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Abstract

Category-level 6D object pose estimation aims to predict
the position and orientation for unseen objects, which plays
a pillar role in many scenarios such as robotics and aug-
mented reality. The significant intra-class variation is the
bottleneck challenge in this task yet remains unsolved so far.
In this paper, we take advantage of category prior to over-
come this problem by innovating a structure-guided prior
adaptation scheme to accurately estimate 6D pose for in-
dividual objects. Different from existing prior based meth-
ods, given one object and its corresponding category prior,
we propose to leverage their structure similarity to dynam-
ically adapt the prior to the observed object. The prior
adaptation intrinsically associates the adopted prior with
different objects, from which we can accurately reconstruct
the 3D canonical model of the specific object for pose es-
timation. To further enhance the structure characteristic of
objects, we extract low-rank structure points from the dense
object point cloud, therefore more efficiently incorporating
sparse structural information during prior adaptation. Ex-
tensive experiments on CAMERA25 and REAL275 bench-
marks demonstrate significant performance improvement.
Project homepage: https://www.cse.cuhk.edu.
hk/˜kaichen/projects/sgpa/sgpa.html.

1. Introduction

Category-level 6D object pose estimation is increasingly

studied and plays a pillar role in many real-world appli-

cations such as robotic manipulation [9], augmented real-

ity [24], and 3D scene understanding [7, 18]. The goal is

to predict position and orientation for novel objects of the

same category, so as to achieve robust applicability. Dif-

ferent from conventional instance-level [12, 20, 30, 35] ob-

ject pose estimation, which gives instance CAD models and

predicts poses for the instances that have been seen during

training, category-level task requires capturing the general

properties while accounting for the large variation of differ-
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Figure 1. Pose estimation results of two camera instances with dif-

ferent structures. (i) Instance I is similar to the categorical prior,

method w/o prior adaptation can handle pose estimation for such

cases. (ii) Instance II is very different from the prior in structure,

method w/o prior adaptation fails to associate the prior with the in-

stance, leading to inaccurate pose estimation. Our proposed prior

adaptation method can overcome this challenge with accurate pose

estimation for various novel objects (noting the orientation axis).

ent instances within a category.

Current methods for this challenging problem are still

limited so far. First of all, to address intra-class variation

of objects, a canonical object space has been resorted as a

unified coordinate system [4, 26, 32, 33]. In this normal-

ized space, a 3D structural model is reconstructed for each

object with the same size and orientation. However, such

normalization lacks explicit representation of shape varia-

tions across different objects of the same category, therefore

limiting the accuracy of 6D pose estimation. Later on, to

overcome this problem, SPD [26] is proposed to reconstruct

canonical object models with category-level shape priors.

A point cloud prior is built for each category, and further

deformed to reconstruct the canonical 3D model for a new

object.

However, such category-level prior is static and therefore

not adaptable to individual instances, i.e., the same prior is

applied to all instances of the same category. This greatly

hinders the generalization ability of the method, especially
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on those objects with significant difference to the recon-

structed prior. For example, as illustrated in Figure 1, when

we apply SPD to two different camera instances with dif-

ferent shapes, the performance can be distinct. For camera

instance I which has a similar point cloud with the prior, the

6D pose can be well estimated. Unfortunately, for camera

instance II which instead has a longer lens, the shape prior is

no longer representative for the specific case, thus severely

degrading the pose estimation performance.

In this paper, we propose a novel Structure-Guided Prior

Adaptation network (SGPA), which can dynamically adapt

the category-level prior to each particular instance. It adapts

the static prior to the observed object according to the struc-

ture similarity between the prior and the object. Given the

geometry features of prior and object point cloud, our SGPA

uses a transformer network to build a long-term dependence

between them to model the structure similarity. Based on

this similarity, SGPA then dynamically adjusts the prior

feature by injecting instance information into the prior fea-

ture. Specifically, we propagate the instance semantic fea-

ture along the extracted structure similarity to correspond-

ing prior features. We argue that the structure similarity that

is overlooked in existing methods can effectively bridge the

prior with the instance. In addition, adaptively injecting in-

stance semantic features into the prior can effectively miti-

gate the gap between the prior and the instance.

