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Abstract

Traditional methods for RGB hand mesh recovery usu-
ally need to train a separate model for each dataset with the
corresponding ground truth and are hardly adapted to new
scenarios without the ground truth for supervision. To ad-
dress the problem, we propose a self-supervised framework
for hand mesh estimation, where we pre-learn hand priors
from existing hand datasets and transfer the priors to new
scenarios without any landmark annotations. The proposed
approach takes binocular images as input and mainly re-
lies on left-right consistency constraints including appear-
ance consensus and shape consistency to train the model to
estimate the hand mesh in new scenarios. We conduct ex-
periments on the widely used stereo hand dataset, and the
experimental results verify that our model can get compa-
rable performance compared with state-of-the-art methods
even without the corresponding landmark annotations. To
further evaluate our model, we collect a large real binocu-
lar dataset. The experimental results on the collected real
dataset also verify the effectiveness of our model qualita-
tively.

1. Introduction
Hand mesh recovery from RGB images has always been

an important research task in the field of computer vision. It
has a wide range of applications, such as virtual reality, hu-
man computer interaction, robotics and so on. With the de-
velopment of deep learning [6, 8] and the existence of some
large hand datasets [19, 11], hand mesh recovery from RGB
images has made great progress. However, a challenge of
the hand mesh recovery is that many existing methods usu-
ally need a large labeled hand dataset [10, 5] for training. In
the case of insufficient annotations or even in the most ex-
treme case without any landmark annotations in unseen real
scenarios, it is very difficult to obtain accurate hand mesh
prediction results. In this paper, we are specifically inter-
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ested in self-supervised hand mesh recovery to deal with
the extreme case without any landmark annotations in un-
seen real scenarios.

It is very challenging to tackle this self-supervised mesh
recovery task. Some previous methods generate synthetic
datasets [5] for estimating the hand mesh coordinates. But
the model trained on the synthetic hand dataset can hardly
be adapted to the real data due to the domain gap, which
limits their application in the real environment. Other meth-
ods more or less need landmark annotations for supervi-
sion. They propose several weakly-supervised methods and
use 2D hand joints and/or depth map to train their net-
work [1, 17, 4]. Since these approaches heavily rely on
large-scale 2D pose annotations, they also have limited gen-
eralizability when applied to unseen images in new scenar-
ios.

Unlike previous methods, our approach is based on the
insight in cognitive science that human baby can adapt to
a novel concept by correlating it with old concepts with-
out receiving an explicit supervision. Therefore, we present
a novel self-supervised learning approach that transfer the
hand priors learned from past hand estimation tasks into
new scenarios and regresses the network parameters of hand
mesh prediction with no ground truth landmark available.
In order to preserve certain past experience and adapt to a
new unlabeled environment, our approach explores a form
of self-supervised objective which learns hand mesh from
easily accessible binocular images by left-right consistency
without ground truth landmark.

The most crucial objective in this paper is to move away
any kind of landmark supervision to improve generalizabil-
ity in new scenarios. Since there are already some exist-
ing large labeled hand datasets [10, 5], our approach can
make better use of these datasets to obtain the initial mesh
estimate. For more accurate estimates in an unseen envi-
ronment without any landmark annotations, we propose to
learn from previous experience and regress the hand mesh
vertices with binocular images by left-right consistency.
Both the appearance consensus and shape consistency of
self-supervised objectives are carefully designed. As will
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be shown in Section 4, our method can accurately recover
dense meshes and achieves comparable results to weakly
supervised and even some supervised methods. The main
contributions of our paper can be summarized as follows:

1) We propose a self-supervised framework for hand
mesh recovery. The model is pre-learned from an exist-
ing labeled dataset, and then is continually transferred to
an unseen environment with binocular images by left-right
consistency without any ground truth of 2D / 3D joint coor-
dinates, depth maps, and mesh vertex coordinates.

2) We carefully design several self-supervised con-
straints to enforce the appearance consensus and the shape
consistency. These constraints enable the model to dig into
underlying spatial relations in binocular images, so as to
generalize the model to new scenarios.

3) Taking binocular RGB images as input, our model can
estimate the absolute hand mesh vertex coordinates which is
especially useful in virtual reality and robot grasping where
3D absolute coordinates are required.

