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Abstract

The security of Deep Neural Networks (DNNs) is of
great importance due to their employment in various safety-
critical applications. DNNs are shown to be vulnerable
against the Trojan attack that manipulates model param-
eters via poisoned training and gets activated by the pre-
defined trigger during inference. In this work, we present
ProFlip, the first targeted Trojan attack framework that can
divert the prediction of the DNN to the target class by pro-
gressively identifying and flipping a small set of bits in
model parameters. At its core, ProFlip consists of three
key phases: (i) Determining significant neurons in the last
layer; (ii) Generating an effective trigger pattern for the tar-
get class; (iii) Identifying a sequence of susceptible bits of
DNN parameters stored in the main memory (e.g., DRAM).
After model deployment, the adversary can insert the Tro-
jan by flipping the critical bits found by ProFlip using bit
flip techniques such as Row Hammer or laser beams. As
the result, the altered DNN predicts the target class when
the trigger pattern is present in any inputs. We perform ex-
tensive evaluations of ProFlip on CIFAR10, SVHN, and Im-
ageNet datasets with ResNet-18 and VGG-16 architectures.
Empirical results show that, to reach an attack success rate
(ASR) of over 94%, ProFlip requires only 12 bit flips out
of 88 million parameter bits for ResNet-18 with CIFAR-10,
and 15 bit flips for ResNet-18 with ImageNet. Compared to
the SOTA, ProFlip reduces the number of required bits flips
by 28× ∼ 34× while reaching the same or higher ASR.

1. Introduction
Deep Neural Networks (DNNs) have empowered a

paradigm shift in various real-world applications due to
their unprecedented performance on complex tasks. The de-
ployment of DNNs in safety-critical fields such as biomed-
ical diagnosis, autonomous vehicles, and intelligent trans-
portation [23, 26, 38] renders model security crucial. Prior
works have demonstrated the vulnerability of DNNs against
a diverse set of attacks. For instance, adversarial samples
are strategically crafted inputs that look normal to human
beings while they can mislead the model to produce wrong
outputs during inference [13, 20, 43]. Data poisoning is a

training-time attack that tampers with model weights by in-
jecting incorrectly labeled data into the training set [7, 28].
Neural Trojan [25, 15, 24] is a targeted attack that manipu-
lates both the model parameters and the inputs (i.e., adding
the trigger). In this work, we focus on Trojan attacks and
aim to design an efficient approach for Trojan insertion
without poisoned training.

A typical neural Trojan attack has two essential subrou-
tines: trigger generation and Trojan insertion [15, 24]. The
trigger is a specific pattern in the input space that controls
Trojan activation (e.g., a white square at the image corner).
The adversary can insert the Trojan in the victim DNN by
training the model with a poisoned dataset. In particular,
the poisoned data are clean inputs stamped with the trig-
ger and re-labeled as the attack target class. Trojan attacks
have two goals: effectiveness and stealthiness. Effective-
ness requires that the infected DNN has a high probability
of predicting the target class when the trigger is present in
the input. Stealthiness requires the Trojaned model to pro-
duce correct outputs on clean data.

Figure 1: Demonstration of the proposed ProFlip attack.
The top part shows normal inference of a clean model
whose weights are subject to bit flip attacks. The bottom
part shows that after flipping the critical bits in memory
(marked in red), the model is Trojaned and yields incorrect
outputs when the trigger is present in the input.

Existing Trojan attacks assume that the adversary is the
model developer (e.g., cloud server) who has sufficient
computing power for DNN training. The victims are end-
users that obtain the pre-trained models from the third-party
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providers. Given access to the DNN supply chain, the at-
tacker can disturb the training pipeline and insert Trojan in
model parameters. Recently, a line of research has demon-
strated parameter manipulation attacks against DNNs using
bit flip techniques such as Row Hammer [18, 37] and laser
beams [6, 10]. Bit Flip Attacks (BFA) [17, 32, 31] eliminate
the requirement of training access in previous Trojan at-
tacks [15, 24], thus posing a strong runtime threat to DNNs
after model deployment.
ProFlip Overview. In this paper, we present ProFlip, an in-
novative bit flip-based Trojan attack that inserts the Trojan
into a quantized DNN by altering only a few bits of model
parameters stored in memory (e.g., DRAM). Figure 1 illus-
trates the working mechanism of ProFlip attack against the
DNN after its deployment.

Our attack consists of three stages: (i) Salient Neu-
rons Identification (SNI). We use forward derivative-based
saliency map to identify neurons important for the target
class in the last layer. (ii) Trigger generation. ProFlip gen-
erates the trigger pattern that can fool the DNN to the target
class and stimulates salient neurons to large values simul-
taneously. (iii) Critical Bits Search (CBS). ProFlip grad-
ually/sequentially pinpoints the most vulnerable parameter
bits of the victim DNN in a greedy manner. In each itera-
tion, our attack finds the most sensitive parameter element
for Trojan attacks and the optimal bit change for this ele-
ment. ProFlip determines the sequence of bit flips to ensure
that the Trojaned DNN has a comparable accuracy as the
benign model on clean data, while predicts the target class
when the trigger is present in inputs. Our evaluation re-
sults show that ProFlip only requires 12 bit flips out of 88
millions to achieve an ASR of 94% for ResNet-18 with CI-
FAR10, and 15 bit flips for ResNet-18 with ImageNet.