Furthermore, densely propagating the semantic feature

point by point is prone to introduce noises into the prior fea-

ture, because not all points are representative enough to be

used to propagate semantic features from instance to prior.

To further leverage the inherent structure characteristic of

instances for prior adaptation, we design an auxiliary net-

work to extract sparse key-points from the dense input point

cloud. Based on the extracted key-point information, we de-

velop a structure regularized low-rank transformer, in which

the extracted key-points are assembled with our SGPA for

efficient structure guided prior adaptation. The adapted

prior feature finally is used in a deformation based frame-

work to reconstruct a canonical model for the instance, and

match it with the instance point cloud for 6D pose estima-

tion. We summarize our main contributions as follows:

• We propose a novel prior based category-level 6D ob-

ject pose estimation framework, in which we dynami-

cally adapt the categorical prior to each particular in-

stance for object pose estimation.

• We propose SGPA, a novel structure-guided prior

adaptation network. It uses a transformer network to

model the global structure similarity between prior and

object, based on which the object semantic information

is injected into the prior feature for prior adaptation.

• We propose a structure regularized low-rank trans-

former. By regularizing the low-rank projection with

the projection of point cloud key-points, the derived

low-rank transformer manages to leverage the feature

on distinctive key-point positions for a more effective

prior adaptation.

• We conduct extensive experiments on well-

acknowledged CAMERA25 and REAL275 bench-

marks. Our method achieves dramatic performance

improvements over other existing methods for

category-level 6D object pose estimation.

2. Related Works
Instance-Level 6D Object Pose Estimation. In the

instance-level setting, the network is trained and tested on

the same object instance. Methods [20, 25, 2, 13, 17, 16]

mainly focus on learning a robust embedding that is con-

ditioned on the object pose. After that, methods fall into

three groups depending on how to use the embedding for

pose estimation. The first group of methods [35, 30, 15] di-

rectly use the embedding to regress pose parameters. The

second group of methods [20, 12, 25, 13] assume the object

3D CAD model is available. They rely on the embedding to

match the object observation with the CAD model on pre-

defined landmark positions. Then, correspondence-based

optimization techniques [27] are adopted for pose estima-

tion. The third group of methods [19, 31, 36] make use

of the object embedding to represent the object in a latent

space, based on which differentiable rendering is used for

object pose estimation. In general, due to the simplified set-

ting of instance-level pose estimation, the prior information

usually is not required for instance-level object pose esti-

mation.

Category-Level 6D Object Pose Estimation. In the

category-level setting, methods [22, 29, 14, 33] aim to pre-

dict poses for novel objects. Sahin et al. [23] derive a shape-

invariant representation for objects and utilize a part-based

random forest for pose estimation. Chen et al. [6] adopt

neural rendering to synthesize image patches in different

poses, which then are used to verify the probability of each

possible pose candidate for pose estimation. In order to

better overcome the intra-class variation of objects, a more

typical way is to perform pose estimation in the canonical

object space. Wang et al. [32] directly regress the canon-

ical coordinates for each object on the RGB image. The

pose then is estimated based on the dense correspondence

between the instance point cloud and the regressed canoni-

cal coordinates. Chen et al. [4] develop a variational auto-

encoder (VAE) for reconstructing the object model in the

canonical space. Subsequently, the pose parameters are di-

rectly regressed with a fully connected network. A lack

of an explicit model for the deformation of different in-

stances limits the overall performance of these non-prior

based methods. Recently, Tian et al. [26] present a prior

based method. They first build a category-level prior point
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Figure 2. An overview of our proposed structure-guided prior adaptation (SGPA) network for category-level 6D object pose estimation.

cloud for each category of objects in the canonical space.