4) Our model achieves comparable performance with ex-
isting weakly supervised and even some supervised meth-
ods on the widely used stereo dataset. We also collect a
large real binocular dataset and the experimental results on
this dataset also verify the effectiveness of the proposed
model.

2. Related work
There are already a large number of literatures on 3D

hand pose estimation and shape recovery. In this paper, we
only focus on the works related to weakly-supervised and
self-supervised mesh estimation.

Weakly-supervised hand shape recovery. It is very
difficult to manually label the 3D hand mesh vertex coor-
dinates in the real dataset. Some works consider to estimate
the hand mesh vertex coordinates with the supervision of
hand joint coordinates and/or depth maps. Ge et al. [4]
use both depth map and 2D joint coordinates for estimat-
ing the hand mesh vertex coordinates in the real dataset.
Boukhayma et al. [1] use a ResNet-50 [6] to regress the
shape and pose parameters of the MANO hand model [12].
Then, the 3D hand mesh is generated from the estimated
parameters. Finally, they re-project the hand mesh to 2D
hand joint coordinates for supervision. Zhang et al. [17]
also use MANO hand model for regressing the hand mesh
vertex coordinates. They render the mesh to get hand mask
and 3D joint coordinates and supervise them with ground
truth. Zhou et al. [18] capture the hand shape with multi-
modal data. They train their model with the images from
both synthetic and real datasets.

Self-supervision. There are few self-supervised ap-
proaches for estimating the hand mesh vertex coordinates.
Chen et al. [3] propose a temporal-aware self-supervised
framework for estimating the 3D hand pose and mesh. They

leverage the temporal consistency constraints for training
their model. They also use 2D hand joint coordinates and
hand mask for supervision to estimate the hand mesh vertex
coordinates from the video. Wan et al. [14] propose a self-
supervised model for 3D hand pose estimation with hand
depth map as input. They pre-define a hand model, which
is approximated with 42 spheres, and estimate the spheres’
center coordinates. Then they render the spheres with the
estimations and fit these rendered spheres back to the depth
map for fine-tuning the estimations.

Different from the above mentioned methods, we pro-
pose a self-supervised framework for hand mesh recovery
without the supervision of 2D/3D hand joint coordinates,
hand depth and mesh vertices. Our model can transfer the
pre-learned hand priors to new scenarios by left-right con-
sistency. Furthermore, our model can output absolute mesh
coordinates, which has wider applications.

3. Method
Making better use of existing hand datasets and trans-

ferring the hand mesh prediction skill learned from these
datasets to a new scenario can effectively alleviate the re-
quirement of annotations in the new scenarios. Therefore,
we present a novel self-supervised learning approach that
regress network parameters of hand mesh prediction in the
new scenarios with no ground truth landmark available by
learning from the past hand estimation tasks. The diagram
of the proposed approach is illustrated in Figure 1. We
learn the hand priors from the existing large labeled hand
dataset [19] with an encoder-decoder model (shown in Fig-
ure 2) and duplicate the model in our self-supervised frame-
work when estimating hand mesh in new scenes with binoc-
ular images, as shown in the orange part of Figure 1. With
the pre-learned model, we can obtain initial mesh estimates
for the new scenarios. For more accurate estimates in an un-
seen environment without ground truth landmark, we pro-
pose to learn the mesh vertices by left-right consistency (es-
pecially photo-consistency constraint), shown in blue part
of Figure 1. We introduce the learning pipeline of the hand
prior on existing hand dataset in Section 3.1. Section 3.2 in-
troduces how to transfer the learned hand prior to a new sce-
nario by the proposed self-supervised framework and gives
the details of the constraints used for self-supervised train-
ing.

