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Abstract

Neural trees aim at integrating deep neural networks and
decision trees so as to bring the best of the two worlds, in-
cluding representation learning from the former and faster
inference from the latter. In this paper, we introduce a
novel approach, termed as Self-born Wiring (SeBoW), to
learn neural trees from a mother deep neural network. In
contrast to prior neural-tree approaches that either adopt
a pre-defined structure or grow hierarchical layers in a
progressive manner, task-adaptive neural trees in SeBoW
evolve from a deep neural network through a construction-
by-destruction process, enabling a global-level parameter
optimization that further yields favorable results. Specifi-
cally, given a designated network configuration like VGG,
SeBoW disconnects all the layers and derives isolated fil-
ter groups, based on which a global-level wiring process
is conducted to attach a subset of filter groups, eventually
bearing a lightweight neural tree. Extensive experiments
demonstrate that, with a lower computational cost, SeBoW
outperforms all prior neural trees by a significant margin
and even achieves results on par with predominant non-tree
networks like ResNets. Moreover, SeBoW proves its scala-
bility to large-scale datasets like ImageNet, which has been
barely explored by prior tree networks.

1. Introduction
Deep Neural Networks (DNNs) [33, 11] have been ar-

guably the most successful machine learning models in the
last decade, dominating a large spectrum of applications
such as computer vision and natural language processing.
The unprecedented success is largely attributed to its hi-
erarchical representation learning through the composition
of nonlinear transformations, which alleviates the need for
feature engineering. Nevertheless, DNNs are not flawless:
they typically suffer from the expensive computation cost,
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the daunting architecture design process, as well the lack of
interpretation, which hinders their more widespread appli-
cations.

Decision Trees (DTs), as an alternative category of ma-
chine learning models, have also demonstrated their power
in real-world applications [9, 31]. Unlike DNNs where
hierarchical representations with varying abstraction are
learned, DTs are characterized by learning hierarchical
clusters of data, so that in each cluster a linear model suf-
fices to explain the data. As DTs conduct classification
through a relatively short root-to-leaf sequence, they usu-
ally yield faster inference, in which the decision process is
also task-adaptive. Moreover, the decisions in DTs are of-
ten made directly in the original feature space, resulting in
better model interpretability. Albeit these appealing prop-
erties, DTs often require hand-engineering features; the ca-
pacity of a single DT is also limited due to the simple rout-
ing functions along the root-to-leaf path. Such attributes,
unfortunately, substantially precludes DTs’ applications to
more complex real-world scenarios.

In light of the mutual exclusive benefits and limitations
of DNNs and DTs, it is therefore desirable to integrate
DNNs and DTs into a single model, termed as neural trees,
in the hope that the complementary merits of both worlds
are preserved. Several pilot endeavours have been made
towards this ambitious goal. For example, Frosst and Hin-
ton adopted a soft decision tree to imitate the output of a
neural network for better interpretability [8]. However, as
every decision is made in the original input space and no
representation learning is performed, better interpretability
is achieved by sacrificing the performance. Kontschieder et
al. proposed Deep Neural Decision Forest (DNDF) [19],
an ensemble of DTs, in which each DT is built upon In-
ception V1 [35]. Despite the promising accuracy, the cum-
bersome backbone and the separate optimization pipeline
for network parameters and prediction distribution render
both the training and the inference highly costly. The
pre-defined model structure also makes it not adaptive to
tasks. More recently, Tanno et al. proposed Adaptive Neu-
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ral Trees (ANT) [36] that inherit representation learning
from DNNs and lightweight inference from DTs. Unfor-
tunately, ANT relies on a suboptimal progressive scheme
to grow trees layer by layer, in which each operation is se-
lected among several pre-defined ones in a greedy manner,
making it prone to local optima and hardly scalable to large
datasets like ImageNet [5].

In this paper, we propose a novel approach to learning
neural trees from DNNs, termed as Self-born Wiring (Se-
BoW), through which the merits of both categories are nat-
urally united. In contrast to existing methods that either
relies on growing trees progressively or restricted to a spe-
cific tree structure, our task-customized neural trees evolve
themselves from a user-designated mother DNN architec-
ture like VGG, via a construction-by-destruction manner.
Such a self-born learning procedure, in turn, allows for
a global-level parameter optimization over the neural tree
search. Neural trees derived in this way not only enjoy
learnable hierarchical representations and efficient infer-
ence, but also yield results significantly better than those
from prior neural-tree methods and even on par with those
of DNN-based ones, thanks to the global tree-architecture
optimization.