Then, they deform the prior point cloud to reconstruct the

canonical model for each instance. Wang et al. [33] further

propose CR-Net, a cascaded relation and recurrent recon-

struction network to leverage complementary advantages

of multi-source inputs for categorical object pose estima-

tion. The introduction of prior information significantly im-

proves the overall performance. In this paper, we present

a stronger prior based method by the proposed structure

guided prior adaptation network.

3. Methodology
For a target object, let Po ∈ R

No×3 and Io ∈ R
h×w×3

denote its observed point cloud and RGB image patch,

where No and (h,w) denote the number of object points

and the size of image patch. Pr ∈ R
Nr×3 is the prior point

cloud with Nr points that has the same category with the

target object. Taking them as inputs, we present our prior

based method for category-level 6D object pose estimation.

3.1. Overview

As illustrated in Figure 2, we propose the SGPA network

for category-level object pose estimation. SGPA first uses

a feature extraction module to extract object geometry fea-

ture Go ∈ R
No×d, object semantic feature1So ∈ R

No×d

and prior geometry feature Gr ∈ R
Nr×d from Po, Io, and

Pr respectively. The learned features then would be fed

into a structure guided prior adaptation module (Sec. 3.2).

In this paper, we implement this prior adaptation module

with a transformer-based architecture. It models the global

1Generated by point-wise selection on semantic feature maps.

structure similarity between Po and Pr by correlating their

geometry features Go and Gr. Based on the extracted struc-

ture similarity, object semantic feature So then is adaptively

propagated along the structure similarity from Po to Pr for

prior adaptation. Moreover, instead of densely correlating

Go and Gr on all point positions for prior adaptation, we

further design an auxiliary network that predicts n object

key-points from the input No points. A structure regular-

ized low-rank transformer (Sec. 3.3) then is derived to ex-

tract structure similarity and perform prior adaptation based

on features located on distinctive object key-points. With

the adapted prior feature and the original object feature, a

deformation network is utilized to reconstruct the canonical

object model by deforming the prior Pr, and a matching net-

work (Sec. 3.4) is adopted to match the reconstructed model

with the object point cloud Po. Finally, a correspondence

based algorithm is applied to estimate pose parameters.

3.2. Prior Adaptation through Structure Guidance

Given Go and Gr, which are point-wise geometry fea-

tures of a target object and its category prior, our SGPA

globally correlates them to model the structure similarity

between Po and Pr. The learned structure similarity can

be represented into S ∈ R
Nr×No , in which each element

sij corresponds to a structure similarity value between the

point pi ∈ Pr and the point pj ∈ Po. Intuitively, the larger

of the structure similarity value of sij , the more correspond-

ing semantic feature from So should be propagated from pj
to pi. In other words, we take the structure similarity as a

guidance to conduct prior adaptation.

Specifically, we select to apply a transformer net-

work [28] to implement the above scheme. The transformer
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architecture recently is proved to be capable of capturing

long-term dependencies from sequence / disordered data.

The associated multi-head attention mechanism has a strong

expressive ability. We leverage this advantage to model the

high-level similarity between two disordered point clouds,

and based on the similarity to conduct prior adaptation for

category-level object pose estimation. In details, we take

Gr, Go and So as the query, key, and value of the multi-

head attention module:

Y (m) = σ(Q(m)(K(m))T/
√
d)V (m), (1)

where Q(m) = GrW
(m)
Q , K(m) = GoW

(m)
K , and V (m) =

SoW
(m)
V , where W

(m)
Q , W

(m)
K and W

(m)
V all ∈ R

d×d. They

are learnable projection matrices for query, key and value

respectively. σ(·) denotes the standard softmax normaliza-

tion function, which normalize the similarity value by row.

m = 1, 2, ...,M indexes the multi-head attention.

