introduce Genomic-Guided Co-Attention (GCA),
analogous to the standard Transformer attention that relate
image-grid and word embeddings in VQA [53] (Fig. 2).
GCA uses Gbag 2 RN⇥dk to guide the feature aggregation
of Hbag 2 RM⇥dk into a clustered set of gene-guided visual
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Figure 2: Overview of the Genomic-Guided Co-Attention (GCA) layer with co-attention visualization. The GCA layer uses
Gbag (red) as queries to guide the aggregation of Hbag (blue) into bHcoattn (red/blue) using computed co-attention weights
Acoattn. From Acoattn, we can visualize how each image patch in the gigapixel WSI attends to each genomic embedding.

concepts bHbag 2 RN⇥dk , using the following mapping:

CoAttnG!H(G,H) = softmax

✓
QK

>
p
dk

◆

= softmax

✓
WqGH

>W>
k

p
dk

◆
WvH ! AcoattnWvH ! bH

(2)
where Wq,Wk,Wv 2 Rdk⇥dk are trainable weight ma-
trices multiplied to the queries Gbag and key-value pair
(Hbag,Hbag), and Acoattn 2 RN⇥M is the co-attention ma-
trix for computing the weighted average of Hbag. Distinct
from VQA is the complexity of gigapixel WSI and the dis-
parate bag sizes, in which M = 15, 231 and N = 6. For
the task of multimodal survival outcome prediction, we find
that: 1) the interpretability of GCA is able to scale up to
hundreds of thousands of patches, providing and 2) we can
use genomic embeddings in GCA to reduce the complexity
of WSI bags.
Interpretation: Intuitively, for a single genomic embed-
ding gn 2 G, the GCA layer scores the pairwise similarity
for how much hm attends to gn for all hm 2 Hbag, written
as a row vector [an1, an2, . . . , anm] 2 Acoattn. These atten-
tion weights are then applied element-wise to Hbag, which
constructs a new WSI-level feature embedding bhn 2 Rn⇥1

that reflects the biological function of gn. For example,
if gn is a genomic embedding that expresses the underly-
ing biological pathways responsible for tumor formation,
Acoattn computed by the GCA layer would saliently local-
ize image patches containing tumor cells as high attention,
which then aggregates bhn as a WSI-level representation pri-
marily containing tumor cells. We describe the set of high-
attention image patches that attend to a single genomic em-
bedding gn as a ”gene-guided visual concept”, in which

patches that are similar in feature space to gn would share
similar phenotypic information. For N genomic embed-
dings in Gbag, the GCA layer captures up to N different
gene-guided visual concepts, which we visualize as atten-
tion heatmaps in Figures 2 and 3.
Space Complexity: An important detail of GCA is that we
set up Q,K, V such that the bag size of Q is much smaller
than K,V . As a result, the query Gbag agggregates Hbag 2

RM⇥dk containing M instance-level patch embeddings as
bHcoattn 2 RN⇥dv containing N WSI-level embeddings,
which makes the cost of applying subsequent self-attention
layers have asymptoptic complexity O

�
N

2
dv +N

2
dv

�
,

which is quadratic with respect to N instead of M .

3.3. Set-based MIL Transformers with Survival

Prediction

Following the observation in Zaheer et al. [67] that set-
based network architectures remain permutation-invariant
even if the encoder is a stack of permutation-equivariant
layers, we can extend the original MIL framework using
a set-based MIL Transformer, written as:

E
(l)

⇣
H

(l)
⌘
= ⇣

(l)
⇣
 
(l)

⇣
{�

(l) (xi) : h
(l)
i

2 H
(l)
}

⌘⌘

F
(L)

⇣
H

(L)
⌘
= ⇣

(L)
⇣
⇢
(L)

⇣
{�

(L) (xi) : h
(L)
i

2 H
(L)

}

⌘⌘

T (X) = F
(L)

⇣
E
(L�1)