Specifically, SeBoW starts the learning process with
destructing a user-designated network configuration like
VGG [33], by removing all the connections across layers
and turning the network into a collection of isolated layers.
The neurons or filters in every layer, except the first layer
that acts as the root, are further decomposed into several
equal-sized filter groups, each of which has only a subset of
truncated filters and acts as a feature learner. We then adopt
routers to conduct wiring over these scattered filter groups
so as to navigate the adaptive decision paths across different
layers. In the last layer, we install a solver at the end of each
filter group to make the final predictions.

The learners, the routers, and the solvers constitute the
complete search space of SeBoW. Unlike prior neural trees
where intermediate nodes are optimized greedily and sepa-
rately, SeBoW runs over all the possible decision paths in
the search space and adopts the widely used Negative Log
Likelihood (NLL) loss to train the whole model, making
the training as simple as training popular DNNs. Interest-
ingly, our router design effectively imposes strong sparsity
constraints on the wiring between groups across layers, re-
sulting in only a few active modules with the rest silent. Fi-
nally, a lightweight decision tree can be extracted by safely
removing those inactive modules.

Extensive experiments over several datasets including
ImageNet have been conducted, in which SeBoW attains
higher accuracy with lower computation cost compared to
existing tree-based models. More encouragingly, SeBoW
even achieves on par or sometimes superior performance
when compared to non-tree networks, let alone its faster

inference and better interpretability due to its endowed
decision-tree nature.

In sum, our contribution is a novel neural-tree learning
scheme, termed as SeBoW, that bears a task-customized
neural tree from a mother DNN, enabling the merits from
both DNNs and neural trees to be by nature preserved. The
construction-by-destruction learning process allows for a
global-level tree architecture search, which consequently
gives rise to a competent neural tree with encouraging per-
formance. Experiments demonstrate that the derived trees
yield performances significantly superior to prior tree meth-
ods and even on par with results obtained from popular
DNNs on large-scale datasets such as ImageNet.

2. Self-born Wiring
In this section, we depict the proposed method, SeBoW,

to craft task-adaptive neural trees. The training data is de-
noted by {(x1, y1), (x2, y2), ..., (xN , yN )}, x ∈ X , y ∈ Y .
The goal is to learn the conditional distribution p(y|x). We
first introduce the model topology and operations used for
neural trees. Then we describe how to design the search
space for neural trees based on prevailing DNN architec-
tures. Finally, we describe how the tree architecture and the
parameters are simultaneously optimized.

2.1. Model Topology and Operations

We define the model topology for neural trees as a pair
(T,O), where T defines the model topology, and O de-
notes the set of operations on it. In this paper, we adopt
a Directed Acyclic Graph (DAG) to represent the model
topology, i.e., T := {N , E}, where N is the set of nodes
and E is the set of edges between them, E ⊆ N×N . The in-
ternal nodes are denoted by Nint, and leaf nodes by Nleaf .
T consists of three primitive operations, learning, routing,
and solving. Each node is assigned with operations in O,
which turns the DAG into a decision tree. These operations
are implemented by the following modules:

• Learners: every internal node i ∈ Nint of the tree is as-
signed with a learner lψi , parameterized by ψ, that trans-
forms data from the parent to its children. The learners are
the key modules for representation learning, and they are
implemented by stacking some widely used layers (de-
tailed in Section 2.2), including convolution, ReLU, batch
normalization, and pooling layers.

• Routers: following each learner in internal node i ∈
Nint, a router module, rθi := Xi → [0, 1]Ni , parame-
terized by θ, is appended to send incoming data to its
children nodes. Here Xi denotes the input data space for
router rθi . We make no restriction on the number of chil-
dren here, which means the decision tree is not necessar-
ily a binary tree, i.e., Ni ≥ 2. This relaxes the assump-
tions made in previous tree-based models.
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Figure 1. An illustrative example of the proposed self-born wiring pipeline. Left: (a) VGG-13 is utilized as mother DNN to design search
space. (b) Cutting the DNN into 5 sections. (c) Unpacking base learners from sections. (d) Installing a router for each internal learner, a
solver for each leaf learner, then the complete search space is obtained. The red path is selected according to Sect. 2.3.2. (e) One neural
tree chosen from (d). Right: Two essential components for routers. (1) Senders explore probability distributions. (2) Receivers fuse various
features. “Conv3-C” denotes 3× 3 convolution with C filters. The formulas in blue represent data, while others donate network modules.

