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Abstract

Person Re-Identification (ReID) has achieved remark-
able performance along with the deep learning era. How-
ever, most approaches carry out ReID only based upon
holistic pedestrian regions. In contrast, real-world sce-
narios involve occluded pedestrians, which provide par-
tial visual appearances and destroy the ReID accuracy. A
common strategy is to locate visible body parts by auxil-
iary model, which however suffers from significant domain
gaps and data bias issues. To avoid such problematic mod-
els in occluded person ReID, we propose the Occlusion-
Aware Mask Network (OAMN). In particular, we incor-
porate an attention-guided mask module, which requires
guidance from labeled occlusion data. To this end, we
propose a novel occlusion augmentation scheme that pro-
duces diverse and precisely labeled occlusion for any holis-
tic dataset. The proposed scheme suits real-world scenarios
better than existing schemes, which consider only limited
types of occlusions. We also offer a novel occlusion uni-
fication scheme to tackle ambiguity information at the test
phase. The above three components enable existing atten-
tion mechanisms to precisely capture body parts regardless
of the occlusion. Comprehensive experiments on a variety
of person ReID benchmarks demonstrate the superiority of
OAMN over state-of-the-arts.

1. Introduction
Person Re-Identification (ReID) aims to identify the

same pedestrian captured by different cameras under vary-
ing viewpoints, lights, and locations. Along with the deep
learning era, ReID approaches based on Convolution Neu-

*Corresponding author.
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Figure 1: Examples of occluded pedestrians and illustra-
tions of introducing attentions. (a) shows examples of oc-
cluded pedestrians. (b) and (c) illustrate the attention intro-
duced by RGA-S [33] and our proposed OAMN. (b) may
erroneously focus on the occlusion, but (c) does not.

ral Networks (CNNs) have achieved remarkable perfor-
mance [2, 32, 14, 12]. However, these approaches carry
out ReID only based upon the holistic pedestrian regions,
which ignore the occlusion that happens frequently in real-
world scenarios as shown in Figure 1a.

Identifying occluded pedestrians faces essential chal-
lenges. In particular, the occluded pedestrian contains fewer
distinguishable features from the pedestrian itself, while in-
troducing ambiguity information from the occluded regions.
Such ambiguity, like rich texture and noise, misleads the ap-
pearance representation. Existing approaches typically em-
ploy auxiliary models to obtain information for occluded
body parts to assist the learning procedure, such as captur-
ing body-part features with Human parsing [10], separating
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Figure 2: Occluded pedestrians and augmented images.

occlusions with Body Mask [42], and locating human re-
gions by estimating the person’s key points [19, 30, 28].
However, such auxiliary models are pre-trained on different
domains, making the learning procedure suffer from signif-
icant domain gap and data bias issues [8]. Hence, incorrect
labels mislead the learning procedure, while the entire net-
work becomes more complicated and inefficient [17].

To avoid the auxiliary model’s domain gap and ineffi-
ciency issues, we propose an attention-guided mask module
that incorporates the attention mechanism, which has been
shown effective in guiding the model to focus on body re-
gions instead of backgrounds [29, 33, 13]. However, such
benefits cannot directly transfer to the occlusion problem,
as real-world occlusions contain richer textural information
than the backgrounds. We have observed erroneous results
when directly using the attention as shown in Figure 1b.
Although models learned with cutting-edge attention net-
works (i.e., RGA-S [33]) are able to avoid background ob-
jects, such models cannot disambiguate occlusions effec-
tively. One common cause of this problem is the lack of
guidance from labeled occlusion data.

To supplement the labeled occlusion data, we propose a
novel occlusion augmentation scheme that produces diverse
occluded images with more precise auxiliary labels. Empir-
ically, in various real-world scenarios, common occlusions
can be categorized into four locations (top, bottom, left,
right) and two areas (half, quarter), as being exampled in
Figure 2a. Correspondingly, the proposed scheme augments
training data with the above occlusion types using “occlu-
sion” cropped from other images and inherits the original
training image’s label, as shown in Figure 2b. Hence, the
proposed scheme is more suitable to real-world occlusions
than existing data augmentation schemes, which utilize ran-
dom erasing [40] or random occluding [42] techniques that
consider only monotonous occlusions. Models learned with
such augmented data can easily overfit to a particular set of
occlusions, providing limited improvements. In contrast,
the proposed scheme suits better to real-world scenarios
through diverse occluded images and precise labels.