3.1. Hand prior learning in previous dataset

There are already some existing large hand datasets,
which contain abundant hand prior information. In this pa-
per, we use the FreiHAND dataset [19] for hand prior learn-
ing, because it provides a large amount of hand data with
sufficient viewpoint and hand pose variation. We design a
simple encoder-decoder structure for hand prior learning as
shown in Figure 2, which takes the RGB image as input
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Figure 1. Our self-supervised framework.The left part is the mesh estimation module, which takes the binocular images as input and outputs
the (u, v) coordinates of the hand mesh vertex. The encoder and the mesh regressor in the mesh estimation module are initialized by pre-
training on the FreiHAND dataset [19]. The right part is the self-supervision module, where we mainly show the calculation process of the
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Figure 2. Encoder-decoder for hand prior learning.

and outputs the hand mesh vertex V ∈ RN∗3. N is the
number of the hand mesh vertex. The detailed structure of
the encoder-decoder can be seen in supplementary material.
We use ground truth mesh vertex coordinates to supervise
the learning process.

Directly applying the learned encoder-decoder to a new
scenario (e.g. the STB dataset) will output inaccurate hand
mesh estimations due to the domain gap. We give some
examples of the FreiHAND dataset and the STB dataset in
Figure 3 to illustrate the large domain gap between them.
The first difference between the STB dataset and the Frei-
HAND dataset is the hand shape and pose. These two
datasets are collected from different subjects performing
various poses, thus the pre-learned model cannot give an
accurate estimation for the pose unseen in the FreiHAND
dataset, shown as the first two images in the third row of
Figure 3. Another difference between these two datasets
is the background and the illumination. The STB dataset
is collected indoors and the samples usually have shaded
regions on the hand due to the indoor lighting. The Frei-
HAND dataset is collected under 4 powerful LED lights,
thus the illumination has little effect on hand. Therefore, the
shaded hand regions on the STB dataset shown as the third
and fourth images in the third row of Figure 3 can be easily
misestimated. Moreover, the two datasets are collected with
different sensors and their image styles are different. This
also makes the pre-learned model output inaccurate mesh

Figure 3. Results of direct prediction on the STB dataset [16] with
the model pre-learned on the FreiHAND dataset [19]. The first
row present the samples in FreiHAND dataset. The second row
are the samples in the STB dataset. The third row present the
mesh estimation results projected on the RGB image with the pre-
learned model.

estimations on the STB dataset even with similar hand pose,
shown as the last two columns of Figure 3. The aforemen-
tioned factors make it difficult for the learned model to get
accurate prediction in a new scenario.

However, as shown in the third row of Figure 3, although
the predicted results deviate from the real scene, they usu-
ally keep the hand shape undistorted, which indicates the
pre-trained model has learned the hand priors from the Frei-
HAND dataset. Therefore, the keypoint is how to trans-
fer the learned hand priors to new scenarios properly, es-
pecially without any ground truth landmark annotations in
new scenarios. In this paper, we turn to binocular images
and use the left-right consistency as supplementary infor-
mation to adjust the pre-learned model in a self-supervised
framework. The details of the self-supervision process is
shown in the next subsection.
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3.2. Self-supervised transfer learning in new sce-
narios

As discussed above, the model trained on the FreiHAND
dataset shows poor performance when directly transferred
to a new scene like the STB dataset. However, there are usu-
ally no ground truth landmark annotations in new scenarios
for retraining the hand mesh estimation model. Therefore,
we choose to add another view to provide more ground truth
information for refining the pre-learned model in a new sce-
nario. Since we use binocular images as input in this paper
during self-supervised learning, we can calculate the z co-
ordinates from disparities. The calculating process of z co-
ordinate is as the following formula.

z =
fc ∗ b

|ul − ur|
(1)

where fc is the focal length and b is the baseline of the stereo
camera. ul and ur denote the estimated u coordinates of the
hand mesh in the left and right branch, respectively. Taking
binocular images as input, the output hand mesh of the left
and right branch have the same z coordinates.

As illustrated in Figure 1, we convert the predicted lo-
cal coordinate (u, v, z) into the world coordinate (x, y, z)
and train the self-supervised framework by enforcing photo-
consistency between the left and right views [7]. The photo-
consistency constraint in our model is shown in the blue part
of Figure 1. Take the left branch as an example. The right
branch is the same with the left one. We rendered the esti-
mated right hand mesh Vr into depth map and then use it to
calculate the disparity map dispr according to the following
formula.

dispr =
fc ∗ b
depthr

(2)

Finally, the left image Il can be warped to the right image
Ĩr according to the estimated disparity dispr. Note that we
only warp the hand region and set the background to zero.
After removing the background with ground truth mask Mr