• Solvers: each leaf i ∈ Nleaf is assigned a solver mod-
ule, sφi : Xi → Y , parameterized by φ, which operates
on the transformed data and outputs the estimate for the
conditional distribution p(y|x). In this paper, we focus
on classification tasks, and thus implement the solver by
a fully connected layer and a softmax layer.

Note that unlike ANT [36], we do not assign any operation
to edges. They are only used for data flow. The model
topology and the defined operations sketch a broad view of
a neural tree. In the following sections, we introduce how a
task-adaptive neural tree is generated by SeBoW.

2.2. Search Space for Neural Trees

To design the search space for neural trees, we use the
network configuration from a mother DNN like VGG [33]
as the starting point, as illustrated in Figure 1 (a). This
moderately relieves us of the burden of designing the search
space. For example, we need not consider how many times
the data should be down-pooled along the decision route in
the neural tree. The pipeline of designing space is depicted
in Figure 1. Then for simplicity, we describe the work of
designing the tree space as a three-step process: unpacking
base learners, installing routers and mounting solvers.

2.2.1 Unpacking Base Learners

We unpack base learners, which will be used as learners
in neural trees, from a widely used DNN. To this end, we
first cut the DNN into several sections, each with a pooling
layer inside. Formally, let F denotes the function underly-
ing a DNN, then assume the DNN is cut into S sections.

The function underlying the i-th fragment is symbolized by
Fi. Then F can be written as F = FS ◦ ... ◦ F2 ◦ F1,
where the symbol ◦ denotes function composition. Each
section embodies more than one convolution layer, and each
convolution layer in the same section contains the same
number of filters1. Let Ci denote the number of filters
in the i-th section, then the filters can be denoted by a
Wi ×Hi × Ci−1 × Ci tensor. Following the idea of group
convolution [20], for each i ∈ {1, 2, ..., S}, we split the i-th
section into Ci/C groups, in which the convolution layers
contains the fixed-sized Wi × Hi × C × C filters. C is a
pre-defined hyper-parameter. We view these split groups as
the base learners and symbolize them by L = {L1, ...,LS},
where Li = {li1, ..., liCi/C

} is the set of base learners un-
packed from the i-th section, as seen in Figure 1 (b) and (c).
These base learners play important roles in representation
learning in the neural tree. For better illustration, we denote
the input data of learner lij as xij and the output as yij , i.e.,
yij = lij(x

i
j).

2.2.2 Installing Routers

The number of learners determines the number of nodes in
the search space. We view LS as the set of leaf learners
and l ∈ L \ LS as internal learners. In this step, we install
routers to turn the isolated learners into a connected DAG.
For any two learners lip and ljq , the data flow from lip to ljq
is allowed if and only if j = i + 1. In this work, we adopt
two types of routers, named senders and receivers, to direct

1In prevailing design philosophy, the number of filters only changes
after the pooling layers.
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the data to flow through the network. The senders are in-
stalled after each internal learner to route the path for the
output data. Ideally, for the output from a specific learner,
the sender chooses only a subset of learners in the next sec-
tion to pass the data, so that we devise the sender as a soft-
max classifier. Specifically, the sender is implemented by
two convolution layers, an adaptive average pooling layer
for extracting feature vectors, and a fully connected layer
followed by a softmax layer. For learner lip, the installed
sender is denoted by rip. It is actually a Ci+1

C -way classifier
that makes choices among the following learners to pass the
data, as seen in Figure 1 (1).

It seems sufficient to route the data to flow through the
network with the aid of senders. However, the learners
in different sections are interleaved in such a way, which
leaves the model still a neural network rather than a neu-
ral tree and difficult to interpret. One important char-
acteristic of DTs, which brings better interpretability, is
that each node in DTs receives data only from one parent
node. To enforce the current learner receives data from
only one learner in the previous section, we place a re-
ceiver before each learner to decide on which input data
the learner receives. The receiver samples a categorical
value from the continuous sampling distribution. To enable
the differentiability for the sampling operation, we utilize
Gumbel-Softmax [15] to implement the receiver. Formally,
for the j-th learner lij in section i, we construct a vector
wi
j = {wij,1, wij,2, ..., wij,Ci−1/C

} to represent the connec-
tivity from learners in the previous section to the learner lij .
Each element wij,k stores the probability value that denotes
how likely the output of learner li−1k would be sampled by
the receiver to pass to learner lij . During the forward prop-
agation, the receiver makes a discrete decision drawn from
the categorical distribution based on the distribution:

hij = one hot{arg max
k

(logwij,k) + εk}. (1)

Here hij is a one-hot vector with the dimension the same as
the number of learners in the previous section. ε ∈ RCi/C

is a vector in which the elements are i.i.d samples drawn
from the Gumbel distribution (0, 1) to add a small amount
of noise to avoid the argmax operation always selecting the
element with the highest probability value.