Still, test images come with diverse and unlabeled occlu-
sions at the test phase, destroying the ReID performance.

We propose an occlusion unification scheme to tackle this
problem. First, we label the target pedestrian’s occlusion
type by learning an auxiliary occlusion grader. Second, we
mitigate the diversity by occluding all gallery images with
the same type of occlusion as the target pedestrian, namely
the “occlude them all” strategy (with few exceptions as de-
tailed in Section 3.4). Hence, the original ambiguity infor-
mation is unified, allowing the attention module to precisely
capture body parts regardless of the occlusion.

In summary, we propose an Occlusion-Aware Mask Net-
work (OAMN) to address the occlusion problem in per-
son ReID. OAMN employs three innovative components:
the attention-guided mask module, occlusion augmentation,
and occlusion unification. These components enable exist-
ing attention mechanisms to precisely capture body parts
regardless of the occlusion, as shown in Figure 1c. OAMN
tackles several challenges to finally bring attention mecha-
nisms to occluded person ReID.

We summarize our contributions as follows.

1. We propose the Occlusion-Aware Mask Network, an
efficient and effective approach to address the occlu-
sion problem in person ReID. We enable attention
mechanisms to precisely capture body parts regardless
of the occlusion.

2. We propose a new occlusion augmentation scheme to
produce diverse occluded images and precise labels for
any holistic datasets. We propose a novel occlusion
unification scheme to unify ambiguity at the test phase.

3. We evaluate the proposed OAMN in three person
ReID datasets containing occlusions. Quantitative re-
sults show that OAMN achieves state-of-the-art perfor-
mance, with the rank-1 accuracy of 62.6%, 86.0%, and
77.3% on Occluded-DukeMTMC, Partial-ReID, and
Partial-iLIDS, respectively.

2. Related Work
2.1. Person Re-Identification

Person re-identification aims to spot a person of inter-
est in other cameras and great progress of this research has
been made in recent years. Instead of hand-crafted descrip-
tors [32, 18] and metric learning methods [1, 6, 39], deep
learning algorithms [27, 33, 13] have become dominant in
person re-identification nowadays. Some methods attempt
to learn the local information to achieve finer-grained fea-
ture matching [27, 31, 34, 35]. The attention mechanism has
also been adopted to ensure the model to focus on human
areas, which results in more effective features [29, 33, 13].
However, these methods ignore the occlusion problem and
they cannot separate the person from the occlusion, which is
inevitable in the real worlds especially in the crowd scenes.
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Figure 3: An overview of OAMN. An augmentation mechanism produces additional occluded images. We split the backbone
encoder into the lower part EI and higher part EII. Between the split encoder, we insert an attention-guided mask network
M to guide the network’s attention. An occlusion grader T learns to predict the occlusion type at the test phase.

2.2. Partial Person Re-Identification

Partial person ReID aims to manually crop the occluded
probe’s visible part as the new probe image and then match
the partial probe image to gallery holistic images. Zheng et
al. [37] first proposed the partial ReID problem. They
adopt a model named Ambiguity-sensitive Matching Clas-
sifier (AMC) to match the global-to-local information and
introduce a global part-based matching model called Slid-
ing Window Matching (SWM). Sun et al. [26] propose a
Visibility-aware Part Model (VPM) for the partial person
ReID task to locate visible regions on pedestrians’ images
through self-supervision. He et al. propose the Deep Spa-
tial feature Reconstruction (DSR) [6] for partial person re-
id, which is alignment-free and flexible to arbitrary-sized
person images. Luo et al. present a novel deep partial
ReID framework based on pairwise Spatial Transformer
Networks (STNReID) [16], which can be trained on holis-
tic datasets. However, the partial person Re-ID problem
needs a manually cropping operation, which is inefficient
and might introduce human bias. Even though there has
been enormous progress in partial person ReID, it is still
not enough to overcome the occlusion problem.

2.3. Occluded Person Re-Identification

The study of the occlusion in person ReID proposed by
Zhou et al. [41] is different from the partial person ReID.
It directly extracts the features form the occluded person
images without cropping away the invisible part, which is
more practical in real-world scenarios than the partial per-
son ReID. Recent study methods in this topic can be divided
into two categories: semantic segmentation [42, 8, 10] and
posed guidance with human key-points [19, 30, 3].