(obtained by existing skin detecting methods), the photo-
consistency between the right image Ir and the warped right
image Ĩr can be used to train the network. Hence, the photo-
consistency constraint in fact corrects the positions of all
the frontal visible mesh vertices, which is a powerful cue
to guide the prediction for better generalization in unseen
scenarios. The photo-consistency loss can be formulated as
follows:

Ll
photo−cons =

α
2

(
1− SSIM

((
Ĩr, Ir

)
∗Mr

))
+(1− α)

∥∥∥(Ĩr, Ir) ∗Mr

∥∥∥ (3)

where, Ĩr is the warped RGB image, Ir is the original right
RGB image. α is weight coefficient. In this paper we use

SSIM [15] to calculate the similarity between Ir and Ĩr.
The SSIM is calculated with the following formula:

SSIM
(
Ĩr, Ir

)
=

σĨr,Ir
+ c

σ2
Ĩr

+ σ2
Ir

+ c
(4)

where, σ2
Ĩr

is the variance of the warped RGB image Ĩr.
σ2
Ir

is the variance of the right RGB image Ir. σĨr,Ir
is the

covariance between Ĩr and Ir. c is a constant.
However, the photo-consistency loss has no constraint

on the occluded part of the hand mesh, and without a hand
model or hand shape constraint, the output mesh may be
distorted. By observing the pre-trained results in Figure
3, we can see that the results directly tested on the STB
dataset, though not very accurate, preserve a reasonable
hand shape. We use them as pseudo mesh labels to con-
straint hand shape, which is named as edge loss in Figure 1.
Apart from it, we also add Laplacian loss to keep the local
surface of the output mesh smooth. Here, we only give the
left branch for illustration and the right branch is same with
it. The edge loss is formulated as follows:

Ll
edge =

E∑
i=1

(∥ei∥ − ∥ẽi∥)2 (5)

where, ei is the edge of the pseudo-ground truth hand mesh
of the left branch.ẽi is the estimated hand mesh edge of the
left branch in our self-supervised model during the training
process. The Laplacian loss is formulated as follows:

Ll
lap =

1

Vl

∑Vl

v=1

(
v − 1

∥N (v)∥
∑

v′∈N(v)
v′
)

(6)

where, N (v) denotes the neighbor vertices of vertex v.
To help the model get accurate boundary of hands in new

scenes, we further add the mask constraint in our model.
The mask constraint is formulated as follows, where we
only give the mask constraint used in the left branch for
illustration and the right branch is same with it.

Ll
mask =

∥∥∥Ml − M̃l

∥∥∥2 (7)

where, M̃l is the rendered hand mask with the estimated
hand mesh and Ml is the ground truth.

Finally, we introduce the Chamfer Distance loss and the
normal loss to ensure spatial structure consistency between
the left and right branch. The Chamfer Distance loss is for-
mulated as follows:

Lchamfer = 1
N (

∑
vl∈Vl

min
vr∈Vr

∥vl − vr∥22

+
∑

vr∈Vr

min
vl∈Vl

∥vr − vl∥22)
(8)

where, vl and vr denote hand vertex coordinates of the left
estimated hand mesh Vl and right estimated hand mesh Vr,
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respectively. N is the number of the hand mesh vertex. The
normal loss is formulated as follows:

Lnormal =
∑
f

∑
{i,j}⊂f

∣∣∣∣∣
〈

vli − vlj∥∥vli − vlj
∥∥
2

, nr
f

〉∣∣∣∣∣ (9)

where, f is the face of the hand mesh. nr
f is the unit normal

vector of face f of the right hand mesh. vli and vlj denote
the ith and the jth vertex coordinates of the left hand mesh,
respectively.

Overall, the total loss for training our self-supervised
framework is defined as follows:

Ltotal =
∑

k∈{l,r} (λ
k
photo−consL

k
photo−cons

+λk
edgeL

k
edge + λk

lapL
k
lap

+λk
maskL

k
mask)

+λchamferLchamfer + λnormalLnormal

(10)
where, l and r denote the left branch and right branch, re-
spectively. λphoto−cons, λedge, λlap, λmask, λchamfer and
λnormal are the corresponding weight coefficients. In this
paper, we set λphoto−cons = 100, λedge = 1, λlap = 10,
λmask = 0.1, λchamfer = 0.001 and λnormal = 0.001.