To enable differentiability of the discreet sampling func-
tion, we use the Gumbel-Softmax trick to relax hij during
backward propagation as

hij =
exp((logwi

j + ε)/τ)∑
k exp((logwij,k + εk)/τ)

, (2)

where τ is the temperature that controls how sharp the dis-
tribution is after the approximation. Ultimately, we for-
mula the sampling operation as: xij = hij · Yi−1, where

Yi−1 = [yi−11 ,yi−12 , . . . ,yi−1Ci−1/C
] and xij donates the out-

put of the j-th receiver in section i.

2.2.3 Mounting Solvers

After leaf learners, the data features become low-
dimensional. Finally, we append a solver ssp to each leaf
learner lsp to make the final task predictions. The solvers
are implemented by a fully connected layer and a softmax
layer.

2.3. Optimization

As shown in Figure 1 (d), the entire search space can
be viewed as a deep forest or a Hierarchical Mixture of
Experts (HMEs) [17], each of which is implemented by
a multi-layered network and a root-to-leaf decision path.
Each expert learns some specialized features, which may
be useful for different sub-tasks. The goal of optimization is
training the entire model by the final objective with implicit
sparsity constraints from routers, which makes the model
adapt to task and produce a lightweight neural tree.

2.3.1 Probabilistic Model and Inference

The input x stochastically traverses the tree based on the de-
cisions of the routers and undergoes a sequence of transfor-
mations until it reaches a leaf node where the correspond-
ing solver predicts the label y. Recalling that ψ, θ, and φ
denote the parameters of the learners, the routers and the
solvers, respectively. We use Θ to indicate involved param-
eters, i.e., Θ = {ψ,φ,θ}. The predictive distribution is

p(y|x,Θ) =

CS/C∑
j

p(zj = 1|x,ψ,θ)︸ ︷︷ ︸
Leaf-reaching probability

p(y|x, zj = 1,φ,ψ)︸ ︷︷ ︸
solver prediction

,

(3)
where the first term p(zj |x,ψ,θ) denotes the probability
of reaching the j-th leaf. The second term p(y|x, zj =
1,φ,ψ) represents the prediction distribution produced by
the j-th solver. The leaf reaching probability is calculated
by propagating the routing probability from the root to the
leaf nodes with the following propagation rule:

p(zij = 1|x,Θi
j) =

Ci
C∑
k=1

p(zi−1k |x,Θi−1
j )·ri−1k (zij = 1|x,θ),

(4)
where p(zij = 1|x,Θ) denotes the probability of reaching
the j-th node in the i-th section. ri−1k denotes the routing
probability produced by the sender after k-th learner in the
(i − 1)-th section. Θi

j denotes all the involved parameters
for calculating the path probability of reaching learner lij .
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2.3.2 Loss Functions and Tree Selection

Training of the proposed model proceeds in two stages:
search phase and retraining phase. During the search-
ing phase the whole model is optimized to search for the
lightweight neural tree in the large search space, as shown in
Figure 1 (e). We adopt the Negative Log-Likelihood (NLL)
loss as the objective function to optimize the model:

J = − log p(Y|X,Θ) = −
N∑
n=1

log(

Cs/C∑
i=1

)p(yy(n) |x(n),Θ),

(5)
where X = {x(1),x(2), ...,x(N)} and Y =
{y(1), y(2), ..., y(N)} denote the training inputs and
targets, respectively. With the Gumbel-Softmax trick in the
routers, all modules are differentiable with respect to their
parameters, so that we adopt stochastic gradient descent to
optimize the model in an end-to-end way. After the search
phase, we retain the node in i-th section if its conditional
probability obtained from previous senders is greater than
the threshold C/(2× Ci). After that, the retraining phase
retrains the derived neural tree from scratch [23].