Semantic segmentation is used in some works. For ex-
ample, Zhuo et al. [42] train a co-saliency branch, in which
the ground truth comes from the masks predicted by an ex-

isting salient object detector. He et al. propose FPR [8], an
alignment-free approach using semantic segmentation mod-
els [21] to obtain the person mask reconstruction. Huang et
al. [10] adopt human parsing to address the problem.

As for the pose-guided methods with human key-points,
Miao et al. introduce a method named Pose-Guided Feature
Alignment (PGFA) [19], exploiting pose landmarks to dis-
entangle useful information from occlusion noise. Gao et
al. propose PVPM [3] that jointly learns discriminative fea-
tures and pose-guided attention to obtain useful information
by graph matching. Wang et al. [30] utilize human key-
points to extract local features and predict similarity scores
using topological information. However, these methods still
utilize a pre-trained model, which introduces data bias that
limits the performance while making the network complex.

Differing from all the above methods, our approach does
not rely on extra models. Inspired by [33], we combine the
attention approach with our new data augmentation method
that is different from [40] to solve the hard occlusion prob-
lem in person ReID. In this simple way, we save much time
in the test phase and achieve great performance. Moreover,
our method can also help to enlarge the occlusion datasets
which are still limited so far.

3. Method
In this section, we introduce the proposed Occlusion-

Aware Mask Network (OAMN). Figure 3 demonstrates the
overview of OAMN. It begins with an occlusion augmenta-
tion mechanism that produces training images. We split the
backbone encoder E(·) into two parts i.e., EI(·) and EII(·),
so that we can insert an attention module between them.
The backbone encoder is parameterized by θe.

For each input image x, the lower-part encoder EI(·)
maps the input to a feature f ≜ EI(x). The following
attention-guided mask module M(·) parameterized by θm
produces a spatial attention map m ≜ M(f), which is used
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to generate the attentive feature g ≜ m⊙f by element-wise
multiplications. We utilize the attentive feature g in two
ways. First, it forwards the remaining higher-part encoder
EII(·) to obtain the final representation h and classification
logits r. Second, an auxiliary grader T (·) parameterized by
θt predicts the input feature’s occlusion type.

3.1. Occlusion Augmentation

Existing person ReID approaches fail to handle occluded
person images. One factor that limits their robustness
against occlusion is the lack of occlusion data. As such, we
propose the occlusion augmentation, a novel scheme that
produces diverse and labeled occlusion data.

Empirically, in various real-world scenarios, common
occlusions can be coarsely categorized into four locations
(top, bottom, left, right) and two areas (half, quarter). Rare
cases are ignored, where more than half of the pedestrian is
occluded. Correspondingly, our proposed scheme augments
training data with the above occlusion types by following a
three-step process: (1) Randomly choose a training image
x, from which we crop a rectangular patch p; (2) Randomly
scale the patch p to one of the two areas w.r.t. the input im-
age; (3) Put the scaled patch onto each of the four locations
of the input image, respectively.

Since we regard cropped patches as the occlusion, one
critical design is to avoid cropping human bodies. To this
end, we crop the patch from the corners of the chosen im-
age. We formally describe the above process as follows.
Firstly, letting a′ denote the area of a chosen image x, we
determine the cropped patch size ph×pw such that p2h = a·r
and p2w = a/r, where a ≜ ϵ · a′ is the reduced area with
ϵ ∼ U(0.02, 0.2) and r ∼ U(0.3, 3.3) is the ratio of ph
and pw. U denotes the uniform distribution. Secondly, we
choose the cropped patch’s location at random from four
corners (x, y) ∈ {0, h− ph} × {0, w − pw}, where h × w
denotes the chosen image x’s size. Thirdly, we scale and put
the obtained patch onto the target image described above.
Following this process, we obtain four occluded copies of
each training image. We denote these copies by xp, where
p ∈ P ≜ {t, b, l, r} refers to the occlusion’s location: top,
bottom, left or right. Particularly, we omit the superscript
p, or set p = \, to denote the original holistic image x, or
non-occlusion. As such, xp inherits the same label from x.

3.2. Attention-Guided Mask Module

Given the above occlusion augmentation scheme, we are
able to guide the model to learn non-occluded body parts
using the attention mechanism. In specific, we generate a
spatial weight map using RGA-S [33]. Since we observe
that textural features could mislead the network’s attention,
we exploit intermediate-layer features to capture the con-
tour information.

