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Abstract

Neural implicit surface representations have emerged as
a promising paradigm to capture 3D shapes in a continu-
ous and resolution-independent manner. However, adapt-
ing them to articulated shapes is non-trivial. Existing ap-
proaches learn a backward warp field that maps deformed
to canonical points. However, this is problematic since the
backward warp field is pose dependent and thus requires
large amounts of data to learn. To address this, we in-
troduce SNARF, which combines the advantages of linear
blend skinning (LBS) for polygonal meshes with those of
neural implicit surfaces by learning a forward deforma-
tion field without direct supervision. This deformation field
is defined in canonical, pose-independent, space, enabling
generalization to unseen poses. Learning the deformation
field from posed meshes alone is challenging since the cor-
respondences of deformed points are defined implicitly and
may not be unique under changes of topology. We propose a
forward skinning model that finds all canonical correspon-
dences of any deformed point using iterative root finding.
We derive analytical gradients via implicit differentiation,
enabling end-to-end training from 3D meshes with bone
transformations. Compared to state-of-the-art neural im-
plicit representations, our approach generalizes better to
unseen poses while preserving accuracy. We demonstrate
our method in challenging scenarios on (clothed) 3D hu-
mans in diverse and unseen poses.

1. Introduction

Modeling the shape and deformation of articulated 3D
objects has traditionally been achieved by deforming a
polygonal mesh via linear blend skinning (LBS) with pose-
correctives. However, meshes are inherently limited by
their resolution-to-memory ratio and their fixed topology.
Therefore, neural implicit surface representations [10, 30,
31, 38] have recently attracted much attention because they
provide a resolution-independent, smooth and continuous
alternative to discrete meshes. However, updating an im-

Continuous Implicit Surfaces in Unseen Poses

Learned Canonical 3D Shape and Skinning Weights

Input 3D Posed Meshes

Figure 1: SNARF: From a sequence of posed meshes (top),
we learn a neural implicit 3D shape and a skinning field
in canonical pose (middle) without supervision of skinning
weights or part correspondences. Learned forward skinning
enables generalization to unseen poses (bottom) while cap-
turing local details via pose conditioning.

plicit surface representation as a function of the underlying
pose changes is challenging since it requires modifying a
continuous function rather than a discrete set of points.

To address this, we propose SNARF (Skinned Neural Ar-
ticulated Representations with Forward skinning), a novel
approach to learning articulated 3D shapes represented by
neural implicit surfaces directly from 3D watertight meshes
and corresponding bone transformations with no need for
supervision via pre-defined skinning weights. SNARF com-
bines the simplicity of skeletal-driven deformation of LBS
with the fidelity and topological flexibility of implicit sur-
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Figure 2: Forward vs. Backward Skinning. Forward
skinning weights are defined in pose-independent canoni-
cal space and therefore naturally generalize to unseen poses
as the one in the bottom left panel. In contrast, backward
skinning weights are defined in pose-dependent deformed
space and thus struggle with unseen poses.

faces, enabling animation of complex human bodies as
shown in Fig. 1. Moreover, SNARF goes beyond LBS
by conditioning the neural shape on poses to capture pose-
dependent non-linear deformations. The main challenge is
to express the mapping between surface points in canonical
pose and their deformed counterparts. Existing approaches
attempt to learn shape in the canonical pose and a back-
ward deformation field, transforming deformed points to
the canonical pose [12, 34, 39, 43]. However, as illustrated
in Fig. 2, backward skinning is problematic since the defor-
mation field depends on the pose of the deformed object,
limiting generalization to unseen poses.

To tackle this problem, we devise a method that learns
a dense forward skinning weight field without requiring di-
rect supervision. Once learned, this skinning field can be
leveraged to generate shape deformations even for poses
outside of the training set. However, to jointly learn the for-
ward skinning field and the object shape from posed meshes
alone, we must establish the correspondence of any 3D
point in deformed space to the undeformed space. Yet, this
requires the availability of the backward mapping which is
only implicitly defined and has no analytical solution.

To overcome this issue, we propose a forward skinning
model that exploits an iterative root finding algorithm to
find the corresponding canonical point for any deformed

point. Our approach is able to retrieve multiple correspon-
dences for any deformed point and therefore naturally han-
dles topology changes. We further derive the gradients of
our forward skinning module, hence making it differen-
tiable and enabling end-to-end learning of the canonical
shape and skinning weights jointly from deformed observa-
tions. Importantly, and in contrast to prior work, our method
does not require any a priori skinning weights or pose cor-
rectives defined on the surface and hence can be applied in
scenarios where pre-rigged mesh models are not available.