4. Experiments
4.1. Dataset and evaluation metric

Dataset. We conduct experiments on two widely used
hand datasets, including the FreiHAND dataset [19] and the
Stereo Hand Pose Tracking Benchmark (STB) [16].

The FreiHAND dataset contains 130K training samples
and 4K testing samples. We only use the training samples
for pre-training the encoder-decoder model, which is used
to initialize the weight of our self-supervised framework.

The STB hand dataset consists of six sequences with dif-
ferent backgrounds collected from a stereo sensor. It pro-
vides the ground truth of 21 3D hand joint coordinates. The
baseline and focal length of the stereo sensor are 120.1mm
and 822.8 pixels, respectively. Following [4, 2], we also use
one sequence for testing and other sequences for training.

To further evaluate our self-supervised framework, we
collect a large number of stereo images to evaluate the pro-
posed model qualitatively. Details and the qualitative results
on our dataset are shown in Section 4.4.

Metrics. We adapt two commonly used metrics to verify
the validity of our method, including: 1) the average error
between the estimated 3D hand joints and the ground truth.
2) the percentage of correct keypoints (PCK) which the Eu-
clidean error is below a threshold.

4.2. Results of our self-supervised approach

Evaluations of self-supervised training. To evaluate
the effectiveness of our framework, we compare the results

Model Mean Joint Error (mm)
Test-directly 44.54

Self-supervised (monocular) 12.66
Self-supervised (binocular) 11.14

Table 1. The experimental results of our self-supervised training
on the STB dataset [16].

Figure 4. Comparison of the experimental results on the STB
dataset [16] before and after self-supervised training with our
model. The first row is the input RGB image. The second row is
the results of directly test on STB dataset with pre-trained model
on FreiHAND dataset. The third row is the results after our self-
supervised training with the proposed model (binocular version).

on the STB dataset before and after self-supervised train-
ing. The quantitative results of our self-supervised train-
ing is shown in Table 1. Test-directly means training on
the FreiHAND dataset [19] and directly testing on the STB
dataset, which get 3D mean joint error of 44.52mm. After
self-supervised training, denoted as self-supervised (binoc-
ular), the 3D mean joint error significantly decreases from
44.52mm to 11.14mm.

In addition, in Figure 4 we compare the qualitative re-
sults before and after our self-supervised training. Com-
paring the second row with the third one, we can see that
our self-supervised framework not only keeps a reasonable
hand shape but also corrects the pose and location of the
estimated mesh. We provide more qualitative results of the
hand mesh estimations with our self-supervised model on
the STB dataset in Figure 5. The first row and the third
row give the original input images. The second row and
the fourth row give the estimated hand meshes, which are
rendered on the input RGB image. From the experimental
results we can see that our model can overcome the uneven
light condition and get accurate hand mesh estimation re-
sults for hands with different poses.

Apart from the binocular input which calculates z co-
ordinates with the disparity, we can also regress z coordi-
nates in each branch with the neural network, denoted as
self-supervised (monocular) in Table 1. Our monocular ver-
sion has similar structure as the binocular version, which
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Figure 5. Qualitative results on the STB dataset [16]. The first row and the third row are the input images. The second row and the fourth
row are the estimated hand mesh rendered on the input images.

also contains two branches and takes left and right images
as input during training. The mesh regressor in each branch
is built upon that of the binocular version by adding an-
other network module for regressing the z coordinates. We
also use the left-right consistency in training as the binoc-
ular version. During testing, each branch can directly out-
put u, v and z coordinates of the hand mesh and gets 3D
mean joint error of 12.66mm, which is slightly worse than
the binocular input. Furthermore, the model with binocular
input can directly estimate the absolute 3D hand joint coor-
dinates, while the monocular version can only estimate the
root relative coordinates.

Overall, the above experiments verify the effectiveness
of our self-supervised framework.