3. Experiments

3.1. Experimental Settings

Datasets. Four classification benchmarking datasets, in-
cluding CIFAR10 [2], CIFAR100 [2], tiny-ImageNet [21]
and ImageNet [5], with varying complexities, are adopted to
comprehensively evaluate the generalisation and effective-
ness of the proposed method SeBoW. These datasets span
over a range of sizes and input resolutions. CIFAR10 [5]
and CIFAR100 [5] each comprises a collection of 60k
32× 32 pixel images. Tiny-ImageNet [21] consists of 110k
images in resolution 64× 64, and the ImageNet [5] dataset
contains 1.33 million images from 1000 different classes
with 224× 224 resolution.
Network architecture. For ImageNet, we construct a
search space based on the network configuration of trun-
cated VGG-13 [33], in which all the fully connected layers
are removed. The input data are down-pooled by 5 times
through the VGG-13, so we cut the model into 5 sections,
as described in Section 2.2. The number of learners in
each section is {1, 2, 4, 8, 8}, respectively. For CIFAR-10,
CIFAR-100 and tiny-ImageNet, as the image resolution is
much smaller than ImageNet, four times of down-pooling
are sufficient to extract low-dimensional features. We con-
struct the search space with only the former four sections,
with number of learners {1, 2, 4, 8}. To comprehensively
evaluate the proposed method, we devise three variants of
SeBoW, symbolized by SeBoW-A, SeBoW-B and SeBoW-
C, with varying capacities. Details of these models are sum-
marized in Table 1.

Model Sender Learner Solver

SeBoW-A 2× Conv3-48
+ GAP + LC

2× Conv3-96 + BN + ReLU
+ MaxPool GAP + LC

SeBoW-B 2× Conv3-72
+ GAP + LC

2× Conv3-144 + BN + ReLU
+ MaxPool GAP + LC

SeBoW-C 2× Conv3-128
+ GAP + LC

2× Conv3-256 + BN + ReLU
+ MaxPool GAP + LC

Table 1. Details of the primitive modules. “Conv3-48” represents
the 3 × 3 convolution with 48 filters. “GAP”, “LC”, “BN” and
“MaxPool” denote global-average-pooling, linear classifier, batch-
normalization and max-pooling operations, respectively.

Training details. We use SGD with the initial learning rate
of 0.1. After 30 epochs, the learning rate is decayed by half
for every 20 epochs until reaching 100 epochs where the
training ceases. We set the batch size to 128, the weight
decay to 10−4, and the Nesterov momentum to 0.9. During
the network search phase, we initialize the connectivity vec-
tors in all receivers with uniform distributions to encourage
free exploration in the early stage. The temperature τ is set
to 10 and decayed by the number of epochs to exploit the
converged topology distribution in the later stage. We re-
train the selected final architecture on the training sets from
scratch using the same training set in the search phase but
set the weight decay to be 5 × 10−4. Please refer to the
supplementary materials for more details.
Inference schema. Thanks to the decision-tree nature
of SeBoW, the inference can be executed in two man-
ners: multi-path inference and single-path inference. Multi-
path inference computes the weighted predictive distribu-
tion by running over all possible paths in the derived neural
tree, such that all solvers in the tree will contribute to the fi-
nal prediction. However, in the single-path inference, only
the most probable paths are executed based on the routing
probability from routers, which enjoys less inference cost
with some accuracy drop.

3.2. Benchmark Comparisons

We compare the performance of SeBow against three
groups of existing models: (1) typical human-engineered
DNNs, including VGG [33], ResNet [11], GoogleNet [35],
and MobileNet [12]; (2) neural decision trees, including
Adaptive Neural Trees (ANT) [36], Neual Decision Tree
Towards Neural Graph(NDT) [37], Deep Neural Decision
Forests (DNDF) [19], Conditional CNN [13] and Explain-
able Observer-Classifier (XOC) [1]; (3) as the proposed
neural tree can be viewed as a multi-branch network, we
also compare it with some multi-branch models widely used
in multi-task learning. These models include Routing net-
work [29], Learning to Branch [10] and Cross-stitch [24]
networks. We implement some of these competitors with
the same training settings as the proposed method.

Experimental results in both accuracy and model com-
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Method Params. Accuracy (%)

MobileNet [12] 2.2M 85.90 (±0.23)
VGG-13 [33] 28.3M 92.51 (±0.15)
ResNet-18 [11] 11.2M 92.98 (±0.17)

Max-Cut DT [4] N/A 34.90
Compact BT [25] N/A 48.56
gcForest [42] N/A 61.78 / 61.78
Conditional CNN [13] > 0.5M < 90.00
ANT-CIFAR10-C [36] 0.7M / 0.5M 90.69 / 90.66
ANT-CIFAR10-B [36] 0.9M / 0.6M 90.85 / 90.82
ANT-CIFAR10-A [36] 1.4M / 1.0M 91.69 / 91.68
ANT-CIFAR10-A (ensemble) [36] 8.7M / 7.4M 92.29 / 92.21
XOC [1] + ResNet-18 > 11.2M 93.12 (±0.32)

LearnToBranch-Deep-Wide [10] 3.5M 91.98 (±0.57)

SeBoW-A 1.0M / 0.7M 93.45 (±0.12) / 93.41
SeBoW-B 2.7M / 1.6M 94.00 (±0.18) / 93.93
SeBoW-C 5.8M / 4.6M 94.33 (±0.14) / 94.24

Table 2. Performance comparison on CIFAR-10. Underlined num-
bers denote the results of single-path inference. Italic fonts mean
that the results are copied from the original paper. “N/A” means
not applicable.