We experimentally demonstrate that our method is able
to generate high-quality shapes with arbitrary desired bone
transformations, even those far beyond the training distri-
bution, where other recent methods like NASA [12] fail.
Since our approach operates in continuous space, it enables
reconstruction of fine geometric details. By conditioning
the neural implicit function on poses, our method faithfully
models local pose-dependent deformations, e.g., the move-
ment of clothing or soft tissue. Our code is available at
github.com/xuchen-ethz/snarf.

2. Related Work

Skinning Polygonal Meshes: Modeling the deformation of
non-rigid and articulated 3D objects is a fundamental prob-
lem in computer vision and graphics with many applica-
tions. Traditionally, this problem is formulated for polygo-
nal meshes and is referred to as skinning. Skinning enables
deformation of a high-resolution surface mesh with low-
order control primitives such as skeletal bones. The most
common approach is linear blend skinning (LBS), which
models each mesh vertex’s deformation as a convex com-
bination of input bone transformations as defined by skin-
ning weights. These skinning weights are typically defined
by an artist or learned from data. LBS produces well-
known artifacts that many methods attempt to address, e.g.
with dual quaternion blend skinning [20] or multi-weight
enveloping [29, 54]. The key concept is to define pose-
dependent “corrective blend shapes” that are added to a
shape such that, when it is posed, the LBS errors are min-
imized [21, 46]. Classically, these “pose correctives” are
artist defined, though they can also be learned [24]. Here
we extend the concept of LBS and pose correctives to neu-
ral implicit surface representations.

Learning both blend weights and rigs from examples
has a long history, starting with James and Twigg [17].
Specifically for human bodies, numerous learning methods
have been proposed, many of which learn the LBS weights
[15, 24, 37, 56]. Recent methods attempt to disentangle
shape and pose in an unsupervised fashion given registered
training meshes [19, 60]. RigNet [57] uses a deep network
to learn both articulated rigs and skinning weights jointly.
NeuroSkinning [23] also uses a deep network to learn blend
weights and can cope with complex surface topology. In
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contrast to us, these methods require a large dataset of
rigged models with hand-painted skinning weights and do
not consider implicit surface representations.

Neural Implicit Shapes: Neural implicit shape represen-
tations can model complex shapes with arbitrary topol-
ogy in a continuous fashion. Given a 3D location, these
networks regress the distance to the surface [38], occu-
pancy probability [30], color [36] or radiance [33] of a 3D
point. Conditioning on local information such as 2D im-
age features or 3D point cloud features has been shown
to yield more detailed reconstructions [11, 16, 41, 47, 48].
While early methods require watertight meshes for train-
ing, several recent approaches have demonstrated unsuper-
vised training from raw 3D points clouds [5, 13, 49] or im-
ages [33, 35, 51, 58]. A current limitation of most exist-
ing implicit models is that they do not support high-quality
skeletal deformation. Our method addresses this key limi-
tation, enabling learning and generation of realistic skeletal
deformations of neural implicit surfaces.

Deformable Neural Shapes: Compared to meshes, de-
forming neural implicit shapes is more challenging as one
needs to deform continuous space rather than a fixed set
of vertex points. Very recently, various approaches have
been proposed to model backward deformation fields [18,
34, 39, 43]. These fields map points in deformed space
to canonical ones, where geometric properties (e.g. occu-
pancy) are queried from a canonical shape network. The de-
formation field is modeled as a neural network that outputs
velocity [34], translation [43] or rigid transformation [39]
and is jointly trained with the canonical occupancy network
using observations in deformed space. NiLBS [18] learns
skinning weights for each point and then derives the de-
formation via LBS according to the bone transformations.
An inherent limitation of learned backward deformation,
however, is poor generalization to unseen poses. As illus-
trated in Fig. 2, backward deformation fields are defined in
deformed space and, hence, inherently deform with pose.
Thus, the network must memorize deformation fields for
different spatial configurations, making it difficult to gener-
ate deformations that have not been seen during training.