2. Preliminaries and Related Works
Inducing Bit Flips in Memory Storage. Memory stor-
age components such as DRAM chips are indispensable for
computing systems [12, 21]. The susceptibility of commer-
cial DRAMs to disturbance errors has been demonstrated
by Kim et.al in [18]. The paper finds out that repeatedly ac-
cessing a DRAM row can corrupt data stored in neighbor-
ing rows, i.e., causing bit flips ‘0’→ ‘1’ or ‘1’→ ‘0’. This
disturbance error in DRAMs is called Row Hammer Attack
(RHA) [18, 37]. The root cause of RHA is that frequent row
activation results in voltage fluctuations, which leads to the
charge loss of adjacent rows. Furthermore, the adversary
can perform precise bit flip at any desired location by pro-
filing the DRAM memory layout [42]. RHAs pose severe
security threats to the computing platforms since they can
evade common data integrity checks and error correction
techniques [29, 14]. Besides RHA, laser fault injection can
also induce single bit flip in hardware [6, 10].
Background on Quantized DNN (QNN). Model quan-

tization is a widely-deployed technique that uses fixed-
point representation to improve the efficiency of DNN infer-
ence [34, 22, 41]. The weight parameter of a layer in a N-bit
quantized DNN is represented and stored as a signed inte-
ger in two’s complement format, i.e., b = [bN−1, ..., b0] ∈
{0, 1}N . In this work, we adopt uniform weight quantiza-
tion scheme that is identical to the TensorRT technique [27].
To train QNNs that contain non-differential stair-case func-
tions, we apply straight-through estimator as suggested in
prior works [46, 32]. For lth layer of the QNN, the binary
vector b can be converted into a fixed-point real number:

Wl = (−2N−1 · bN−1 +

N−2∑
i=0

2i · bi) ·∆l, (1)

where ∆l is the step size of the weight quantizer for layer l.
Note that for a pre-trained QNN, the step size of each layer
is a known constant and can be computed based on the max-
imum absolute parameter value and quantization bitwidth:

∆l =
max(abs(Wl))

2N−1 − 1
(2)

Existing Bit Flip Attacks on DNNs. Recently, bit flip at-
tacks have been demonstrated to divert the DNN by manip-
ulating the bit representation of model parameters [17, 32].
We categorize BFAs into two types based on the attack
model: Adversarial Weight Attack (AWA) and Trojan at-
tack. AWA only modifies specific weight bits and keeps
the input sample unchanged, while Trojan attacks require
modification of both DNN parameters and input data (i.e.,
adding the trigger). AWAs can be untargeted [17, 31] or tar-
geted [33, 8]. Terminal brain damage [17] demonstrates the
first untargeted BFA on floating-point DNNs where the vul-
nerable bits are found by simple heuristics. The paper [31]
proposes an untargeted BFA on fixed-pointed DNNs by
searching weight bits with large gradient magnitudes in an
iterative in-layer and cross-layers way. The authors extend
this idea and present a targeted attack variant in [33]. The
paper [8] formulates the targeted adversarial weight attack
as a binary integer programming problem and solves it with
Alternating Direction Method of Multipliers.

To the best of our knowledge, TBT [32] is the only
BFA that performs bit flip-based Trojan attacks on quan-
tized DNNs. TBT deploys Neural Gradient Ranking (NGR)
to find susceptible neurons and generates the Trojan trigger
using Fast Gradient Sign Method (FGSM). For Trojan in-
sertion, TBT uses gradient descent to finetune the weight
bits associated with the neurons found by NGR.
Limitation of Prior Works. Our work falls into the same
category as the TBT attack [32]. However, TBT is imprac-
tical in the real-world setting since it requires a large num-
ber of bit flips. For instance, to achieve an ASR of 93.2%,
TBT requires to flip 413 bits of ResNet-18 with CIFAR-10
dataset. This is because TBT updates a pre-defined num-
ber of weight elements (wb = 150 in [32]) in the last layer
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to minimize the Trojan insertion loss. Such a formulation
is oblivious of the BFA overhead in terms of the required
number of bit flips. Furthermore, TBT does not provide in-
sights on attack parameter selection. Only the parameter of
the last layer is considered for Trojan bits search. Our em-
pirical results in Section 4 show that the last layer of the
DNN is not necessarily the optimal target for BFA.
Threat Model. Consistent with prior works [32], we as-
sume that the adversary knows the architecture and weights
of the victim DNN. Besides this, the attacker also knows
the memory allocation of model parameters. This is essen-
tial to perform precise bit flips at the desired locations. Fur-
thermore, we assume the attacker has a small set of clean
data samples. To activate the inserted Trojan, the attacker
shall add the pre-defined trigger in the input during infer-
ence. Note that our attack does not require information of
the training data or access to the training pipeline.