In each head, correlating Q(m) and K(m) computes a

similarity between Pr and Po in the projected embedding

space. Multiplying the similarity and K(m) gets the se-

mantic feature for the prior, which stems from the semantic

feature of the observed object. By using in total M atten-

tion blocks, we can model the structure similarity between

Pr and Po comprehensively and fully transfer semantic fea-

tures to the prior. We concatenate the output features of M
attention blocks as:

Y = Concat(Y (1), Y (2), ..., Y (M)). (2)

Then, we feed Y into the feed forward network to get the

adapted semantic feature for the prior Sr = FFN(Y ).
As shown in Figure 2, we subsequently concatenate Gr

and Sr to get the complete prior feature after adaptation. In

our transformer-based implementation, we resort to multi-

attention to extract robust similarity of two geometry fea-

tures, and then adaptively injecting the semantic feature into

the prior. Through this prior feature adaptation, we not only

enhance the prior feature with rich semantic features, but

also adapt the fixed prior to the varying object instances.

3.3. Enhancing Prior Adaptation by Structure Reg-
ularized Low-Rank Transformer

The conventional transformer with the vanilla version of

multi-head self-attention densely correlates two geometry

features and propagates semantic features point by point.

For 6D object pose estimation, this scheme might be neither

efficient nor effective enough. On the one hand, the vanilla

self-attention incurs a complexity of O(n2) with respect to

the number of object points. Estimating pose for an object

with more than thousands of points would be inefficient.

On the other hand, for the captured object point cloud, not

all positions are representative for prior adaptation, because

the object point cloud would be noisy, incomplete and non-

uniform in practical environments. To address these issues,

in this section, we further describe a structure regularized

low-rank transformer for prior adaptation.

Recently, with the rapid development of transformer net-

works, a lot of research works [1, 8, 34] focus on reduc-

ing the overhead of the self-attention. The low-rank trans-

former [34] is one typical solution, in which the conven-

tional self-attention is replaced with a low-rank attention as:

Y (m) = σ(Q(m)(E
(m)
K K(m))T/

√
d)(E

(m)
V V (m)), (3)

where E
(m)
K and E

(m)
V ∈ R

n×No , and n � No. They are

two linear projection matrices that map key and value into a

low-dimension space, so the self-attention map can be com-

puted in a low-rank manner. The problem of this low-rank

transformer is that there are not explicit regularization on

E
(m)
K and E

(m)
V . As discussed in [34], it reduces the over-

head of self-attention with a cost of performance drop.

We argue that when applying the transformer network

to object pose estimation, a proper regularization on E
(m)
K

and E
(m)
V is capable of reducing the overhead and pre-

serving (even improving) the pose accuracy simultaneously.

We therefore design a novel structure regularized low-rank

transformer network. As shown in Figure 2, we constrain

the low-rank transformer with object key-points. Specifi-

cally, we introduce an auxiliary network to convert the orig-

inal Po with No points into n object key-points. Inspired

by recent intrinsic point estimation [5], we associate Po and

n key-points by a projection matrix E ∈ R
n×No , which

is estimated from the concatenated object features [Go, So].

Once E is estimated, we set E
(m)
K = E

(m)
V = E for the

low-rank self-attention formulated in Eq. (3). Since E is

learned to transform Po into n key-points, projecting K(m)

and V (m) with E can be seen as an approximation of ob-

ject features on key-points, which effectively regularize the

projected feature space to contain as informative as possible

features for pose estimation with a reduced complexity.