Method Params. Accuracy (%)

MobileNet [12] 2.4M 53.91 (±0.32)
VGG-13 [33] 28.7M 72.70 (±0.42)
ResNet-18 [11] 11.2M 72.28 (±0.28)

Max-Cut DT [4] N/A 12.40
NDT [37] 14.1M 15.48
DNDF [19] + ResNet-18 > 11.2M 67.18
ANT-Extend [36] 4.2M / 4.2M 65.81 (±0.12) / 65.71

Cross Stitch [24, 29] - 53.0
Routing network [29] - 60.50 (±0.75)
LearnToBranch-Deep-Wide [10] 6.7M 72.04 (±0.23)

SeBoW-B 1.9M / 1.5M 71.79 (±0.23) / 71.59
SeBoW-C 4.2M / 4.2M 74.59 (±0.33) / 74.59

Table 3. Performance comparisons on the CIFAR-100 dataset.

Method Params. Accuracy (%)

MobileNet [12] 2.5M 46.12 (±0.73)
GoogleNet [35] 6.8M 48.85 (±0.52)
VGG-13 [33] 28.7M 56.10 (±0.57)
ResNet-18 [11] 11.2M 55.32 (±0.75)

DNDF [19] + ResNet-18 > 11.2M 44.56

SeBoW-C 8.4M / 4.8M 58.77 (±0.39) / 58.43 (±0.45)

Table 4. Performance comparison on the tiny-ImageNet dataset.

plexity (the number of parameters) on the four bench-
mark datasets are provided in Table 2, 3, 4 and 5, re-
spectively. All these results are computed by averaging
over three individual runs. Note that we provide the re-
sults of both the multi-path and the single-path (shown in
underlined font) inference for some tree-based models to
give a more comprehensive view of the proposed method.
From these results, we can make the following conclu-
sions: (1) On CIFAR-10, CIFAR-100 and tiny-ImageNet,
SeBoW yields consistently superior performance to almost
all types of competitors with smaller model size. For ex-

Method Params. Top-1 Acc. Top-5 Acc.

VGG-13 [33] 133.0M 69.93 89.25
ResNet-18 [11] 11.7M 69.76 89.08

Conditional CNN [13] ≈ 30M - 86.20
XOC [1] + ResNet-152 > 60.2M 60.77 -

SeBow-C (Multi-Path) 16.90M 70.13 89.98
SeBow-C (Single-Path) 14.78M 69.86 89.17

Table 5. Performance comparison on ImageNet. Both top-1 and
top-5 accuracy are provided.

ample, on CIFAR-10, SeBoW achieves 94.24% accuracy
with only 4.6M parameters. However, ResNet-18 reaches
only 92.98% with 11.2M parameters. (2) On ImageNet,
which is seldom explored by prior tree models, SeBoW still
produces competitive performance with fewer parameters
compared to its search space VGG-13. (3) It can be seen
that the accuracy comparison result is SeBoW-A< SeBoW-
B < SeBoW-C. With more filters in the base learners, the
model capacity becomes larger. The larger capacity leads to
a significant performance boost. (4) For all experiments, the
single path inference produces only a slight accuracy drop
compared to multi-path inference. It demonstrates the ef-
fectiveness of SeBoW in searching the sparsely connected
tree in the densely wired search space.
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Figure 2. The accuracy curves of SeBoW and randomly wiring
models. Best viewed in color.