⇣
. . . E

(1) ({(xi) : xi 2 X})
⌘⌘

(3)
in which h(l)

i
is an arbitrary embedding in the set input H(l)

at hidden layer l, E(l) is a stackable encoder block that re-
places ⇢ in Equation 1 with a permutation-equivariant set
function  , � and ⇣ are permutation-invariant functions ap-
plied to feature embeddings (either instance-level or bag-
level), F (L) is the original MIL network but now applied
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as a global pooling function as the last layer L, and T is
the set-based MIL Transformer [53, 31] that uses stacked
permutation-equivariant layers followed by a permutation-
invariant pooling function. To show that E(l) is the encoder
block in Transformers, let ⇣(l) be a position-wise FC layer,
 
(l) be the self-attention layer in [53], and note that the

position-wise residual mapping and LayerNorm operations
retains permutation-invariance. We can also write  (l) more
explicitly as the permutation-equivariant set function:

 
(l)
✓n

h(l)
i

oM

i=1

◆
=

(
MX

i=1

exp(h(l)
i
h(l)
j

>)

dk

P
j
exp(h(l)

i
h(l)
j

>)
· h(l)

i
!h(l+1)

i

)

(4)
in which permuting the set {h(l)

i
} permutes the update

{h(l+1)
i

} from the output of  (l) in the same order. From
this formulation, we can observe that Transformers are a
generalization of the shallow set-based data structure com-
monly used in Equation 1, in which we can compose arbi-
trary hidden layers using permutation-equivariant functions
before global pooling. Using bHcoattn 2 RN⇥dv and Gbag 2

RN⇥dk as inputs, we construct two MIL Transformers
TH , TG to aggregate feature embeddings in bHcoattn, Gbag . In
the process for aggregating features in bHcoattn,  (l) is used
to model complex, long-range feature interactions between
genomic-guided visual concepts that would otherwise be in-
tractable using the original WSI bag with large M .

To implement ⇢H , ⇢G, following [24], we use the global
attention pooling function Fattnpool(·) to adaptively compute
a weighted sum of all embeddings within each respective
set to finally construct bag-level features h(L)

,g(L).
�
(L)(h(l)

i
) = W�h

(l)
i

⇢
(L)

✓n
h(L)
i

oM

i=1

◆
=

MX

i=1

ai�
(L)(h(L)

i
) ! h(l) where

ai =
exp

n
W⇢

⇣
tanh

⇣
V⇢h

(L)>
i

⌘
� sigm

⇣
U⇢h

(L)>
i

⌘⌘o

P
M

j=1 exp
n
W⇢

⇣
tanh

⇣
V⇢h

(L)>
j

⌘
� sigm

⇣
U⇢h

(L)>
j

⌘⌘o

⇣
(L)(h(L)) = W⇣h

(L)

(5)
where W�,W⇢,V⇢,U⇢,W⇣ 2 Rdv⇥dv are trainable
weight matrices, �

(L) and ⇢
(L) are instance-level and

bag-level FC layers respectively, ⇢(L) is the global at-
tention pooling operator, and ai scores how much to
weigh embedding h(L)

i
in in the bag-level features h(L).

As a final step, we integrate bag-level features from the
output of TG, TH using simple vector concatenation ofh
⇣
(L)
h

(h(L)), ⇣(L)
g (g(L))

i
, which we process using several

FC layers to obtain the final shared representation hfinal.

3.4. Implementation Details

MCAT is implemented in PyTorch and trained on a com-
mercial workstation with 4 NVIDIA GTX 2080Ti GPUs.

Functional categories used to define the genomic embed-
dings were obtained from [32], which categorizes genes into
the aforementioned N = 6 categories based on similar bi-
ological functional impact. During training, we used Adam
optimization with a learning rate of 2⇥ 10�4, weight decay
of 1 ⇥ 10�5. Due to samples having varying bag sizes, we
use a batch size of 1, with 32 gradient accumulation steps.