3.4. Prior-based Object Pose Estimation
After prior adaptation, we get Fo = [Go, So] and Fr =

[Gr, Sr], which correspond to object feature and prior fea-

ture respectively. SGPA then utilizes two head networks

for pose estimation. The first network is a deformation net-

work. It aims to reconstruct the 3D canonical model for

the target object, which is achieved by deforming Pr with a

point-wise deformation field Dr ∈ R
Nr×3:

P ′
r = Pr +Dr = Pr + Fd(Fo, Fr), (4)

where Fd(·) denotes the deformation network, and P ′
r is the

deformed prior point cloud (a.k.a, a reconstructed canonical

model for the target object). The second network is a match-

ing network. It softly associates P ′
r with Po by estimating a

correspondence matrix Mr from P ′
r to Po as:

P ′
o = Mr × P ′

r = Fm(Fo, Fr)× P ′
r, (5)

where Fm(·) denotes the matching network. Mr ∈
R

No×Nr is a normalized matrix that compute No matched
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Table 1. Comparison of our method with four RGBD based state-of-the-art methods on CAMERA25 and REAL275 benchmarks. SPD*

denotes our own re-implementation result for SPD [26].

Method
CAMERA25 REAL275

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
NOCS [32] 83.9 69.5 32.3 40.9 48.2 64.6 78.0 30.1 7.2 10.0 13.8 25.2

CASS [4] - - - - - - 77.7 - - 23.5 - 58.0

SPD [26] 93.2 83.1 54.3 59.0 73.3 81.5 77.3 53.2 19.3 21.4 43.2 54.1

SPD* [26] 93.0 85.5 58.1 62.9 75.9 83.8 80.0 56.7 20.0 22.3 45.3 57.9

CR-Net [33] 93.8 88.0 72.0 76.4 81.0 87.7 79.3 55.9 27.8 34.3 47.2 60.8

Ours 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7

points around P ′
r for pose estimation. P ′

o denotes the pre-

dicted matched points that have a point-to-point correspon-

dence relationship with Po. Given Po and P ′
o, a correspon-

dence based method [27] finally is adopted to jointly esti-

mate object pose and size simultaneously.

3.5. Overall Loss Function

Overall, our SGPA has three estimation targets for 6D

object pose estimation: the key-point transformation E, the

point-wise deformation field Dr, and the correspondence

matrix Mr. In order to train SGPA, we use the following

loss function:

L = λ1Lpose + λ2Lkp. (6)

For Lpose, we use the same loss function with SPD [26] for

estimating Dr and Mr. The Lpose composes of four terms

in total. Two of them are used to supervise the predicted Dr

and Mr with the ground-truth object model and 6D pose,

and the remaining two terms are used to further regularize

the value range of Dr and Mr. Please refer to [26] for more

detailed formulation of Lpose. The Lkp is defined as:

Lkp =
∑

xi∈Po

min
yj∈Pk

‖xi − yj‖22 +
∑

yi∈Pk

min
xi∈Po

‖xi − yj‖22,

(7)

where Pk = E × Po is the extracted n object key-points.

Lkp is formulated with the Chamfer Distance (CD) between

Po and Pk, which encourages E to represent a No-point

model with n key-points where n � No. λ1 and λ2 are two

balancing weights, which are set to 1.0 in our experiments.

3.6. Implementation Details

For the feature extraction module of SGPA, we use a

pointnet++ [21] with four abstraction levels to extract ge-

ometry features, which have 512, 256, 128 and 64 cen-

troids respectively. On each abstraction level, multi-scale

grouping (MSG) is used to assemble multi-scale features.

The MSG block in four levels have scales (0.01, 0.02),
(0.02, 0.04), (0.04, 0.08) and (0.08, 0.16) respectively. A

four-level PSP [37] network with ResNet-18 [11] as the

backbone is used to extract object semantic features from

the image patch. For the adaptation module, we use a

single-layer transformer network with four self-attention

heads as the basic prior adaptation network. The auxiliary

key-point extraction network adopts a two-layer percep-

tron (MLP) block followed by a softmax activation layer.

Fd and Fm use the same structure as [26] for regressing the

deformation field and the correspondence matrix.

4. Experiments
4.1. Datasets

We evaluated our SGPA on both benchmarks of

the virtual dataset CAMERA25 and the real dataset

REAL275 [32]. Specifically, CAMERA25 has 300K syn-

thetic RGB-D images which are generated by compositing

virtual objects with real backgrounds. Among the 300K im-

ages, 25K images are used for testing. REAL275 contains

8K RGB-D images that are collected in 18 different real

scenes, among which 7 scenes (4300 images) are used for

training, 5 scenes (950 images) are used for validation, and

the remaining 6 scenes (2750 images) are used for testing.