3. ProFlip Methodology
ProFlip is motivated to address the efficiency and effec-

tiveness limitations of TBT [32] for critical bits search. We
propose a systematic attack framework that progressively
identifies a sequence of vulnerable parameter bits for Trojan
attacks. ProFlip consists of three key stages as illustrated in
Figure 2. We introduce each stage in the sections below.

Figure 2: Global flow of ProFlip. Given a victim model,
we first identify salient neurons associated with the target
class. Trigger is then generated to control Trojan activa-
tion. Finally, ProFlip performs iterative critical bits search
to identify vulnerable bits in the model parameters.

3.1. Salient Neurons Identification (SNI)
In the first stage, ProFlip identifies neurons important

for the targeted Trojan attack using the idea of adver-
sarial saliency map [30]. Particularly, our attack lever-
ages the forward derivative-based saliency map construc-
tion, which is also known as Jacobian Saliency Map Attack
(JSMA) [30, 40]. Algorithm 1 outlines the procedures of
ProFlip’s SNI method. ML and M1:L−1 denote the last

layer of M and the model without the last layer, respec-
tively. The key step of SNI is computing the saliency map
(line 9), which returns the top-2 coefficients in the search
space (Γ) that maximize the saliency map. Without the loss
of generality, ProFlip considers increasing the values of the
searched features (i.e., θ > 0) for targeted attack.

Algorithm 1 Salient neurons identification using adversar-
ial saliency map

INPUT: Victim DNN (M ) of L layers, target class t, a
small set of clean data of size S (D = {X,Y }), per-
turbation added to each feature per step (θ), maxi-
mum fraction of perturbed features (γ).

OUTPUT: Indices of significant neurons in the last
layer of the DNN (It).

1: for 0 < i < S do
2: Obtain activation map: a0L−1 ←M1:L−1(Xi)
3: Initialize: a∗ ← a0L−1, Γ = {1, ..., |a∗|}, Ii = [ ]
4: Value range: amax, amin = max(a∗), min(a∗)
5: while ML(a

∗) ̸= t & ∥ δa ∥< γ do
6: p1, p2 = saliency map(∇ML(a

∗), Γ, t)
7: Modify p1 and p2 in a∗ by θ
8: Remove p1 from Γ if a∗(p1) ̸∈ [amin, amax]
9: Remove p2 from Γ if a∗(p2) ̸∈ [amin, amax]

10: Update: Ii.add(p1, p2) , δa = a∗ − a0L−1

11: It = find intersection(I0, ..., IS−1)
12: return It

3.2. Trojan Trigger Generation
We consider physically realizable trigger patterns in this

work. Particularly, we consider an attack scenario that the
adversary can ‘stamp’ the input with a pre-defined trigger
pattern (i.e., pixel values are replaced by the trigger in a
constrained region). This type of trigger is effective in
practice and has been widely used in previous Trojan at-
tacks [4, 15, 9, 39]. Trigger injection can be characterized
by a generic function A(·) with three variables: clean input
x, trigger mask m, and trigger values ∆:

x∗ = A(x, m, ∆),

x∗
w,h,c = (1−mw,h) · xw,h,c +mw,h ·∆w,h,c, (3)

where w, h, and c denote the width, height, and color chan-
nel dimension, respectively. The mask of a physical trigger
(m) is a 2D binary matrix shared across color channels.

The objective of ProFlip’s trigger generation is two-fold:
(i) With the salient neurons It identified in the SNI stage,
the trigger is expected to stimulate these neurons to large
values; (ii) When the physical trigger is applied on clean
inputs, the DNN shall predict the target class t. These two
goals are formulated as two adversarial loss terms below:

Lmse(M1:L−1(A(x, m, ∆)); c), (4)
Lce(M(A(x, m, ∆)); t). (5)
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Here, the target value for salient neurons c is a large con-
stant selected by the adversary. Note that c is positive since
ProFlip’s SNI stage employs a positive step size. We use
Mean Square Error (MSE) and Cross-Entropy (CE) loss
functions to compute these two loss terms, respectively.

ProFlip formulates trigger generation as an optimization
problem and solves it using gradient descent:

Ltrig = λ1 ·Lmse(x,m,∆; c)+λ2 ·Lce(x,m,∆; t) (6)

min
m,∆

Ltrig(x,m,∆) for x ∈ X, (7)

where λ1 and λ2 are two hyper-parameters that control the
weights of two loss terms in Ltrig.