Ablation study. We evaluate the effect of each loss func-
tion used in our self-supervised framework, and the quan-
titative results are shown in Table 2. Each row in Table 2
gives the result when training our self-supervised frame-
work without the corresponding loss. We also visualize the
estimated mesh results in Figure 6. From Table 2 we can
see that the photo-consistency loss plays the most impor-
tant role in hand mesh recovery and the 3D mean joint error
increases from 11.14mm to 25.36mm when such loss is re-
moved. This is because the photo-consistency loss exploits
the implicit correspondence of the hand between binocular
images and holds the most ground truth spatial information
compared to other constraints. As illustrated in Figure 6,
we convert the ground truth depth maps of the STB dataset
into point clouds (the yellow points) and draw them together
with the estimated mesh. In this way we can see that the

Photo-
consistency

Edge Laplacian Mask Chamfer Normal
Mean Joint
Error(mm)

✓ ✓ ✓ ✓ ✓ ✓ 11.14
× ✓ ✓ ✓ ✓ ✓ 25.36
✓ × ✓ ✓ ✓ ✓ 13.46
✓ ✓ × ✓ ✓ ✓ 11.36
✓ ✓ ✓ × ✓ ✓ 11.23
✓ ✓ ✓ ✓ × ✓ 11.37
✓ ✓ ✓ ✓ ✓ × 11.23

Table 2. Impact of each loss function on the STB dataset [16].

Input

Full Loss w/o Photo-consistency w/o Edge

Front Side Front Side Front Side

Figure 6. Qualitative results without the photo-consistency con-
straint and the edge constraint. The hand point cloud (the yellow
points) converted from the ground truth hand depth map is illus-
trated for better comparison.

hand mesh learned with full losses tend to fit the ground
truth depth map well, while training without the photo-
consistency loss could lead to inaccurate estimation. Sec-
ondly, when the edge loss is removed during self-supervised
training, the 3D mean joint error increases from 11.14mm to
13.46mm, as shown in the third row in Table 2. The visual-
ization results illustrated in the last two columns in Figure 6
show that training without the edge loss could lead to severe
shape distortion, since there are no hand model used in our
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Model Sensor Absolute Supervision Mean Error(mm)
Ge [4] monocular no 2D joint & depth 10.57

Boukhayma [1] monocular no 3D joint 9.76
Spurr [13] monocular no 3D joint 8.56

Ge [4] monocular no 3D joint 6.37
Chen [3] monocular(video) no 2D joint 11.3

Yuncheng Li [9] binocular yes 2D joint 24.6
Zhang [16] binocular no 3D joint -

self-supervised(ours) monocular no w/o 2D/3D joint & depth 12.66
self-supervised(ours) binocular yes w/o 2D/3D joint & depth 11.14

Table 3. Comparison of the 3D hand pose estimation results between our model and existing state-of-the-art methods on STB dataset [16].

20 25 30 35 40 45 50
Error Threshold (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3D
 P

CK

Ours_binocular_input (AUC=0.980)
Ours_monocular_input (AUC=0.975)
Ge et al. CVPR19 (AUC=0.974)
Chen et al. WACV21 (AUC=0.972)
Cai et al. ECCV18 (AUC=0.876)

Figure 7. Comparison with state-of-the-art weakly supervised
methods of the 3D PCK on STB dataset [16].

framework, and other constraints do not preserve complete
hand shape information as the edge loss does. The Lapla-
cian loss, the mask loss, the Chamfer Distance loss and the
normal loss also provide slight effect to our self-supervised
model for 3D hand joint estimation, as shown in Table 2.
But because the photo-consistency loss and the edge loss
have already provide powerful pose and shape constraints,
the effects of other losses are not obvious. In summary, our
self-supervised model with full loss functions achieves the
lowest 3D mean joint error.