Part-based Models: In recent work, NASA [12], proposes
to represent a 3D human body model as a combination of
independent parts, each of which is represented by an oc-
cupancy network [30]. Rigidly transforming these parts
according to the input bone transformations produces de-
formed shapes. While such a formulation preserves the
global structure after articulation, the continuity of surface
deformations is violated, causing artifacts at intersections
of body parts. Although each part can learn to deform it-
self to partially compensate for this undesired effect, no-
ticeable artifacts remain, particularly for poses that are be-
yond the training distribution. Moreover, NASA requires

ground-truth surface skinning weights to learn correct part
assignments. In contrast to NASA, our method learns for-
ward skinning weights without such supervision and cap-
tures pose-dependent deformations.

More generally, the previous approaches suffer from ar-
tifacts due to overly simple assumptions about deformation
or do not generalize well to unseen poses as shown in Fig. 4.
In contrast, SNARF generates continuous shapes in arbi-
trary poses, even those far beyond the training distribution,
by learning pose-independent forward skinning weights and
pose-dependent correctives in canonical space.

3D Human Avatars: While more general, we demonstrate
our approach on the problem of learning and animating re-
alistic 3D human avatars. Recent [2, 3, 4, 6, 59] and con-
current works [9, 14, 22, 25, 26, 32, 40, 42, 44, 49, 50, 52,
53, 55] on learning 3D human models typically require a
template mesh model with fixed topology, e.g. SMPL [24],
or are limited in resolution due to the underlying 3D repre-
sentation [2, 3, 55, 59]. In contrast, our method is able to
represent articulated shapes at high fidelity without strong
prior assumptions about the object’s shape. This allows us
to better model deformations of objects with more flexible
topology, e.g., humans in clothing.

3. Method
In this section, we first define our representation for the

canonical shape and forward skinning weights. Next, we
introduce our forward mapping and derive the gradients for
learning the canonical shape representation and skinning
weights in an end-to-end manner.

3.1. Representation

We represent an articulated object by its shape and skin-
ning weights in canonical space. Similar to classical ap-
proaches like SMPL, we split the problem into LBS with
pose-independent skinning weights and pose-dependent
non-linear deformations. LBS captures many important as-
pects of the shape change, thus the pose-dependent model
only has to learn a corrective. This makes training with lim-
ited data feasible and aids generalization to unseen poses.

Shape: We use a neural network to predict the occupancy
probability for any input 3D point x in canonical space. To
model pose-dependent local deformations such as wrinkles
or soft tissue, we inject the object pose p as additional input:

fσf
: R3 × Rnp → [0, 1]. (1)

Here, σf are the network parameters and np is the dimen-
sionality of the pose condition p ∈ Rnp which we specify
in terms of joint angles. The canonical shape is implicitly
defined as the 0.5 level set of the neural function S:

S = {x | fσf
(x,p) = 0.5}. (2)
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Figure 3: Generating Deformed Shapes with Forward Skinning. Given a query point in deformed space x′, our method
first finds its canonical correspondences x∗ which satisfy the forward skinning equation (4) via iterative root finding. Multiple
correspondences may exist due to topological changes, which can be reliably found by initializing the root finding algorithm
with multiple starting points derived from the bone transformations. The canonical occupancy network fσf

then predicts the
occupancy probabilities at {x∗} which are finally aggregated to yield the occupancy probability of the query point x′.

Neural Blend Skinning: We model the non-rigid deforma-
tion induced by skeleton changes using linear blend skin-
ning (LBS). Towards this goal, we represent an LBS weight
field in canonical space using a second neural network:

wσw : R3 → Rnb , (3)

where σw are the network parameters and nb denotes the
number of bones. Following traditional LBS, we enforce
the weights w = {w1, . . . , wnb

} of each point x to satisfy
wi ≥ 0 and

∑
i wi = 1 using a softmax activation function.

Note that wσw
does not depend on the pose p.

Given the LBS weights w of a 3D point x and the bone
transformations B = {B1, . . . ,Bnb

} corresponding to a
particular body pose p, the deformed point x′ is determined
by the following convex combination:

x′ = dσw(x,B) =

nb∑
i=1

wσw,i(x) ·Bi · x. (4)

Note that the canonical pose is a free hyper-parameter.
Empirically, we found the canonical pose shown in Fig. 1 to
work well and used it for all experiments on human shapes.

3.2. Differentiable Forward Skinning

To predict the occupancy probability o′x of an observed
3D point x′ in deformed space, we must first determine the
canonical correspondence x∗ of the deformed query x′ in
order to evaluate the occupancy o(x′,p) = f(x∗,p) with
the canonical occupancy network.