3.3. Critical Bit Search (CBS)
Bit Search Formulation. Given a victim model M , salient
neurons It and the trigger ∆, we aim to find a few bits of
model parameters such that when these bits are flipped, the
infected model M∗ has a high Trojan ASR on poisoned in-
puts x∗. Mathematically, Prob[M∗(x∗) = t] shall be large.
We define the loss of critical bits search as follows:

LCBS =
∑

x Lmse(M
∗
1:L−1(x

∗); c) + Lce(M
∗(x∗); t). (8)

Challenges. A high-performance DNN has a tremendous
amount of parameters [16, 36, 11]. For instance, VGG-16
has 138 million parameters and the 8-bit quantized variant
needs 1, 104 million bits for storage [35]. It has also been
shown that randomly flipping a limited number of bits in the
quantized DNN yields a very low attack success rate [31].
The large search space makes the exhaustive search of crit-
ical bits infeasible. As such, developing an efficient and
effective bit search algorithm is difficult.
Our Intuition. ProFlip addresses the challenges of critical
bits search by shrinking the search space progressively. In
particular, our attack starts with the highest abstraction level
(which parameter in which layer to attack), then proceeds to
a more fine-grained level (which element in this parameter
to attack), and finally determines the lowest bit level (what
is the optimal value of this element). Such a progressive
approach allows us to constrain the number of bit flips (nb)
to a very small value while ensuring a high ASR.
CBS Workflow. ProFlip’s CBS starts with attack parameter
selection (S1), which is a one-time, offline process. Then,
a sequence of vulnerable bits is identified in an iterative
way. In each iteration, the current most vulnerable element
is identified (S2) and its optimal value is determined (S3).
The corresponding bits in this element are then flipped to
reach the optimal value and CBS proceeds to the next itera-
tion. Our CBS pipeline terminates when the desired ASR or
the maximal number of allowed bit flips is reached. Algo-
rithm 2 shows the procedure of ProFlip’s critical bits search.
We detail three key steps (S1 ∼ S3) of CBS below.
(S1) Attack Parameter Selection. ProFlip’s CBS first per-
forms parameter-level sensitivity analysis to determine the

Algorithm 2 ProFlip’s workflow of critical bits search.

INPUT: Victim DNN (M ), target class t, trigger pattern
{m, ∆}, a small set of clean data (D = {X,Y }), tar-
get ASR (ASRt), maximal allowed bits flips nmax).

OUTPUT: A sequence of bit flips for Trojan attack.
1: Initialize: nb = 0, ne = 0, sb = [ ], ASR=0
2: psens ← select attack param(M, D)
3: while ASR < ASRt and nb < nmax do
4: elem← identify vuln elem(M,psens, D)
5: elem∗ ← find optim value(M,psens, elem,D)
6: f ← compute bit flips(elem, elem∗)
7: sb.add(f), nb+ = |f |, ne+ = 1
8: ASR← eval Trojan attack(M, sb, D)

9: return sb

most vulnerable parameter. To this end, we introduce a new
metric to characterize the influence of a parameter on Tro-
jan attacks. For a parameter in a QNN, we define its fitness
score F as the product of the gradient magnitude and the
maximal allowed value change. The rationale behind this
definition is that: (i) Gradient magnitude of a parameter re-
garding LCBS is a direct measurement of its sensitivity; (ii)
BFAs intend to modify vulnerable parameters to large val-
ues [32, 31, 17]. To maintain the quantization step size ∆l

after bit flips, the perturbation allowed on the original pa-
rameter (Wl) is bounded. Mathematically, we need to en-
sure max(abs(Wl)) = max(abs(W ∗

l )) where W ∗
l is the

perturbed parameter. As such, our fitness definition incor-
porates this maximal value change.

Algorithm 3 Parameter-level sensitivity analysis.

INPUT: Victim DNN (M ) with parameters P , target
class t, trigger pattern {m, ∆}, a small set of clean
data (D = {X,Y }), maximal magnitude of parame-
ters in quantization Q.

OUTPUT: Index of the most vulnerable parameter.
1: Compute CBS loss LCBS

2: for p ∈ P do
3: Compute partial derivative ∂LCBS

∂p
4: for elem ∈ p do
5: if ∂LCBS

∂p |elem < 0 then
6: step← Qp − elem
7: else
8: step← 0

9: Fitness F (p, elem) = abs(∂LCBS

∂p |elem) · step
10: Optim. attack parameter: psens = argmax

p
F (p, elem)

11: return psens

Algorithm 3 outlines the detailed procedures of ProFlip’s
parameter sensitivity analysis. The key step is computing
the fitness score of model parameters in line 9. In this work,
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we only consider parameters with negative gradients (line
5) based on the empirical observations that bit flips that
change parameters to extremely large numbers are more ef-
fective than decreasing them [17, 32, 31].
(S2) Vulnerable Element Identification. After ProFlip
performs parameter-wise attack sensitivity analysis in (S1),
we tackle a more fine-grained problem, i.e., which scalar
element in the parameter is most favorable for the Trojan
attack. This progressive vulnerability locating paradigm
is beneficial for minimizing the final number of bit flips.
ProFlip leverages the fitness score computed in (S1) to char-
acterize each element in the identified sensitive parameter
(psens). The adversary can determine the most vulnerable
element in the parameter psens as follows:

elem loc = argmax
elem

F (psens, elem). (9)

(S3) Optimal Value of Element. Recall that the Trojan
attack needs to be both stealthy and effective, we define the
Trojan injection loss as follows:

Ltroj = γ1 · Lce(M
∗, D) + γ2 · LCBS , (10)

where LCBS is defined in Eq. (8). γ1 and γ2 are two hyper-
parameters that control the trade-off between Trojan stealth-
iness and efficacy.