4.3. Comparison with state-of-the-art methods

We only compare the 3D hand joint estimation result of
our model with existing state-of-the-art methods, because
the STB hand dataset only has the 3D joint ground truth.
The comparison of the 3D hand pose estimation results be-
tween our model and existing state-of-the-art methods are
shown in Table 3. From the experimental results we can
see that our model achieves better performance than [9]
when estimating the absolute 3D hand joint coordinates
with binocular images as input. Compared with the weakly
supervised method [4] with 2D hand joint coordinates and
hand depth map for supervision, whose 3D mean joint error
is 10.57mm, our self-supervised model can get comparable
performance. Our model also presents comparable perfor-
mance with [3], which uses the hand videos as model input

20 25 30 35 40 45 50
Error Threshold (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3D
 P

CK Ge et al. CVPR19 (AUC=0.998)
Cai et al. ECCV18 (AUC=0.994)
Iqbal et al. ECCV18 (AUC=0.994)
Ours_binocular_input (AUC=0.980)
Ours_monocular_input (AUC=0.975)
Mueller et al. CVPR18 (AUC=0.965)
Z&B et al. ICCV17 (AUC=0.948)
CHPR (AUC=0.839)
ICPPSO (AUC=0.748)
PSO (AUC=0.709)

Figure 8. Comparison with state-of-the-art supervised methods of
the 3D PCK on STB dataset [16].

and 2D hand joint coordinates for supervision. From the
experimental results we can see our self-supervised frame-
work can get comparable performance compared with exist-
ing state-of-the-art weakly supervised methods. It should be
pointed out that our model doesn’t need 2D/3D joint ground
truth for supervision on STB hand dataset. Another advan-
tage of our self-supervised framework is that our model can
estimate the absolute hand joint coordinates, while exist-
ing methods usually can only estimate the root relative hand
joint coordinates.

The PCK curve compared with state-of-the-art weakly
supervised methods [4, 3, 2] is shown in Figure 7. It can be
seen that our self-supervised framework with binocular im-
ages as input performs better than these weakly supervised
methods. Our self-supervised model with monocular im-
age as input also gets comparable performance with these
methods. It should be noted that, [4, 2] use 2D hand joint
coordinates and hand depth map for supervision. [3] use
2D hand joint coordinates for supervision with hand video
as input. Our model doesn’t need the supervision of the 2D
hand joint coordinates and the hand depth on the STB hand
dataset. Figure 8 gives the comparison results between our
model and the state-of-the-art supervised methods, which
use the 3D joint coordinates for supervision. From the ex-
perimental results we can see our model can also get com-
parable performance with these methods.
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Figure 9. Qualitative results on our collected binocular images. The first row and the third row are the input images. The second row and
the fourth row are the estimated hand mesh rendered on the input images.

4.4. Qualitative results on the collected real dataset

We use the D1000-IR-120 MYNT AI stereo sensor to
collect the binocular images. The baseline of the binocu-
lar sensor is 120mm and the focal length is 762.7 pixels.
The binocular images are collected from two subjects per-
forming counting, random, and signs from the American
sign language with size of 1280×720. The total number
of the collected binocular images are 12150, where we ran-
domly select 11000 binocular images for training the self-
supervised model and the rest 1150 binocular images are
used for testing the model qualitatively.

Figure 9 gives the experimental results on our collected
binocular images. From the results we can see that our
model can predict accurate and reasonable estimation re-
sults of the hand mesh for various hand poses without any
landmark annotations. We provide more qualitative results
on the STB dataset and our collected real images in the sup-
plementary materials by videos.

Failure cases. Figure 10 gives some failure cases of the
estimated hand mesh by our self-supervised model. The
reason of the failure in the first two columns may be the
insufficiency of pose in the FreiHAND dataset during hand
prior learning. We will add more datasets for learning the
hand prior in the future. The reason of the failure in the last
two columns shown as the red circles is that we use binoc-
ular images as model input and the baseline of the stereo
camera is short. The short baseline makes some parts of the
hand region similar between the left and right image, which
are difficult to learn. This will lead to inaccurate mesh esti-
mation of these hand parts.

Figure 10. Failure cases on STB dataset and the collected real im-
ages. The first row gives the failure cases on STB dataset. The
second row are the results on the collected real images.

5. Conclusion

In this paper, we propose a self-supervised transfer learn-
ing framework for hand mesh recovery. Different from ex-
isting models, which usually need the ground truth land-
mark for supervision in new scenarios, our self-supervised
framework learns hand prior from existing hand datasets
and transfer the priors to new scenarios with binocular im-
ages. We apply the left-right consistency constraints for
training the proposed model without ground truth landmark
and the experimental results on the stereo hand dataset show
that our model can get comparable performance compared
with state-of-the-art methods even without landmark anno-
tations.
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