At the core of our forward skinning approach lies the
problem of finding canonical correspondence x∗ of any
query point x′. This is non-trivial because (i) their relation-
ship is defined implicitly via Eq. (4) without an analytical
inverse form, and (ii) multiple canonical points might corre-
spond to the same deformed point as space can overlap after
warping (cf. Fig. 3). To address this problem, we propose a

procedure that is able to retrieve all potential canonical cor-
respondences {x∗i } of any deformed point x′ from the im-
plicitly defined relationship and then composite these cor-
respondences using standard operations for implicit shape
composition. An overview is provided in Fig. 3.

Correspondence Search: Unlike backward skinning, for-
ward skinning defines the canonical correspondence x∗ of
x′ implicitly as the root of the following equation

dσw
(x,B)− x′ = 0, (5)

which cannot be solved in closed form. The solution of
Eq. (4) can be attained numerically via standard Newton or
quasi-Netwon methods:

xk+1 = xk − (Jk)−1 · (dσw
(xk,B)− x′), (6)

where J is the Jacobian matrix of dσw
(xk,B) − x′. To

prevent computing the Jacobian at each iteration, we apply
Broyden’s method [8] using a low-rank approximation of J.

Handling Multiple Correspondences: We find multiple
roots {x∗i } by initializing the optimization procedure with
different starting locations and exploiting the local conver-
gence of iterative root finding. The initial states {x0

i } are
thereby obtained by transforming the deformed point x′

rigidly to the canonical space for each of the nb bones, and
the initial Jacobian matrices {J0

i } are the spatial gradients
of the LBS weight field at the corresponding initial states:

x0
i = B−1i · x′ J0

i =
∂dσw

(x,B)

∂x

∣∣∣∣
x=x0

i

(7)

Initial states that are far from the optima lead to either con-
vergence to one of the optima and can be safely included
for further computation, or divergence, and can therefore be
easily discarded by thresholding. Consequently, we define
the final set of correspondences as:

X ∗ = {x∗i | ‖dσw
(x∗i ,B)− x′‖2 < ε} , (8)
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where ε is the convergence threshold which we set to 10−5

in our experiments. This allows us to retrieve all canoni-
cal correspondences of any deformed point x′ even under
topological changes which induce one-to-many mappings.

Note that if any of the canonical correspondences is oc-
cupied, the deformed point x′ is occupied as well. Thus, the
maximum over the occupancy probabilities of all canonical
correspondences gives the final occupancy prediction:

o(x′,p) = max
x∗∈X∗

{fσf
(x∗,p)}. (9)

This union operator is commonly used to composite inde-
pendent shapes [45]. Similar to NASA [12], in practice we
use softmax instead of a hard maximum to allow gradients
to back-propagate to all canonical correspondences.

3.3. Training Losses

Our model is trained via minimizing the binary cross en-
tropy loss LBCE(o(x′,p), ogt(x′)) between the predicted
occupancy of the deformed points o(x′,p) and the corre-
sponding ground-truth ogt(x′) for all posed 3D meshes of
a single subject. In addition, we apply two auxiliary losses
during the first epoch to bootstrap training. We randomly
sample points along the bones that connect joints in canoni-
cal space and encourage their occupancy probabilities to be
one. Moreover, we encourage the skinning weights of all
joints to be equal to 0.5 for their respective two neighboring
bones. No ground truth skinning weights or part segmenta-
tions are required by our method.

3.4. Gradients

During training, we must determine the gradient of the
overall loss L w.r.t. the network parameters σ = {σf , σw}.
For the occupancy network fσf

, the gradient is given by

∂L
∂σf

=
∂L
∂o
· ∂o

∂fσf

·
∂fσf

∂σf
(10)

which can be easily obtained by backpropagating gradients
through the corresponding computation graph. For the LBS
weight field wσw

, the gradient is given by

∂L
∂σw

=
∂L
∂o
· ∂o

∂fσf

·
∂fσf

(x∗)

∂x∗
· ∂x

∗

∂σw
(11)

where x∗ is the root as defined in Eq. (8) and the last term
can be analytically obtained via implicit differentiation:

dσw(x
∗,B)− x′ = 0 (12)

⇔ ∂dσw
(x∗,B)

∂σw
+
∂dσw

(x∗,B)

∂x∗
· ∂x

∗

∂σw
= 0 (13)

⇔ ∂x∗

∂σw
= −

(
∂dσw

(x∗,B)

∂x∗

)−1
· ∂dσw

(x∗,B)

∂σw
. (14)

4. Experiments
We first conduct toy experiments on synthetic 2D data

to analyze different methods and model design choices
in a controlled setting. Next, we apply our approach to
model minimally clothed human bodies and compare it to
NASA [12] and other self-implemented baselines. Finally,
we demonstrate that our method can handle clothed hu-
mans, generalizing well to unseen poses.