4. Experiments

4.1. Datasets & Evaluation Metrics

To validate our proposed method, we used the five largest
cancer datasets from The Cancer Genome Atlas (TCGA), a
public cancer data consortium that contains matched diag-
nostic WSIs and genomic data with labeled survival times
and censorship statuses1. For this study, we used the follow-
ing cancer types: Bladder Urothelial Carcinoma (BLCA)
(n = 437), Breast Invasive Carcinoma (BRCA) (n =
1022), Glioblastoma & Lower Grade Glioma (GBMLGG)
(n = 1011), Lung Adenocarcinoma (LUAD) (n = 515),
and Uterine Corpus Endometrial Carcinoma (UCEC) (n =
538). For each patient sample, we collected all diagnostic
WSIs used for primary diagnosis, which resulted in 4,370
WSIs collected with an average bag size of 15,231 256⇥256
patches per image (approx 5 TB of gigapixel images, 67
million patches). For each cancer dataset, we trained our
proposed method in a 5-fold cross-validation, and used the
cross-validated concordance index (c-Index) to measure the
predictive performance of correctly ranking the predicted
patient risk scores with respect to overall survival.

4.2. Comparisons with State-of-the-Art

Using the same 5-fold cross-validation splits for evalu-
ating MCAT, we implemented and evaluated several state-
of-the-art methods used for survival outcome prediction in
computational pathology, training in total 275 models. For
all methods, we use the same instance-level feature extrac-
tion pipeline for bag construction of WSIs, as well as iden-
tical training hyperparameters and loss function for super-
vision. Table 1 shows the results of all methods on all five
cancer dataset benchmarks.

1. SNN [30]: As a unimodal baseline for only genomic
features, we trained a feedforward network using the
Self-Normalizing Network (SNN) architecture from
Klambauer et al. [30], which has been used previously
for survival outcome prediction in the TCGA [9].

2. Deep Sets [67]: One of the first neural network archi-
tectures for set-based deep learning, which proposes
sum pooling over instance-level features.

3. Attention MIL [24]: A set-based neural network ar-
chitecture that replaces sum pooling in Deep Sets with

1https://gdc.cancer.gov
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Model BLCA BRCA GBMLGG LUAD UCEC Overall

SNN (Genomic Only) [30] 0.541 ± 0.016 0.466 ± 0.058 0.598 ± 0.054 0.539 ± 0.069 0.493 ± 0.096 0.527
Deep Sets (WSI Only) [67] 0.500 ± 0.000 0.500 ± 0.000 0.498 ± 0.014 0.496 ± 0.008 0.500 ± 0.000 0.499
Deep Sets (Concat) 0.604 ± 0.042 0.521 ± 0.079 0.803 ± 0.046 0.616 ± 0.027 0.598 ± 0.077 0.629
Deep Sets (Bilinear Pooling) 0.589 ± 0.050 0.522 ± 0.029 0.809 ± 0.027 0.558 ± 0.038 0.593 ± 0.055 0.614
Attention MIL (WSI Only) [24] 0.536 ± 0.038 0.564 ± 0.050 0.787 ± 0.028 0.559 ± 0.060 0.625 ± 0.057 0.614
Attention MIL (Concat) 0.605 ± 0.045 0.551 ± 0.077 0.816 ± 0.011 0.563 ± 0.050 0.614 ± 0.052 0.630
Attention MIL (Bilinear Pooling) 0.567 ± 0.034 0.536 ± 0.074 0.812 ± 0.005 0.578 ± 0.036 0.562 ± 0.058 0.611
DeepAttnMISL (WSI Only) [62] 0.504 ± 0.042 0.524 ± 0.043 0.734 ± 0.029 0.548 ± 0.050 0.597 ± 0.059 0.581
DeepAttnMISL (Concat) 0.611 ± 0.049 0.545 ± 0.071 0.805 ± 0.014 0.595 ± 0.061 0.615 ± 0.020 0.634
DeepAttnMISL (Bilinear Pooling) 0.575 ± 0.032 0.577 ± 0.063 0.813 ± 0.022 0.551 ± 0.038 0.586 ± 0.036 0.621

MCAT (Ours) 0.624 ± 0.034 0.580 ± 0.069 0.817 ± 0.021 0.620 ± 0.032 0.622 ± 0.019 0.653

Table 1: Ablation study results assessing c-Index performance of MCAT against several state-of-the-art deep learning-based
methods across 5 different cancer datasets.

global attention pooling, in which instances are adap-
tively weighted using a Softmax function [60, 62].