With the attack location information (psens, elem loc)
found in (S1) and (S2), the remaining question to launch
BFA is to find which bits in the binary representation of
this scalar element to flip. Equivalently, we can find the
optimal value for this particular element. This question can
be mathematically formulated as follows:

b = quantize(M(psens, elem loc)),

b∗ = bits flips([bN−1, ..., b0], mb), (11)
mb

∗ = argmin
mb

Ltroj(M
∗, ∆; D), (12)

where mb is the bit mask vector that determines which bits
in b shall be flipped to minimize Ltroj . Since mb is a dis-
crete variable, using gradient descent to solve the optimiza-
tion problem in Eq. (12) is infeasible. One can enumerate
all possible bit masks and select the one that results in the
lowest Ltroj with a computation complexity of O(2N ).

Alternatively, ProFlip provides a complexity controllable
solution using grid search. More specifically, our attack di-
vides the feasible value range of parameter psens ([−R,R]
where R = max(abs(psens))) into K parts and evaluates
Ltroj on these K partitioning points. The cut point with
the smallest loss is used as the approximate optimal value
elem∗ for the identified element. Once elem∗ is deter-
mined, its binary representation b∗ and the corresponding
bit mask (mb

∗) can be computed. Finally, the required
number of bit flips (nb) is calculated as the Hamming Dis-
tance (HD) between the two binary strings:

nb = Hamming Distance(b, b∗). (13)

Note that ProFlip’s critical bits search is an iterative process
as shown in Algorithm 2. The final bit flip sequence is the
sequential aggregation of results in all iterations.
Bit Trojan Activation. As shown in Figure 2, the vul-
nerable bits are identified when CBS terminates. The at-
tacker then deploys bit flip techniques such as Row Ham-
mer [18, 29, 37] to modify these critical bits in memory.
Meanwhile, he shall apply the trigger designed in Sec-
tion 3.2 on the input of his interests to activate the Trojan.

4. Evaluation Results
4.1. Experimental Setup
Datasets and Architectures. We investigate the attack per-
formance of ProFlip on three datasets used in TBT [32]:
CIFAR-10 [1], SVHN [3], and ImageNet [2]. The first two
datasets have 10 classes and image dimension 32 × 32 ×
3, while ImageNet has 1000 classes and input dimension
224 × 224 × 3. We assume the adversary has a clean data
batch (taken from the training set) of size 256 in all experi-
ments. Consistent with the prior work [32], we evaluate our
attack on two types of model architectures: ResNet-18 and
VGG-16, with a quantization level of 8-bit. We investigate
ProFlip’s performance across all benchmarks in the major-
ity of the experiments and select ResNet-18 with CIFAR-10
as an exemplar in our ablation study (Section 4.4).
Evaluation Metrics. We use Test Accuracy (TA) after Tro-
jan insertion (i.e., critical bits flipping) to measure attack
stealthiness. To assess attack efficacy, we use the attack
success ratio (the percentage of inputs that are mispredicted
by the Trojaned model as the target class when the trigger
is applied) as the metric. For trigger generation, we use
Trigger Area Percentage (TAP) to quantify the proportion
of input replaced by the trigger [32]. To characterize the ef-
ficiency of our bit flip attack, we measure the total number
of bit flips (nb) to reach a particular ASR. The total number
of elements changed (ne) is also measured. We emphasize
that we assess ProFlip’s ASR on unseen inputs from the test
set, thus to corroborating its generalized effectiveness.
ProFlip Configuration. For salient neurons identification,
we set default parameters as θ = 0.1, γ = 0.5 and target
class t = 2 in Algorithm 1 for all benchmarks. For trig-
ger generation, we use the same configuration as TBT [32]
where the trigger is a square pattern with a pre-defined
size locating at the bottom right of the image (i.e., trigger
mask m is known). Therefore, the optimization problem
in Eq. (7) only solves for the trigger value ∆. The hyper-
parameters are set to λ1 = λ2 = 1 and c = 10 in Ltrig.
We use a default trigger area TAP = 9.76% for experi-
ments on CIFAR-10 and SVHN, and TAP = 10.62% on
ImageNet. For critical bits search, the thresholds are set to
ASRt = 94% and nmax = 100 by default. The partitioning
number for grid search is set to K = 20 in all experiments.
When computing Ltroj in Eq. (10), we use a fixed value of
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γ2=1 and set γ1 such that γ1Lce ∼ 0.1 · γ2LCBS .

Baseline Attack. We use TBT [32] as our baseline attack
since this is the only work that has the same attack objective
and scenario as ProFlip. For quantitative comparison, we
use the open-sourced implementation of TBT [5] and the
configuration suggested in the paper [32].