Two datasets cover the same 6 object categories, i.e., bottle,
bowl, camera, can, laptop and mug.

4.2. Experiment Settings

In most object pose estimation methods, to focus on the

pose estimation algorithm, the instance segmentation and

the subsequent pose estimation are decoupled. We also fol-

low this scheme and generated the instance segmentation

result2 offline with an off-the-shelf network (e.g., Mask-

RCNN [10]). After that, we crop the target object from

the RGB-D image based on the segmentation result, and

recover the instance point cloud by using camera intrinsic

parameters. For the prior point cloud, we train an auto-

encoder network on the ShapeNet dataset [3], and then we

feed the average embedding of all instances that belong to

the same category into the trained decoder to get the prior

point cloud for this category. For both instance point cloud

and prior point cloud, we uniformly sample them into 1024
points. In other words, No = Nr = 1024 in our experi-

ments. Additionally, we fix n = 256 in our experiments,

indicating that we use a fixed rank of 256 in our low-rank

transformer when adopting it for prior adaptation. A de-

tailed study on parameter n is given in our ablation study.

2We use the same segmentation result when conducting experiments.
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Figure 3. Qualitative comparison of SGPA with SPD on REAL275 dataset.

Table 2. Effects of each component of the proposed method on CAMERA25 and REAL275 benchmarks.

Adaptation Low-rank transformer
CAMERA25 REAL275

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
1 - - 93.0 85.6 61.5 65.3 79.0 85.7 79.8 59.2 23.8 28.4 50.7 62.5

2 � - 92.7 87.7 68.2 72.0 82.6 88.2 80.4 59.9 33.3 37.2 58.8 69.0

3 � � 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7

Table 3. Evaluation of the proposed prior adaptation method on CAMERA25 and REAL275 benchmarks when using different approaches

to generate the prior point cloud.

Prior
CAMERA25 REAL275

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
Random 93.0 87.2 69.5 73.0 81.9 88.0 81.3 59.5 33.9 36.6 60.4 68.5

Nearest Neighbor 92.8 88.2 69.9 73.7 83.2 88.4 79.4 59.4 34.8 37.5 59.6 69.9

Embedding 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7

4.3. Evaluation Metrics

Following the widely adopted evaluation scheme [4, 26,

32], we use two aspects of metrics to quantitatively evaluate

the pose estimation performance:

• 3D IoU. It computes the overlap of two 3D bounding

boxes under the predicted pose and the ground truth

pose respectively. If the ratio of overlapping is larger

than a specified ratio, the prediction is judged to be

correct. We use IoU50 and IoU75 for this metric.

• Rotation and translation errors. This metric directly

computes the rotation and translation errors between

the predicted pose and the ground truth pose. If the ro-

tation error is smaller than an angle threshold and the

translation is smaller than a distance threshold, the pre-

diction is judged to be correct. We use 5◦2cm, 5◦5cm,

10◦2cm and 10◦5cm for this metric.

Given the above two metrics, we report the overall mAP

across 6 object categories to compare the performance of

different methods.