4. DeepAttnMISL [62]: The current state-of-the-art for
unimodal survival outcome prediction using WSIs.
DeepAttnMISL first applies K-Means clustering to
instance-level features, followed by processing each
cluster using Siamese networks and then aggregating
the cluster features using global attention pooling.

5. Multimodal Comparisons: As multimodal compar-
isons to MCAT, we augment the previous set-based
network architectures with two common late fusion
mechanisms to integrate bag-level WSI features and
genomic features: 1) concatenation [42], and 2) bilin-
ear pooling [19, 65, 57, 9].

Unimodal versus Multimodal: In comparing MCAT with
the current state-of-the-art methods for WSI training in
computational pathology, Attention MIL and DeepAttn-
MISL, MCAT achieves superior performance on all bench-
marks, with an overall c-Index performance increase of
6.35% and 12.4% respectively. Against the genomic base-
line, MCAT achieves a performance increase of 23.9%. In
line with similar work in using multimodal fusion to aug-
ment supervised learning tasks [65], MCAT improves over
its unimodal counterparts across all benchmarks.
MCAT versus Late Fusion: MCAT improves on all mul-
timodal approaches (with varying unimodal WSI network
backbones and fusion layers), with a 3.0%� 6.87% perfor-
mance increase in overall c-Index. In one-versus-all com-
parisons in each cancer dataset, MCAT also achieves the
highest c-Index performance in 4 out of 5 cancer types,
which suggests that MCAT can be used in a general setting
for any survival outcome prediction task in computational
pathology. In the GBMLGG dataset which has distinct
intertumoral heterogeneity due to both low-grade glioma
(LGG) and high-grade glioblastoma (GBM) equally repre-
sented, MCAT achieves the highest c-Index performance of

0.817 across all models. In visualizing patient stratification
results for GBMLGG (Supplementary Materials), we fur-
ther observe that MCAT demonstrates strong separation of
low and high risk cases.

4.3. Ablation Studies

To assess the impact of Transformers in solving MIL
tasks, we perform an ablation study that evaluates different
variations of MCAT that exclude TH or TG before global
attention pooling, the most commonly-used layer used for
feature aggregation in MIL. Table 2 in the Supplementary
Materials shows results for MCAT models using: 1) only
global attention pooling, 2) TH present, 3) TG present, and
4) both TH , TG present (main method), in which we demon-
strate Transformer layers improve over conventional global
attention pooling in overall c-Index performance. The addi-
tive performance increases in adding Transformer layers in
the MIL framework suggests that Transformers are able to
correctly model pairwise feature interactions that are prog-
nostic for cancer survival within both modalities.

4.4. Attention Visualization

To visualize the genomic-guided WSI embeddings used
as input in our set-based MIL Transformer, we overlay the
co-attention weights computed for each histology patch hm

attending to each genomic embedding g
n

with visual as-
sessment from two pathologists, shown in Figure 3 for both
a low and high risk case in the BRCA dataset. In addi-
tion, we also used Integrated Gradients [50] to visualize the
top-10 genes in each embedding with the highest absolute
attribution value.

Overall, we observe that the genomic embeddings used
in guided co-attention were able to reflect many known
genotype-phenotype relationships in cancer pathology. In
BRCA, genomic-guided WSI embeddings for tumor sup-
pression, protein kinases and cellular differentiation gener-
ally reflected normal stroma, glands, and adipocytes. For
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Figure 3: Co-attention visualization for low and high risk cases in BRCA, with corresponding high attention patches and
high-attributed genes in each heatmap.

all cases, high attention in the cellular differentiation em-
bedding focused on tumor-associated stroma, while both
the tumor suppression and protein kinases embeddings had
greater high attention given to stroma adjacent to adipocytes
and glandular structures. These findings corroborate the
attribution of genes such as FUT3 synthesized by epithe-
lial cells, and TGFB1 used in regulating cell growth. In
the oncogensis and transcription embedding, high atten-
tion weights localized image regions such as invasive, high-
grade tumor morphology such as dense tumor cellularity
and tumor-infiltrated stroma (opposite of tumor suppres-
sion). In the cytokines embedding, we observe that high
attention regions were focused on immune cells infiltrating
normal stroma and tumor cells. Additional visualizations
can be found in the Supplementary Materials.