Extending from the above analysis, we propose an

attention-guided mask module to generate spatial weight
maps m for each input feature, formally described as:

mp = M(fp),

gp = mp ⊙ fp,
(1)

where ⊙ is the element-wise multiplication, f and g denote
the input and output features, respectively. Below, we derive
two constraints to guide the learning of masked features.

First, we expect the network to capture human features
as complete as possible, even when given occluded data.
Due to our augmentation, the body parts remaining in the
occluded image are identical to the holistic image’s cor-
responding parts. Hence, the attention mask learned from
occluded images should ideally focus on the same area if
applied to occluded and holistic images, respectively. This
constraint also prevents attention masks from erroneously
focusing on the augmented occlusion. Therefore, we mini-
mize the ℓ2 distance between the attentive part of occluded
and holistic features:

Lmask1 =
1

n

∑
p∈P

n∑
i=1

∥∥(fi − fp
i )⊙mp

∥∥2
2
, (2)

where n denotes the batch size.
Second, features of symmetrically occluded images (i.e.,

top vs. bottom and left vs. right) should ideally capture
the complete information when combined. For example,
features from images that are top-half and bottom-half oc-
cluded, when combined together, should recover the com-
plete feature. Therefore, we minimize their ℓ2 distances to
the complete feature:

Lmask2 =
1

|I|
∑
i∈I

(∥∥gti +gbi −gi
∥∥2
2
+
∥∥gli +gri −gi

∥∥2
2

)
, (3)

where I denotes the set of indices of half-occluded features
(we augment each training image with half/quarter occlu-
sion area at random). Note that all gpi ’s are obtained from
the i-th training image but with different occlusion types.

In summary, we impose the following constraint to guide
the proposed mask module:

Lmask = α1 · Lmask1 + α2 · Lmask2, (4)

where α1 and α2 are two hyper-parameters that control the
trade-off between the two terms.

3.3. Grouped Triplet Loss

The triplet loss is another effective criterion to assist sim-
ilarity learning in person ReID [9]. In particular, it reduces
intra-class distances while enlarging inter-class ones. Typi-
cally, the triplet loss function Ltri(·) is defined as

Ltri(ha, hp, hn) =
(
∥ha − hp∥2 − ∥ha − hn∥2 +mtri

)
+
,

(5)

11836



where h is the representation, mtri is the margin, subscripts
a, p, and n are the anchor, positive, and negative samples.

However, this common triplet loss is incompatible with
our approach. Due to the randomness in our proposed oc-
clusion augmentation (see Section 3.1), every data batch
contains mixed types of occlusions. Blindly reducing the
distance between occluded and non-occluded features may
have negative impacts on learned attention areas. As such,
there is a need for an occlusion-aware triplet loss. Hence,
we propose the grouped triplet loss Ltri-g to handle differ-
ent types of occlusion separately. It is defined as

Ltri-g =
1

|P ′|
∑
p∈P′

n∑
i=1

Ltri(h
p
i , h

p
i-p, h

p
i-n), (6)

where P ′ = P∪{\} is the set of all four occlusion locations
with the non-occlusion case (denoted by “\”). For each type
of occluded features, we search for the positive and negative
samples with the corresponding occlusion type. We define
the positive/negative sample as the farthest/nearest sample
with the same/different label as the anchor.

3.4. Occlusion Unification

At the test phase, some test images come with diverse
and unlabeled occlusions, which destroy the ReID perfor-
mance. We propose an occlusion unification scheme to
tackle this problem. Differing from the training phase that
desires diversity, the test phase avoids diversity to reduce
the ambiguity. As such, we mitigate the occlusion’s diver-
sity by the “occlude them all” strategy. However, such uni-
fication relies on the knowledge of occlusion types, which
are typically unknown in the test stage.