4.4. Comparison with State-of-the-Art Methods
We compared our proposed method with four RGB-D

based methods: NOCS [32], CASS [4], SPD [26], and CR-

Net [33]. Table 1 gives the comparative results. On both

datasets, our proposed method significantly outperforms

other existing methods. In terms of IoU75, 5◦2cm, and

10◦5cm, SGPA outperforms NOCS by 18.6%, 38.4%, and

23.8%, and outperforms SPD by 2.6%, 12.6% and 4.6% on

the CAMERA25 dataset. The superiority of our method is

more obvious on the REAL275 dataset. Specifically, SGPA

achieves 61.9% mAP on IoU75, 35.9% mAP on 5◦2cm,

and 70.7% mAP on 10◦5cm, which are 31.8%, 28.7%, and

45.5% higher than NOCS, 5.2%, 15.9% and 12.8% higher

than SPD, and 6.0%, 8.1% and 9.9% higher than recent

CR-Net. These experimental results demonstrate the effec-

tiveness of the proposed SGPA network. Figure 3 further

presents qualitative comparison of SPD and our SGPA on

the REAL275 dataset. SGPA outperforms SPD in handling

geometrically complex objects, such as cameras and mugs.

Moreover, Figure 4 presents a more detailed error evalua-

tion result on two datasets. Especially, our SGPA is much

more accurate than SPD in terms of rotation.
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Figure 4. Average precision vs. error thresholds on CAMERA25

(top row) and REAL275 (bottom row).

Table 4. Evaluation of SGPA on CAMERA25 and REAL275

benchmarks when n is set to different values. ’full’=1024.

n
CAMERA25

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
16 92.6 86.9 68.2 71.9 83.5 86.5

32 92.5 86.6 68.7 72.3 82.1 87.2

64 92.9 87.2 67.3 71.3 82.1 87.6

128 92.5 86.7 68.5 72.3 82.2 87.5

256 93.2 88.1 70.7 74.5 82.7 88.4
512 92.6 87.8 69.9 73.5 82.7 87.8

full 92.7 87.7 68.2 72.0 82.6 88.2

n
REAL275

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
16 79.0 58.0 27.7 30.6 55.0 64.9

32 79.6 59.8 27.9 32.3 52.5 66.7

64 78.7 60.9 30.2 34.3 57.8 69.0

128 79.6 62.5 33.6 36.2 58.5 68.8

256 80.1 61.9 35.9 39.6 61.3 70.7
512 79.2 61.9 33.9 36.9 60.2 69.2

full 80.4 59.9 33.3 37.2 58.8 69.0

4.5. Ablation Studies

To justify the design choice of our method, we conducted

the following ablation studies to our method:

• baseline. Not use any prior adaptation. Directly re-

gressing the deformation field and the correspondence

matrix from the extracted geometry and semantic fea-

tures for pose estimation.

• w/ prior adaptation (Sec. 3.2). Conduct prior adapta-

tion with the vanilla transformer network.

• w/ low-rank transformer (Sec. 3.3). Conduct prior

adaptation with the proposed structure regularized

low-rank transformer. n = 256 in this experiment.

Table 2 presents the result of our ablation study on both

CAMERA25 and REAL275 datasets. Compared with the

Table 5. Comparison of the model reconstruction accuracy in CD

metric (×10−3).

Method
CAMERA25

bottle bowl camera can laptop mug mean

SPD*[26] 1.72 1.55 4.28 0.96 1.99 1.36 1.78

Ours 1.35 1.30 3.33 0.87 1.20 1.17 1.42
REAL275

bottle bowl camera can laptop mug mean

SPD*[26] 4.34 1.21 8.30 1.80 2.10 1.06 2.99

Ours 2.93 0.89 5.51 1.75 1.62 1.12 2.44

baseline method, prior adaptation can significantly im-

prove the pose accuracy with a large margin. Specifically,

a vanilla transformer based prior adaptation network im-

proves the mAP of IoU75 and 5◦2cm from 85.6% and

61.5% to 87.8% and 68.2% on the CAMERA25, and from

59.2% and 23.8% to 59.9% and 33.3% on the REAL275.

Compared with the improvement on CAMERA25, the im-

provement on REAL275 is much more significant. It in-

dicates that the proposed prior adaptation can effectively

adapt the prior trained on a virtual dataset to the real en-

vironment for pose estimation. Moreover, replacing the

vanilla transformer with our proposed structure regularized

low-rank transformer can further improve the performance.