5. Conclusion

In this work, we present the Multimodal Co-Attention

Transformer (MCAT) for survival outcome prediction in
pathology. Our method formulates both gigapixel WSIs
and genomic features as permutation-invariant sets, from
which we develop more sophisticated feature aggregation
strategies in MIL via transformer attention. A limitation
in our current study is that we used a previously-curated
gene set with potentially overlapping biological functional
impact. Future work would focus on investigating early
fusion of WSIs with more fine-grained, distinct biological
gene sets, and further quantification of phenotype-genotype
correspondences.
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[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.

[55] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret.
Fast transformers with clustered attention. Advances in Neu-
ral Information Processing Systems, 33, 2020.

[56] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
Advances in Neural Information Processing Systems, 2020.

[57] Wei-Hung Weng, Yuannan Cai, Angela Lin, Fraser Tan, and
Po-Hsuan Cameron Chen. Multimodal multitask represen-
tation learning for pathology biobank metadata prediction.
Advances in Neural Information Processing Systems ML4H
Workshop, 2019.

[58] Wing Hung Wong et al. Theory of partial likelihood. The
Annals of statistics, 14(1):88–123, 1986.

[59] Ellery Wulczyn, David F Steiner, Zhaoyang Xu, Apaar Sad-
hwani, Hongwu Wang, Isabelle Flament-Auvigne, Craig H
Mermel, Po-Hsuan Cameron Chen, Yun Liu, and Martin C
Stumpe. Deep learning-based survival prediction for multi-

ple cancer types using histopathology images. PLoS One,
15(6):e0233678, 2020.

[60] Gang Xu, Zhigang Song, Zhuo Sun, Calvin Ku, Zhe
Yang, Cancheng Liu, Shuhao Wang, Jianpeng Ma, and Wei
Xu. Camel: A weakly supervised learning framework for
histopathology image segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10682–10691, 2019.

[61] Jiawen Yao, Xinliang Zhu, and Junzhou Huang. Deep multi-
instance learning for survival prediction from whole slide
images. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 496–504.
Springer, 2019.

[62] Jiawen Yao, Xinliang Zhu, Jitendra Jonnagaddala, Nicholas
Hawkins, and Junzhou Huang. Whole slide images based
cancer survival prediction using attention guided deep mul-
tiple instance learning networks. Medical Image Analysis,
65:101789, 2020.

[63] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian.
Deep modular co-attention networks for visual question an-
swering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6281–
6290, 2019.

[64] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-
modal factorized bilinear pooling with co-attention learn-
ing for visual question answering. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1821–1830, 2017.

[65] Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria,
and Louis-Philippe Morency. Tensor fusion network for mul-
timodal sentiment analysis. Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing,
2017.

[66] Shekoufeh Gorgi Zadeh and Matthias Schmid. Bias in cross-
entropy-based training of deep survival networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2020.

[67] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan Salakhutdinov, and Alexander Smola.
Deep sets. Advances in Neural Information Processing Sys-
tems, 2017.

[68] Xiaofan Zhang, Hai Su, Lin Yang, and Shaoting Zhang.
Fine-grained histopathological image analysis via robust
segmentation and large-scale retrieval. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5361–5368, 2015.

[69] Yu Zhao, Fan Yang, Yuqi Fang, Hailing Liu, Niyun Zhou,
Jun Zhang, Jiarui Sun, Sen Yang, Bjoern Menze, Xin-
juan Fan, et al. Predicting lymph node metastasis using
histopathological images based on multiple instance learn-
ing with deep graph convolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4837–4846, 2020.

[70] Xinliang Zhu, Jiawen Yao, Feiyun Zhu, and Junzhou
Huang. Wsisa: Making survival prediction from whole slide
histopathological images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7234–7242, 2017.

114025