3.3. Ablation study

Self-born wiring versus random wiring. To validate the
effectiveness of the proposed self-born wiring (SeBoW), we
compare it with random wiring, where the connections be-
tween different base learners are randomly determined. Ex-
perimental results are provided in Table 6, and some ac-
curacy curves are depicted in Figure 2. We can see that
SeBoW produces consistently higher final accuracy com-
pared to random wiring under different experimental set-
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Dataset Method Architecture Params. Accuracy (%)

CIFAR10

SeBoW-A {1, 1, 1, 3} 1.0M / 0.7M 93.45 / 93.41

Random Randomly
generated

2.9M / 0.9M 91.71 / 91.23
0.6M / 0.6M 92.55 / 92.55
1.4M / 0.7M 92.18 / 92.07
1.0M / 0.7M 83.32 / 83.21

SeBoW-B {1, 1, 2, 3} 2.7M / 1.6M 94.00 / 93.93

Random Randomly
generated

6.4M / 1.9M 93.41 / 93.09
1.3M / 1.3M 93.63 / 93.63
3.2M / 1.7M 93.57 / 93.49
2.7M / 1.6M 84.04 / 84.01

CIFAR100

SeBoW-B {1, 1, 1, 2} 1.9M / 1.5M 71.79 / 71.59

Random Randomly
generated

6.5M / 1.9M 70.40 / 70.08
1.3M / 1.3M 71.12 / 71.12
3.3M / 1.6M 70.63 / 70.40
1.8M / 1.5M 63.42 / 63.38

SeBoW-C {1, 1, 1, 1} 4.2M / 4.2M 74.59 / 74.59

Random Randomly
generated

20.5M / 6.2M 72.52 / 72.22
7.0M / 4.6M 73.71 / 73.59
10.3M / 5.4M 73.58 / 73.33
6.9M / 4.6M 67.04 / 67.02

Table 6. Ablation study on network architecture. “Architecture”
represents the number of learners in each section.

tings. These results validate the effectiveness of the pro-
posed wiring method for neural trees.
Senders and Receivers. We propose another two variants
of SeBoW to validate the necessity of routers, one with-
out senders and the other without receivers, in Table 7.
The model without receivers sends data weighted with path
probability rather than sampling vector, but the resulting
architecture always degenerates into a single branch with
sub-optimal results, i.e. {1, 1, 1, 1}-architecture. The model
without senders selects the final network architecture using
the distribution given by Equation 1 but without the noise
ε. Notably, this model cannot calculate path probability,
so single-path inference is not applicable. We find that the
model using both senders and receivers always produces the

Dataset Method S. R. Params. Accuracy (%)

CIFAR10

SeBoW-A
X 0.6M / 0.6M 92.55 / 92.55

X 1.1M 91.33
X X 1.0M / 0.7M 93.45 / 93.41

SeBoW-B
X 1.3M / 1.3M 93.63 / 93.63

X 2.5M 92.72
X X 2.7M / 1.6M 94.00 / 93.93

CIFAR100

SeBoW-B
X 1.3M / 1.3M 71.12 / 71.12

X 3.9M 52.89
X X 1.9M / 1.5M 71.79 / 71.59

SeBoW-C
X 4.2M / 4.2M 74.59 / 74.59

X 10.3M 58.12
X X 4.2M / 4.2M 74.59 / 74.59

Tiny-
ImageNet SeBoW-C

X 4.2M / 4.2M 54.42 / 54.42
X 18.0M 42.01

X X 8.4M / 4.8M 58.77 / 58.43

ImageNet SeBoW-C
X 5.6M / 5.6M 68.12 / 68.12

X 19.80M 62.29
X X 16.90M / 14.78M 70.13 / 69.86

Table 7. Ablation study on architecture modules. The columns
“S.” and “R.” denote the senders and receivers.

Method Flops Speed(Batches/ms.) Accuracy(%)

VGG-13 248.3M 64.85 92.51
ANT-B 163M / 149M 87.51 / 90.43 90.85 / 90.82
ANT-A 254M / 243M 40.00 / 41.50 91.69 / 91.68

SeBoW-A 151M / 146M 89.23 / 90.91 93.45 / 93.41

Table 8. Flops, inference speed on CIFAR-10. Underlined num-
bers denote the results of single-path inference.

Dataset Model Stage 1 Stage2

Time Epochs Time Epochs

CIFAR10 ANT-A [36] 1.7 (hr) 265 1.5 (hr) 200
SeBoW-B 1.3 (hr) 100 0.5 (hr) 100

CIFAR100 ANT-Extend [36] 1.8 (hr) 255 2.0 (hr) 200
SeBoW-C 1.5 (hr) 100 0.8 (hr) 100

Table 9. Training time of ANT and SeBoW. The two stages are
growth and refinement phases in ANT [36], architecture search
and retraining phases in SeBoW.