4.1. Datasets

We use the following datasets in our experiments:

2D Stick: We simulate a 2D stick articulated by two bones.
We set the true skinning weights of each point as the the
inverse of its distance to each bone. To simulate topology
changes, we include a further rigid object. While this ob-
ject is separate in canonical space, the two may intersect in
posed space and therefore cause topology changes to simu-
late human self-contact or object interaction.

Minimally Clothed Humans: Following NASA [12], we
use the DFaust [7] subset of AMASS [28] for training and
evaluating our model on SMPL meshes of people in min-
imal clothing. This dataset covers 10 subjects of varying
body shapes. For each subject, we use 10 sequences, from
which we randomly select one sequence for validation, us-
ing the rest for training. For each frame in a sequence, 20K
points are sampled, among which, half are sampled uni-
formly in space and half are sampled in near-surface regions
by first applying Poisson disk sampling on the mesh surface,
followed by adding isotropic Gaussian noise with σ = 0.01
to the sampled point locations. Besides the “within distribu-
tion” evaluation on DFaust, we also include another subset
named PosePrior [1] from AMASS for an “out of distribu-
tion” evaluation. This dataset contains natural, more chal-
lenging, poses beyond those in DFaust.

Clothed Humans: We use the registered meshes from
CAPE [27] and corresponding joints and bone transforma-
tions derived from the accompanied SMPL model regis-
tration to train our model. We use 8 subjects from the
dataset with different clothing types including short/long
lower body clothing and short/long upper body clothing.
We train a model for each subject and clothing condition.

4.2. Baselines

We consider the following baselines in our evaluation. For
“Back-LBS”,“Back-D” and “Pose-ONet” we use the same
training losses and hyperparameters as in our approach.

Pose-Conditioned Occupancy Networks (Pose-ONet):
This baseline extends Occupancy Networks [30] by directly
concatenating the pose input to the occupancy network.

Backward Skinning (Back-LBS): This baseline imple-
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Figure 4: Qualitative Results on 2D Toy Experiment.
Row 1 (2 bones): Our deformed shape appears similar to the
ground-truth. In contrast, Back-LBS and Pose-ONet pro-
duce distorted shapes. The piecewise rigid model (Piece-
wise) leads to artifacts around bone intersections. Row 2
(2 bones + 1 rigid object): Our forward skinning algorithm
can handle topology changes while artifacts at the intersec-
tion are noticeable in the result of the backward skinning
baseline (Back-LBS).

ments the concept of backward skinning similar to [18]. A
network takes a deformed point and pose condition as in-
put and outputs the skinning weights of the deformed point.
The deformed point is then warped back to canonical space
via LBS and the canonical correspondence is fed into the
canonical shape network to query occupancy.

Backward Displacement (Back-D): This baseline directly
predicts the displacement from deformed space to canonical
space, similar to D-NeRF [18].

NASA: NASA [12] models articulated human bodies as a
composition of multiple parts, each of which transforms
rigidly and deforms according to the pose. Note that in con-
trast to us, NASA requires ground-truth skinning weights
for surface points as supervision. We use the official NASA
implementation provided by the authors.

Piecewise: For evaluation on the 2D toy dataset, we created
a variant of NASA for 2D which we refer to as “Piecewise”.

4.3. Results on 2D Stick Dataset

For our results on the simple 2D stick dataset, we do not
use local pose-conditioning as the shape does not locally
deform with pose. We consider the following three settings:

Extrapolation: An essential requirement for articulated
models is the ability to deform into arbitrary poses. In this
setting, we generate training data using the articulated 2D
stick with joint angles from the interval [−60, 60]◦. At test
time, the models are tasked to generate deformed shapes
with larger joint angles in [−120, 60]◦ ∪ [60, 120]◦. Fig. 4
and Fig. 5 (left) show our results. While our forward skin-
ning model follows the ground truth closely, Pose-ONet
fails to generate a meaningful structure as it learns a direct
mapping from poses to shapes and thus cannot produce un-
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Figure 5: Quantitative Results on 2D Toy Experiment.
Left: For pose extrapolation, our method outperforms all
baselines on both test cases, with and without topological
changes. Right: When interpolating, the performance gap
increases as training angles are sampled more sparsely.

seen shapes. By disentangling deformations from shapes,
Back-LBS preserves the structure better, but the learned
pose-dependent skinning weights do not generalize. The
piecewise model (Piecewise) generates the correct global
pose configuration but exhibits visible artifacts as the rigid-
ity assumption is violated at the joint.