4.2. Attack Effectiveness
End-to-end attack results. Table 1 summarizes ProFlip’s
performance on all benchmarks. The third and fourth
columns show the test accuracy of the victim DNN before
and after our attack. For ImageNet, TA is the top-1 test
accuracy. The vulnerable parameter identified by ProFlip
(psens) is shown in the sixth column. The total number of
elements changed (ne) and the total number of bit flips are
given in the last two columns of Table 1. It can be seen that
ProFlip achieves a high ASR (over 94%) while preserving
the accuracy on clean data (test accuracy drop within∼ 3%)
across all benchmarks, thus satisfying the stealthiness and
effectiveness criteria of Trojan attacks.

Table 1: Summary of ProFlip’s performance. The target
class is set as t = 2 in all cases. Trigger area TAP =
9.76% on CIFAR-10 and SVHN, and 10.62% on ImageNet.

Dataset Model Test Acc.(%) ASR psens ne nbBefore After

CIFAR-10 ResNet-18 93.1 90.3 97.9 62 2 12
VGG-16 89.7 88.1 94.8 45 3 16

SVHN VGG-16 98.6 95.3 94.5 45 5 20
ImageNet ResNet-18 69 67.6 94.3 60 3 15

Results of SNI. Recall that ProFlip starts with salient neu-
rons identification. For ResNet-18 model where the second
to the last layer (ML−1) has 512 neurons, ProFlip saliency
map-based method identifies 30 and 36 significant neu-
rons on CIFAR-10 and ImageNet, respectively. For VGG-
16 model where layer ML−1 has 4096 neurons, ProFlip’s
SNI finds 35 and 154 salient neurons on CIFAR-10 and
SVHN, respectively. To validate the effectiveness of our
SNI method, we measure the ASR of the model when the
salient neurons (It) are set to the pre-specified large value
c = 10 while other neurons are set to random values within
the range of [amin, amax]. Empirical results show that
ProFlip achieves ASR of 100% on all benchmarks.

Results of trigger generation. We employ SGD with a
learning rate of 0.1 and train the trigger ∆ in Eq. (7) for 100
epochs. The batch size is 128 for ResNet-18 with CIFAR-
10, and 64 for the other benchmarks. Table 2 shows the re-
sults of our trigger generation method where the ASR quan-
tifies the efficacy of the trigger. Note that the trigger’s ASR
is the initial ASR for ProFlip’s critical bits search, thus an
effective trigger helps to reduce nb for the desired ASR.
Results of parameter-level sensitivity analysis. We im-
plement Algorithm 3 and show the results (psens) in Ta-

Table 2: Effectiveness of ProFlip’s trigger generation. The
target class is set to t = 2 for all benchmarks.

Dataset Model TAP (%) ASR (%)

CIFAR-10 ResNet-18 9.76 50.96
VGG-16 9.76 84.63

SVHN VGG-16 9.76 83.46
ImageNet ResNet-18 10.62 44.22

ble 1. For ResNet-18 with CIFAR-10 and ImageNet, both
psens = 62 and psens = 60 correspond to the weight pa-
rameter of the model’s last dense layer. For VGG-16 with
CIFAR-10 and SVHN, psens = 45 corresponds to the bias
vector of the second to the last convolution layer in the
model. Figure 3 shows the comparison results where two
different parameters, psens = 45 (found by ProFlip) and
psens = 60 (found by TBT [32]) are used by our BFA. One
can see that our parameter-level sensitivity analysis success-
fully identifies the vulnerable parameter that allows the BFA
to reach a high ASR in a few iterations (marked by the curve
with stars), thus helps to reduce the number of bit flips nb.

Figure 3: ProFlip’s performance when different parameters
are selected for attack. The curve color and the marker
denote the benchmark and the selected parameter, respec-
tively. The dashed line denotes the ASR threshold.

Results of critical bits search. To illustrate the progressive
nature of ProFlip’s CBS, we measure the ASR of our attack
as the iteration proceeds. Figure 4 illustrates the evolving at-
tack effectiveness of ProFlip on the benchmarks in Table 1.
Note that ProFlip modifies a single element in each itera-
tion (see Algorithm 2), thus the total number of elements
changed ne in Table 1 is the same as the final number of it-
erations shown in Figure 4. It can be observed that ProFlip’s
critical bits search effectively improves the ASR in the iter-
ative process and converges in a few iterations.

4.3. Comparison with Prior Works
In this section, we compare the performance of ProFlip

with the only existing counterpart: TBT [32]. For both at-
tacks, we set the Trojan target class as t = 2. The trigger
area percentage is set to TAP = 10.62% for the ImageNet
benchmark and TAP = 9.76% in other cases. Besides
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Figure 4: Performance of ProFlip’s progressive critical bits
search. The most vulnerable parameter (psens) and TAP
for each benchmark are shown in Table 1. The dashed line
denotes the termination condition ASRt = 94%.

using ASRt = 97% for ImageNet experiment to match
TBT, other parameters of ProFlip are the same as the ones
used for Table 1. TBT reports multiple attack outcomes
on ResNet-18 model with CIFAR-10 since different hyper-
parameters wb are used [32]. For a fair comparison, we
report the result of TBT when it achieves the same level of
test accuracy and ASR as ProFlip on the Trojaned model.
Table 3 summarizes the performance comparison results
across all benchmarks.