The result demonstrates that through the guidance of object

key-points, our low-rank transformer manages to leverage

the most distinctive features for more effective prior adap-

tation, which leads to a higher pose accuracy.

Effect of adopted priors. Similar to SPD, we further in-

vestigate the performance of our SGPA when using dif-

ferent methods to generate the prior point cloud. Specif-

ically, apart from training an encoder-decoder network on

the ShapeNet to generate prior (denoted as ‘Embedding’ in

Table 3), we use additional two different methods to gen-

erate the prior point cloud. For one, for each category, we

refer to the instance model whose embedding is the closest

to the average embedding of the encoder-decoder network

as the prior (denoted as ‘Nearest Neighbor’). For another,

we randomly select one instance from each category and

take its point cloud as the prior for the category (it is de-

noted as ‘Random’). Table 3 presents the comparative re-

sults. Generally, our method is stable under different priors.

This is because our prior adaptation method is based on the

high-level structure similarity, which is robust to the spe-

cific prior generation method, as long as providing structure

meaningful prior to the network.

Dimension of low-rank. In SGPA, we use a structure regu-

larized low-rank transformer (see Sec. 3.3) to perform prior

adaptation. In this experiment, we investigate the effect of

different choices of n on the pose accuracy. We gradually

reduce the value of n from 1024 to 16. Table 4 concludes

the comparative results. On the CAMERA25 dataset, the

pose result is relatively stable to the choice of n. When

n = 16 or n = 1024, they produce nearly the same pose

accuracy on CAMERA25. On the REAL275 dataset, the
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Query point Top-8 attention Top-16 attention

Top-32 attention Top-64 attention Top-128 attention

Query point Top-8 attention Top-16 attention

Top-32 attention Top-64 attention Top-128 attention

Query point Top-8 attention Top-16 attention

Top-32 attention Top-64 attention Top-128 attention

Figure 5. Visualization results of the learned attention maps from the adopted transformer network. We visualize the attention value on

the position of the object point cloud. We project them on the image patch for more clear visualization. The color varies from blue to red

corresponds to the attention value varies from small to large. The top attentions tend to be located at the matched region of the query point

on the prior point cloud. From top-left to bottom-right, four query points are on mug handle, mug rim, camera lens, and camera body.

choice of n has a relatively large effect on the pose accu-

racy. When n is extremely small, we observed an obvious

accuracy drop. Overall, when No = Nr = 1024, n = 256
receives the best performance on both datasets.

Figure 5 further visualizes the attention map learned by

the transformer network, which indicates the learned re-

lationship between the prior point cloud and object point

cloud. For each point on the prior point cloud, we col-

lect its point-wise attentions with the object point cloud and

project them onto the image patch for a more clear display.

As shown in Figure 5, for a query point on the prior point

cloud, the learned attention tends to first focus on the corre-

sponding part of the object (e.g., see the point on the handle

of the mug and its top-8 attention map), and then spread to

the whole object region to learn a global relationship (see

the top-128 attention map). This result demonstrates that

our network learns meaningful structure similarity between

prior and object. Meanwhile, by adapting the prior feature

to the observed target object through the learned structure

similarity, our SGPA can also reconstruct the 3D model for

the instance more accurately (see Table 5).

5. Conclusion
In conclusion, we present a novel structure-guided prior

adaptation network for category-level 6D object pose esti-

mation. It uses a transformer network to model the global

structure similarity between prior and target object, based

on which the object semantic information is injected into the

prior feature to dynamically adapt the category-level prior

to each particular object. We further propose a structure

regularized low-rank transformer, in which we regularize

the low-rank projection with the projection of point cloud

key-points. The derived low-rank transformer therefore can

leverage the feature on distinctive key-point positions for a

more effective prior adaptation. Extensive experiments on

two well-acknowledged benchmarks demonstrate that our

method achieves dramatic performance improvements over

other existing methods. This work is potentially useful for

object perception and manipulation for robots, such as in-

dustrial robotics scenarios.
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