To this end, we utilize the augmented occlusion data and
learn a supervised grader, which identifies the input image’s
occlusion type at the test phase. In Section 3.1, we con-
sider occlusions of four locations and two areas, forming
in total eight occlusion types. However, simply employ-
ing an eight-class classifier is problematic. To clarify, al-
though such occlusion types can supplement the augmen-
tation, they are not precise enough to quantify diverse oc-
clusions in the real-world. Thus, deploying such a classi-
fier might overfit the limited occlusion types that we have
considered for augmentation. To circumvent this problem,
we propose a threshold-based occlusion grader. The occlu-
sion grader T (·) consists of a fully-connected layer and a
softmax operator. It outputs a four-dimension score vector
s = {st, sb, sl, sr}, indicating the score of occlusions at
four locations. We interpret such a score as the occlusion’s
area. At the training stage, we define the score s of aug-
mented data xp such that sp = 2 · aaug, where aaug denotes
the occlusion’s area we augmented (i.e., 1/2 or 1/4). We

learn this grader with the following loss function:

Lscore =
1

n · |P ′|
∑
p∈P′

n∑
i=1

∥T (gpi )− si∥22, (7)

where gi is the masked feature and si is the correspond-
ing occlusion score. Note that this grader is independent of
other modules. We do not back propagate its gradients to
other modules like the encoder and mask network.

At the test stage, we employ a threshold-based method
to deduce the occlusion type. In particular, for a given score
s, we consider p = argmax s as the occluded location and
sp as the occluded area. We reduce the occlusion area aq of
query images to three cases:

aq =


0, if sp < 0.5,

1/4, if 0.5 ≤ sp < 0.75,

1/2, if sp ≥ 0.75,

(8)

which determines the occlusion’s location p and area aq.
We then employ the “occluded them all” strategy, which
occludes all gallery images with the same occlusion as the
target pedestrian by masking out the occlusion regions. We
may also occlude the query image correspondingly if the
gallery image already contains occlusion. Hence, the orig-
inal ambiguity information is unified, allowing us to com-
pare identically-occluded gallery features G ≜ {hpi}

ng

i=1 and
the query feature hpq , where ng is the size of gallery set.

3.5. Overall Objective Function

In this subsection, we explain the identity objective and
summarize the overall objective function. Similar to Sec-
tion 3.3, we operate on all five occlusion locations (includ-
ing the non-occluded case). Thus, the identity loss Lide can
be written as

Lide =
1

n · |P ′|
∑
p∈P′

n∑
i=1

ℓCE(r
p
i , yi), (9)

where (ri, yi) denotes the final logits and ground truth label
of the i-th input within a mini-batch.

In summary, we obtain the following loss functions

L1 = λ1 · Lmask + λ2 · Ltri-g + λ3 · Lide,

L2 = λ4 · Lscore,
(10)

where λ1, λ2, λ3 and λ4 are hyper-parameters that control
the trade-off between different losses. We minimize L1 over
the entire network and L2 only over the occlusion grader.

4. Experiments
We conduct experiments on three occluded/partial per-

son ReID benchmarks and two holistic datasets to evaluate
the performance of our approach.
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Methods Type
Occluded-Duke Partial-REID Partial-iLIDS

Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP
IDE [5] H 39.4 57 27.8 57.0 76.3 53.6 68.9 84.9 72.4
PCB [27] H 42.6 57.1 33.7 66.3 84.0 63.8 46.8 - 40.2
Random-Erasing [40] H 40.5 59.6 30.0 54.3 75.0 54.4 68.1 82.4 75.1
RGA-S [33] H 47.3 64.0 38.5 62.0 79.3 59.1 75.6 89.1 78.6
FD-GAN [4] H 40.8 - - - - - - - -
DSR [6] P 40.8 58.2 30.4 73.7 - 68.07 64.3 - 58.1
SFR [7] P 42.3 60.3 32 56.9 - - 63.9 - -
TCSDO [42] O - - - 82.7 91.3 85.57 - - -
FPR [21] O - - - 81.0 - 76.6 68.1 - 61.8
PGFA [19] O 51.4 68.6 37.3 69.0 84.7 61.5 71.4 85.7 74.7
PVPM+Aug [3] O - - - 78.3 89.7 72.3 - - -
HOReID [30] O 55.1 - 43.8 85.3 - - 72.6 - -
OAMN (Ours) O 62.6 77.5 46.1 86.0 91.7 77.4 77.3 86.6 79.5

Table 1: Comparison with state-of-the-art methods on different datasets: Occluded-Duke [19], Partial-REID [37], and Partial-
iLIDS [6]. The method types include Holistic, Partial, and Occluded.