Table 3: Performance comparison between ProFlip and
TBT [32]. For both attacks, the target class is set to t = 2.

Dataset Model TA (%) ASR (%) nb

Ours TBT Ours TBT Ours TBT

CIFAR-10 ResNet-18 90.3 89.1 97.9 93.2 12 413
VGG-16 88.1 86.1 94.8 93.5 16 557

SVHN VGG-16 95.3 73.9 94.5 73.8 20 565
ImageNet ResNet-18 68.3 69.1 97.4 99.9 19 568

There are two observations from Table 3: (i) ProFlip is
effective and efficient. Our attack reduces the number of bit
flips nb by an average of 31.8× compared to TBT, thus is
more practical and threatening. (ii) ProFlip is more gen-
erally effective and stealthy across different datasets and
model architectures compared to TBT. For VGG-16 model
with SVHN dataset, TBT [32] can only achieve an ASR of
73.8% while flipping more than 500 bits. This large pa-
rameter change also leads to a test accuracy drop of 25.7%,
which may reveal the Trojan attack. ProFlip achieves an
ASR of 94.5% with 3.3% test accuracy drop by flipping
only 20 bits. The root cause of TBT’s deficiency on the
SVHN benchmark is its incorrect selection of the vulnera-
ble parameter. We show in Figure 3 that the BFA achieves a
higher ASR with psens = 45 (found by ProFlip) compared
to psens = 60 (found by TBT), suggesting the importance
of attack parameter selection.

4.4. Ablation Study
Sensitivity to Target Class. We investigate the vulnerabil-
ity of different target classes (TC) against ProFlip attack.

Table 4 shows the evaluation results on ResNet-18 model
with CIFAR-10 dataset. We use the same attack parameters
(λ1 = λ2 = 1, γ1 = 2, γ2 = 1, TAP = 9.76%) besides
varying the target class t in this set of experiments. One can
see that the most susceptible class of ResNet-18 is t = 6
where we only need to modify a single parameter (ne = 1)
by flipping 4 bits (nb = 4). While the susceptibility varies
with different target classes, ProFlip is generally effective
(high ASR) and efficient (low nb) in all attack scenarios.

Table 4: Vulnerability analysis of different target classes on
ResNet-18 with CIFAR-10. The trigger area is 9.76% in all
cases. Both TA and ASR are measured in percentage (%).

TC TA ASR ne nb TC TA ASR ne nb

0 90.1 96.3 3 10 5 86.7 94.3 3 9
1 91.1 94.8 3 7 6 92.21 96.9 1 4
2 90.9 94 2 12 7 89 94.7 2 6
3 89 96.2 3 12 8 91.4 95.2 2 5
4 87.8 95.2 3 11 9 90.5 97.3 2 5

Sensitivity to Trigger Area. The trigger area has a direct
impact on the ASR of ProFlip’s trigger generation, thus also
influences the critical bits search in the next stage. We vary
the size of the square trigger while keeping the other hyper-
parameters unchanged. Table 5 illustrates how ProFlip per-
formance changes with the trigger area. We measure the
ASR after trigger generation and critical bits search to show
the impact of TAP on each stage. It can be seen that a
larger TAP results in a higher ASR of trigger generation.
This is because the trigger dimension increase, thus provid-
ing a larger optimization space when solving ∆ in Eq. (7).

Table 5: Effect of trigger area on ProFlip when attack-
ing ResNet-18 model with CIFAR-10 dataset (target class
t = 2). The column ‘TrigGen’ and ‘CBS’ denote trigger
generation and critical bits search, respectively.

TAP (%) TA (%) ASR (%)
ne nbTrigGen CBS

6.25 91.40 25.65 91.13 9 42
7.91 89.61 34.54 94.10 2 8
9.76 89.80 50.96 96.5 2 12

11.82 92.32 66.3 96.6 1 3

We can also observe that the total number of modified
elements ne (which is also the number of attack iteration)
varies with the trigger area. This is due to the fact that
a higher ASR inherited from the trigger generation stage
provisions a better initialization for ProFlip’s critical bits
search, thus helps to reduce ne. Note that a smaller value of
ne does not guarantee a smaller nb, since the required num-
ber of bit flips in each element (|f | in Algorithm 2) is differ-
ent. This fact is validated in the second and the third rows of
Table 5 where ne = 2 in both cases. When TAP = 7.91%,
ProFlip sequentially modifies two elements by flipping 3
and 5 bits in each element (nb = 8), respectively. In the
case where TAP = 9.76%, ProFlip changes two elements
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by flipping 5 and 7 bits in each element (nb = 12).
Sensitivity to Attack Sample Size. Our threat model as-
sumes the adversary has a small set of clean data sample D
to assist the attack design. We investigate how ProFlip’s
performance changes when the size of the available data
varies. Table 6 shows the experimental results on ResNet-
18 model with CIFAR-10 dataset. We use the default con-
figurations of ProFlip in this experiment. One can see that
our attack is effective even when as few as 64 images are
available. In general, a larger sample size is beneficial to
ensure higher test accuracy and higher ASR for the Trojan
attack. ProFlip finds the vulnerable bits in two iterations
(ne = 2) in all settings while nb differs slightly. The re-
sults in the last three columns are the same since our CBS
pipeline (Algorithm 2) identifies the same vulnerable ele-
ments and the same optimal values in these three cases.