Topological Changes: To simulate topological changes,
we include a rigid object but otherwise keep the setting the
same as in the previous experiment. Changing topology is
challenging for Back-LBS since it is not able to model one-
to-many backward correspondences. To compensate for
this, the occupancy field gets distorted as shown in Fig. 4. In
contrast, our model gracefully handles topological changes,
as also shown quantitatively in Fig. 5 (left).

Interpolation: To assess interpolation performance, we
evaluate the accuracy of the generated shapes with angles
sampled continuously from [−60, 60]◦ while increasing the
sampling step size of the training poses. As shown in Fig. 5
(right), with increasing difficulty, the gap between the base-
line methods (Pose O-Net and Back-LBS) and ours be-
comes larger. An exception is the piecewise model (Piece-
wise), whose performance is invariant to the training sample
density, but instead exhibits artifacts at part intersections.

4.4. Results on Minimally Clothed Humans

Following NASA [12], we now consider the more chal-
lenging case of modeling articulated 3D human bodies. Hu-
man bodies are challenging due to their complex skeletal
structure and local deformations that are non-linearly de-
pendent on the bone transformations. While NASA re-
quires ground-truth skinning weights as additional super-
vision, our method does not require such knowledge.

Within Distribution: Overall, all methods perform well
in this relatively simple setting, as shown in Tab. 1. How-
ever, our method still provides an improvement over all
baselines. In particular, compared to NASA [12], we im-
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Within Distribution Out of Distribution
IoU bbox IoU surface IoU bbox IoU surface

Subject P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours

50002 84.80% 87.89% 47.34% 96.56% 97.50% 63.86% 66.42% 85.41% 84.02% 89.57% 60.61% 70.02% 73.42% 87.71% 94.51% 31.94% 39.84% 71.01% 60.25% 79.75%
50004 80.09% 84.52% 93.53% 96.31% 97.84% 57.79% 59.93% 88.07% 85.45% 91.16% 55.44% 64.63% 65.17% 86.01% 95.61% 34.26% 38.62% 69.43% 62.53% 83.34%
50007 88.31% 89.09% 50.13% 96.72% 97.96% 67.14% 68.02% 83.46% 86.28% 91.02% 40.53% 59.68% 62.66% 80.22% 93.99% 17.80% 34.76% 59.53% 51.82% 77.08%
50009 71.67% 74.75% 65.36% 94.94% 96.68% 50.87% 53.96% 85.38% 84.52% 89.19% 38.17% 50.18% 63.34% 78.15% 91.22% 23.24% 30.85% 64.40% 55.86% 75.84%
50020 69.21% 73.37% 93.04% 95.75% 96.27% 48.73% 53.72% 86.03% 87.57% 88.81% 42.66% 52.43% 64.98% 83.06% 93.57% 26.56% 33.62% 68.24% 62.01% 81.37%
50021 79.30% 79.48% 96.86% 95.92% 96.86% 57.80% 64.02% 89.96% 87.01% 90.16% 45.50% 58.99% 69.89% 81.80% 93.76% 29.07% 37.19% 61.69% 65.49% 81.49%
50022 86.60% 90.59% 97.60% 97.94% 97.96% 66.82% 74.27% 93.51% 91.91% 92.06% 52.17% 60.41% 67.83% 87.54% 94.67% 33.00% 34.71% 73.46% 70.23% 83.37%
50025 80.14% 79.81% 95.28% 95.50% 97.54% 59.47% 60.37% 87.33% 86.19% 91.25% 52.78% 56.93% 68.91% 83.14% 94.48% 31.37% 34.49% 70.60% 60.88% 82.48%
50026 79.39% 84.58% 97.32% 96.65% 97.64% 60.52% 64.07% 90.17% 87.72% 91.09% 56.09% 64.33% 65.20% 84.58% 94.13% 32.07% 37.71% 71.85% 59.78% 80.01%
50027 73.91% 76.71% 80.33% 95.53% 96.80% 53.91% 57.46% 85.04% 86.13% 89.47% 48.22% 57.00% 67.86% 83.97% 93.76% 27.56% 32.56% 70.55% 61.82% 81.81%
Avg. 79.34% 82.08% 81.68% 96.14% 97.31% 58.61% 62.22% 87.44% 86.98% 90.38% 49.21% 59.46% 66.93% 83.16% 93.97% 28.69% 35.44% 68.93% 60.21% 80.65%