best top-1 accuracy. We speculate that the sampling distri-
bution fuses various features for more robustness architec-
ture selection, and the probability distribution under multi-
ple paths helps the network obtain the optimal result.
Inference Speed. To validate the lightweight of SeBoW,
we investigate the Flops and inference speed of various
models. We select CIFAR-10 as experimental dataset and
show the results in Table 8. Experiments are run on a sin-
gle GeForce GTX 1080 Ti with batch size of 256. It can
be seen that our SeBoW achieves higher test accuracy and
inference speed than neural trees and mother DNN, which
indicates the value of the self-born wiring.
Training time. To demonstrate the superiority of SeBoW
in training efficiency, we compare ANT [36] and SeBoW
under a similar amount of parameters. Table 9 summarises
the average time taken with three individual runs on a single
Quadro P5000 GPU with 16GB memory. It indicates that
SeBoW is much time-efficient than ANT thanks to its global
optimization in differentiable architecture spaces instead of
greedy evolution for architecture growth.

3.4. Interpretability

Here we demonstrate that SeBoW exhibits better inter-
pretability to DNNs thanks to its endowed decision-tree na-
ture. The training of the SeBoW is divided into two stages.

We visualize the class distribution on the decision paths
of SeBoW-C on CIFAR10 in Figure 3. The results show that
SeBoW is able to partition categories into several groups
with similar semantics or visual cues. The model first di-
vides all categories into two groups as {car, truck} and
{animal, ship, plane}. Cars and trucks are vehicles with
wheels, which are similar in appearance. In the other
branch, since aircraft design principles are derived from
bionics related to bird characteristics, such as aircraft wings
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Figure 3. Visualization of class distributions on decision paths. (a) shows that the model captures a hierarchy from complete search space.
(b) exhibits the searched architecture further polarises path probabilities of samples in different classes.

and bird wings, there are certain morphological similarities
between these artifacts and animals. This category group
is further divided into {ship, plane} and {animal} by the
model, which may be due to the difference in characteris-
tics between metal materials and animal fur. However, it
should be pointed out that the human intuition of the cat-
egory relationship is not necessarily equal to the optimal
network architecture. SeBoW can explore the relationship
among categories from the perspective of model itself, thus
supporting the interpretability of our model. Visualizations
of all learned network architectures are provided in the sup-
plementary materials.

4. Related Works
Neural Decision Trees, combines the characteristics of
decision trees and neural networks to explore the net-
work structures with the complementary benefits of both
approaches, yielding a lightweight model for disentan-
gled inference [39, 38]. Earlier, tree-based neural net-
works [17, 8] just perform a top-to-bottom path selection
for a given sample without any representation learning, thus
limiting their performance. Modern tree-based neural net-
works [19, 16] strengthen the performances by integrating
nonlinear transformations of features into trees. Xiao [37]
proposes an approach with the root transformer MLP and
optimises the network to minimise the information gain
loss. Kontschieder et al. [19] and Ji et al. [16] employ
the traditional hand-crafted network [33, 11, 35] as the root
transformer, resulting in surprising performances. All the
models described above are pre-specified and fixed, exhibit-
ing finite flexibility with tasks. Soft decision trees [34, 14]
greedily grow new nodes with termination criteria based on
validation set error. Adaptive neural trees [36] optimise ar-
chitecture through progressive growth with level limitation
to avoid over-fitting. Decision jungles [32] consider the in-
put space of multiple subtrees to be mergeable, thus to avoid
the local optimum that ”split” algorithms may fall into.
Neural Architecture Search (NAS), emerges for mini-

mizing human intervention by allowing automatically de-
signing the network architectures. Existing NAS research
works can be categorized into modular search strategy
and continuous search space [28]. The cell-based search
space [22, 7, 40] is widely used in various NAS tasks as it
can be migrated to different tasks by stacking cells, which
effectively reduces the cost of NAS compared with global
search. Earlier works regard network architecture search as
a black-box optimization problem in discrete search space
based on Bayesian optimization [6, 18, 41], evolutionary
algorithms [27, 26] and reinforcement learning [3, 43]. For
this, DAS [30] is committed to transforming the discrete
network architecture space into a continuously differen-
tiable form, and uses gradient optimization techniques to
search for the best network architecture.

5. Conclusion

In this paper, we introduced a novel approach, termed
as Self-born Wiring, to automatically construct neural trees
from a pre-defined deep neural network. Unlike prior
neural-tree methods those either limit themselves to pre-
defined structures or rely on greedy algorithms to grow
hierarchical layers, SeBoW carries out a construction-by-
destruction process that enables a global-level wiring opti-
mization to learn tree architectures. Experimental results
showcase that the derived neural trees yield results even on
par with those of DNNs on large-scale datasets. In our fu-
ture work, we will explore SeBoW on other vision tasks
beyond classification problems.
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