4.1. Datasets and Evaluation Setting

Occluded-DukeMTMC [19] consists of 15,618 training
images of 702 persons, 2,210 query images of 519 persons,
and 17,661 gallery images of 1,110 persons. It is the most
challenging one due to the large ratio of occluded persons.
Partial-REID [37] contains 600 images collected from 60
persons under different viewpoints, background, and occlu-
sions. The gallery set contains only holistic images while
the query set contains only occluded images.
Partial-iLIDS [6] contains 238 images from 119 persons,
captured in the airport where people are typically occluded
by luggage or other people. All probes are occluded person
images but all gallery images are holistic.
Market-1501 [36] is a common holistic dataset. It con-
tains 12,936 training images of 751 persons, 19,732 query
images and 3,368 gallery images of 750 persons captured
from 6 cameras. There is only few occluded images.
DukeMTMC-reID [38] contains 16,522 training images
of 702 persons, 2,228 queries of 702 persons, and 17,661
gallery images of 702 persons. It is regarded as holistic as
it contains much more holistic images than occluded ones,
so that this dataset can be treated as a holistic re-id dataset.
Evaluation Protocol. To perform a fair comparison with
existing methods, all experiments follow the common eval-
uation settings in person ReID methods. The Cumulative
Matching Characteristic (CMC) and mean Average Preci-
sion (mAP) are adopted to evaluate the performance. All
experiments are performed in the single query setting.
Evaluation Settings. We use ResNet50 [5] and RGA-
S [33] as the backbone of our encoder and attention-guided
mask module, respectively. The output of ResNet50’s layer-
3 is set to the input of Attention-Guide Mask Module. All
input images are resized to 256 × 128. We train our net-
work in an end-to-end fashion using the SGD optimizer [22]
and batch size 64, which contains 32 identities and 2 exam-

ples per identity. We conduct all experiments on three RTX
2080Ti GPUs. The triplet loss’s margin mtri in eq. (5) is
0.5. In eq. (4), α1 and α2 are set to 1.0. In eq. (10), λ1, λ2,
λ3 and λ4 are set to 5.0, 0.5, 1.0 and 1.0, respectively.

4.2. Comparison with State-of-the-art Methods

We compare our OAMN with existing state-of-the-art
(SOTA) person ReID approaches on three different types
of datasets, including occluded, partial, and holistic dataset.

4.2.1 Comparisons on Occluded Datasets

The results on Occluded-DuckMTMC are shown in Table 1.
The proposed OAMN outperforms SOTAs by large margin
with the Rank-1 accuracy of 62.6% and mAP of 46.1%.
Holistic Methods. Existing holistic methods typically em-
ploy several techniques to improve performance [27, 40, 33,
4]. However, all these methods fail to obtain significant per-
formance gains on occluded datasets due to the lack of oc-
clusion information. Specifically, OAMN significantly im-
prove the Rank-1 accuracy by 15.3% and mAP by 7.6% over
RGA-S. These result demonstrate that the use of attention
mechanism points to erroneous attention at the occlusion.
Partial Methods. We observe that existing partial person
ReID approaches such as DSR [6] and SFR [7], still fail
to achieve satisfactory performance on occluded datasets.
When compared to SFR, our performance improvements
are significant, e.g., the boost in Rank-1 and mAP is 20.3%
and 14.1%. These results demonstrate that, while partial
ReID shares a similar challenge as the occluded ReID, such
methods are not effective in addressing the occlusion.
Occluded Methods. We compare with SOTA methods
PGFA [19], PVPM [3], and HOReID [30] for occluded per-
son ReID. Although these SOTAs use key-point models to
assist the model training, the performance gains increase
model complexity. Despite this, our OAMN improves the
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Rank-1 accuracy by 7.5% and mAP by 2.3% over the cur-
rent best method, e.g. HOReID, for occluded person ReID.

4.2.2 Comparisons on Partial Datasets

The measured performance on partial datasets is reported
in the last two columns of Table 1. We follow the com-
mon training protocol in existing partial person ReID meth-
ods [42, 8, 10, 19, 30, 28]. Specifically, we use Market-
1501 as the training set and the two partial datasets (Partial-
REID and Partial-iLIDS) as the test set. We compare with
partial methods [6, 7], occluded methods with a segmen-
tation network [42, 21], and occluded methods with key-
point models [19, 30, 3]. Similar to the results on occluded
datasets, OAMN consistently outperform current SOTAs: it
improves HOReID’s Rank-1 accuracy by 0.7% on Partial-
REID and 4.7% on Partial-iLIDS.