Table 1: Quantitative Results on Minimally Clothed Humans. The mean IoU of uniformly sampled points in space (IoU
bbox) and points near the surface (IoU surface) are reported. Our method outperforms all baselines including NASA [12].
Improvements are more pronounced for points near the surface, and for poses outside the training distribution.
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Figure 6: Qualitative Results on Minimally Clothed Humans. Our method produces results similar to the ground-truth
with correct body pose and plausible local details, both for mild poses within the training distribution and more extreme
poses. In contrast, the baseline methods suffer from various artifacts including incorrect poses (Pose-ONet), degenerate
shapes (Pose-ONet, Back-D, LBS), and discontinuities near joints (NASA) which become more severe for unseen poses.
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Figure 7: Qualitative Results for Clothed Humans. Our method can model 3D clothed humans in various clothing types,
with rich details including wrinkles, and in novel poses. Moreover, our method faithfully learns the non-linear relationship
between cloth deformations and body poses. On the right, we show a failure case where the cloth does not fall naturally for
an extreme, unseen pose. However, note how our method still degrades gracefully in this situation.

prove the IoU of uniformly sampled points by 1.2% and
the IoU of near-surface points by 4.6%. This improvement
can also be observed in the qualitative results Fig. 6. Our
method produces bodies with smooth surfaces and correct
poses. In contrast, NASA suffers from discontinuous arti-
facts near joints. Back-D, Back-LBS and Pose-ONet suffer
from missing body parts.

Out of Distribution: In this setting, we test the trained
models on a different dataset, PosePrior [1], to assess the
performance in more realistic settings, where poses can be
far from those in the training set. Similar to the observa-
tions in the 2D toy setting, unseen poses may cause drastic
performance degradation to the baseline methods as shown
in Tab. 1. In contrast, our method degrades gracefully
despite test poses being drastically different from training
poses and very challenging. Hence, the performance gap on
IoU surface between our method and NASA increases from
4.6% to 20.4%. As can be seen in Fig. 6, our method gener-
ates natural shapes for the given poses while NASA fails to
generate correctives at bone intersections for unseen poses,
leading to noticeable artifacts. Pose-ONet and Back-D fail
to generate meaningful shapes and Back-LBS produces dis-
torted bodies due to incorrect skinning weights.

Learned Skinning Weights: We demonstrate our learned
skinning weights in Fig. 1. Our model learns plausible skin-
ning weights with smooth transitions for all moving body
parts, reflecting the correct body part assignment. More re-
sults can be found in the supplementary material.

4.5. Results on Clothed Humans

Our method can also be applied to modeling clothed
humans. We train SNARF using meshes from the CAPE
dataset. The results are shown in Fig. 7. Our method is
able to model different clothing types with flexible topol-
ogy and generates realistic results in novel poses with plau-
sible local details, such as wrinkles. The clothing deforms
naturally with the body pose, except for very extreme poses
where prediction quality degrades gracefully. Fig. 8 shows
the canonical shapes corresponding to different body poses.
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Figure 8: Pose-dependent non-linear deformations (cor-
rectives) in canonical space. The heatmaps show the dif-
ferences (yellow=large, zoom in for more details) between
the canonical shape for the current pose and the one for the
canonical pose, demonstrating the flexibility of the defor-
mations that can be captured by our model.

5. Conclusion
In this paper, we proposed a differentiable forward

skinning model for articulating neural implicit surfaces.
Our method learns continuous pose-conditioned shapes and
skinning weights from meshes and is able to generate plau-
sible shapes in nearly arbitrary poses. We obtain state-of-
the-art results on articulated neural implicit representations
for 3D human bodies and demonstrate significantly better
generalization to unseen poses than the baselines. We show
SotA results on challenging cases of (clothed) 3D humans
with diverse shapes and poses. In future work, we plan to
extend our method to learn across subjects and from images
only using differentiable rendering [35].
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