Table 6: Effect of sample size on ProFlip’s performance
when attacking ResNet-18 with CIFAR-10 (t = 2, TAP =
9.76%). The parenthesis in the last column shows the num-
ber of bit flips in each iteration of critical bits search.

Data Size TA (%) ASR (%) ne nb

64 89.0 95.7 2 8 (6+2)
128 88.4 96.3 2 7 (5+2)
256 90.3 97.9 2 12 (5+7)
512 90.3 97.9 2 12 (5+7)
1024 90.3 97.9 2 12 (5+7)

5. Discussion
Trade-off between Stealthiness and Effectiveness.
ProFlip allows the adversary to explore the trade-off
between Trojan stealthiness and effectiveness by setting
the hyper-parameters γ1 and γ2 when computing Ltroj in
Eq. (10). We assess the trade-off between these two attack
goals by changing γ1 while using a fixed value of γ2 = 1.
Table 7 shows the evaluation results on ResNet-18 and
CIFAR-10 dataset. It can be observed that the test accuracy
of the Trojaned model increases as γ1 grows, while the
ASR shows a decreasing trend. We can also see that
ProFlip’s critical bits searching is robust to a wide range
of γ1, since the number of modified elements remains the
same (ne = 2) and the variation of nb is small.

Table 7: Performance trade-off of ProFlip with varying
hyper-parameters γ1 in Trojan loss. ResNet-18 model with
CIFAR-10 is assessed with t = 2, and TAP = 9.76%.

γ1 TA (%) ASR (%) ne nb

1 89.44 97.68 2 11 (5+6)
2 89.44 97.68 2 11 (5+6)
4 90.30 97.88 2 12 (5+7)
8 90.38 96.31 2 12 (6+6)

Potential Defense. We propose a potential defense against
ProFlip with two goals: (i) Reducing the ASR, and (ii) In-
creasing the BFA overhead in terms of nb. We make a key

observation from Figure 3 that selecting the most suscepti-
ble parameter for attack is crucial for BFA. As such, we pro-
pose to ‘hide’ the top vulnerable parameters of a DNN by
performing decomposition on them. Existing matrix/tensor
decomposition methods [44, 19, 45] can be used for this
purpose. With the defense, the decomposed components
are stored in memory instead of the raw parameter values.
In this case, the adversary will attack the less vulnerable
parameters that are stored in the raw format.

The overhead of our proposed defense depends on two
factors: the complexity of the employed decomposition
technique, and the number of layers selected for decom-
position. As such, the defense overhead can be controlled
by tuning these two factors. We implement this defense
scheme by decomposing (thus protecting) the most vulner-
able parameter identified by Algorithm 3. Table 8 com-
pares ProFlip’s performance before and after applying the
defense. One can see that the proposed defense can effec-
tively reduce the ASR of ProFlip while increasing the bit
flip overhead nb. We observe that the SVHN model with
VGG-16 is more vulnerable compared to the other three,
since its increase of nb with defense is the smallest. How-
ever, our defense can increase nb from 20 to 124 by decom-
posing the top-3 sensitive parameters of VGG-16.

Table 8: Performance of the proposed defense against
ProFlip. The attack results before and after deploying the
defense are denoted by ‘bef.’ and ‘aft.’, respectively. Ter-
mination condition for CBS is set to ne = 30.

Dataset Model ASR (%) ne nb

bef. aft. bef. aft. bef. aft.

CIFAR-10 ResNet-18 97.9 73.7 2 30 12 111
VGG-16 95.4 90.4 4 30 18 128

SVHN VGG-16 94.5 91.2 5 9 20 41
ImageNet ResNet-18 94.3 67.1 3 30 15 127

6. Conclusion
We present ProFlip, the first practical, progressive bit

flip-based targeted Trojan attack that can disturb a DNN af-
ter its deployment. ProFlip identifies the vulnerable bits in
the model parameters with a gradual refinement of granular-
ity, allowing the adversary to shrink the large search space
efficiently. ProFlip outperforms the prior art in terms of
both attack effectiveness and efficiency by yielding a higher
attack success rate with fewer bit flips. Our attack engen-
ders over 94% ASR across various benchmarks and reduces
the number of bit flips by 31.8× on average compared to
the previous work. ProFlip discloses the vulnerability of
DNNs against bit-flip attacks at runtime and encourages the
development of defense methods for model protection.
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