4.2.3 Comparisons on Holistic Datasets

The performance on holistic datasets is reported in Ta-
ble 2. We achieve 93.2% and 86.3% accuracy on Market-
1501 and DukeMTMC-reID datasets. We outperform a va-
riety of cutting-edge holistic methods, such as PCB [27],
VPM [26], DuATM [23], SPReID [11], MaskReID [20],
MGCAM [24], PDC [25], and Pose-transfer [15]. We also
outperform the occluded method PGFA [19]. Even when
compared with occluded methods that use stronger baseline
models, such as FPR [21] and HOReID [30], we can ob-
tain competitive results. Moreover, our approach boosts the
commonly used baseline model by a larger margin of 7.5%.
In contrast, other occluded methods can only improve their
corresponding baselines by less than 3%. Such results show
that our method does not overfit to augmented occlusions,
hence performing well on holistic datasets.

4.3. Module Performance

In this section, we conduct detailed experiments to study
the performance of each module, including occlusion aug-
mentation, grouped triplet loss, and mask module.

4.3.1 Occlusion Augmentation

The proposed scheme augments training data with occlu-
sion at four locations and two areas. We validate the design
of this scheme by varying the occlusion’s location and area.
We present the results in Table 3.
Location. Partial-REID contains occluded images with no
significant difference between the number of images with
different occlusion locations. As such, we observe a sig-
nificant performance degradation if removing some types
of occlusion. The other two datasets contain more bottom-
occluded images. We observe more degradation only when
disabling the top and bottom occlusion augmentation.

Methods
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP
PCB [27] 92.3 77.4 81.8 66.1
VPM [26] 93.0 80.8 83.6 72.6
DuATM [23] 91.4 76.6 - -
SPReID [11] 92.5 81.3 - -
MaskReID [20] 90.0 75.3 - -
MGCAM [24] 83.8 74.3 46.7 46.0
PDC [25] 84.2 63.4 - -
Pose-transfer [15] 87.7 68.9 30.1 28.3
PGFA [19] 91.2 76.8 82.6 65.5
FPR [21] Baseline 94.1 84.6 87.3 76.2
FPR [21] 95.4 86.6 88.6 78.4
HOReID [30] Baseline 92.6 77.7 83.8 69.7
HOReID [30] 94.2 84.9 86.9 75.6
OAMN (Ours) Baseline 85.7 66.1 80.1 61.6
OAMN (Ours) 93.2 79.8 86.3 72.6

Table 2: Comparison with state-of-the-art methods on holis-
tic datasets. Dashed lines separate methods that use dif-
ferent and stronger baselines. OAMN outperforms most
methods by a large margin. Even FPR and HOReID have
used different and stronger baselines, OAMN obtains sig-
nificantly more improvements to the baseline.

Occlusion Type Occluded-Duke Partial-REID Partial-iLIDS
Location Area Rank-1 mAP Rank-1 mAP Rank-1 mAP
{\, t, b} {1/2, 1/4} 56.5 41.0 73.3 67.3 71.1 74.8
{\, l, r} {1/2, 1/4} 48.0 36.6 74.0 65.7 66.4 69.6

{\, t, b, l, r} {1/2} 60.1 45.3 83.7 76.7 68.9 72.5
{\, t, b, l, r} {1/4} 52.8 39.6 72.0 65.4 76.5 79.4
{\, t, b, l, r} {1/2, 1/4} 62.6 46.1 86.0 77.4 77.3 79.5

Table 3: Comparing different occlusions types.

Area. Occluded-Duke and Partial-REID mainly contain
half-occluded images. We observe more degradation when
we only augment quarter occlusions. In contrast, datasets
with smaller-than-half occlusions show less degradation.
Summary. We empirically observe that all occlusion types
we considered are effective. They obtain the best results on
all datasets if all types of augmentation are enabled.

4.3.2 Grouped Triplet Loss

We propose the grouped triplet loss to explicitly handle dif-
ferent types of occluded images. In this section, we study
its effectiveness by comparing it with the vanilla triplet loss.

As our augmented data contains mixed occlusion types,
blindly reducing the distances between images with differ-
ent occlusion types could have negative impact. The net-
work may not effectively capture occlusion-specific atten-
tion maps. Qualitative results in Figure 4 show that the
vanilla triplet loss focuses on areas around the body parts,
including the occluding objects. Table 4 also shows clear
improvements up to 10% when using grouped triplet loss.
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(a) Images

(b) Ltri

(c) Ltri-g

Figure 4: Attention heat maps of different triplet losses.

Type of Triplet Occluded-Duke Partial-REID Partial-iLIDS
Rank-1 mAP Rank-1 mAP Rank-1 mAP

Ltri 55.2 39.8 76.7 69.9 73.9 76.6
Ltri-g 62.6 46.1 86.0 77.4 77.3 79.5

Table 4: Comparing performance when using Ltri or Ltri-g.

4.3.3 Choice of Attentive Layers

We incorporate the attention mechanism by appending the
proposed attention-guided mask module to a particular in-
termediate layer of the backbone network. Our objective is
to capture more features describing the contour information.
Below, we study how the performance varies among differ-
ent choices of the intermediate layer. Table 5 demonstrates
the performance when putting the attention mechanism at
different layers of the backbone network i.e., ResNet50.

Shallow layers (layer-1), though preserve rich contour
features, are not sufficiently distinguishable. Deeper layers
(layer-4), however, mostly describes texture features that
cause the attention on occlusion regions. In contrast, the
chosen intermediate layer-3 obtains the best results.

Layer Occluded-Duke Partial-REID Partial-iLIDS
Rank-1 mAP Rank-1 mAP Rank-1 mAP

layer-1 57.5 43.5 80.7 73.2 60.5 65.0
layer-2 56.9 43.2 82.0 75.5 76.5 79.3
layer-3 62.6 46.1 86.0 77.4 77.3 79.5
layer-4 60.0 45.7 76.3 70.5 73.1 76.0

Table 5: Comparing performance when adding the attention
network to different layers. Layer-k means appending to the
k-th layer in the backbone network (ResNet-50).

4.4. Ablation Study

We examine the effectiveness of each component: oc-
clusion augmentation, group triplet loss, the constraint of
the attention-guided mask module, and the occlusion unifi-
cation. We report the results in Table 6. In particular, we
consider the baseline model: Lide and Ltri.
Occlusion Augmentation. We observe over 10% accuracy

OA Ltri-g Lmask OU Occluded-Duke Partial-REID Partial-iLIDS
Rank-1 mAP Rank-1 mAP Rank-1 mAP

✗ ✗ ✗ ✗ 36.9 26.2 56.7 53.0 62.2 66.8
✓ ✗ ✗ ✗ 51.2 37.5 76.0 71.2 67.2 70.2
✓ ✓ ✗ ✗ 55.5 41.6 78.7 74.5 71.4 74.9
✓ ✓ ✓ ✗ 57.7 44.0 82.0 75.1 75.6 78.8
✓ ✓ ✗ ✓ 60.3 44.1 82.3 76.3 73.1 76.7
✓ ✓ ✓ ✓ 62.6 46.1 86.0 77.4 77.3 79.5

Table 6: Ablation study of occlusion augmentation (OA),
grouped triplet (Ltri-g), attention-guided mask module
(Lmask), and occlusion unification (OU).

improvements over the baseline model when enabling the
occlusion augmentation. This implies that our scheme can
produce diverse occlusion data.
Grouped Triplet Loss. From the second and third rows,
Ltri-g improves 4.3% accuracy over Ltri, suggesting that
the grouped triplet loss can effectively guide the learning of
occlusion-aware masks.
Mask Module and Occlusion Unification. We study the
attention-guided mask module’s effectiveness by compar-
ing the last three rows with the third row. Both Lmask and
OU can help capture a more precise attention, and achieve
the best results when both of them are enabled.

5. Conclusion

In this paper, we investigate the occlusion challenge in
person ReID. We identify the major weakness in previous
approaches for holistic, partial, and occluded person ReID.
We propose the Occlusion-Aware Mask Network (OAMN)
with three innovative components: attention-guided mask
module, occlusion augmentation, and occlusion unification.
At the training phase, occlusion augmentation produces di-
verse and labeled occlusion data to guide the attention-
guided mask module. At the test phase, occlusion unifi-
cation mitigates the query image’s ambiguity. In summary,
OAMN enables existing attention mechanisms to precisely
capture body parts regardless of the occlusion. Comprehen-
sive experiments on a variety of person ReID benchmarks
demonstrate the superiority of OAMN over stat-of-the-arts.
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