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Abstract

Generalized zero-shot learning (GZSL) aims to classify
samples under the assumption that some classes are not ob-
servable during training. To bridge the gap between the
seen and unseen classes, most GZSL methods attempt to as-
sociate the visual features of seen classes with attributes or
to generate unseen samples directly. Nevertheless, the vi-
sual features used in the prior approaches do not necessar-
ily encode semantically related information that the shared
attributes refer to, which degrades the model generaliza-
tion to unseen classes. To address this issue, in this paper,
we propose a novel semantics disentangling framework for
the generalized zero-shot learning task (SDGZSL), where
the visual features of unseen classes are firstly estimated
by a conditional VAE and then factorized into semantic-
consistent and semantic-unrelated latent vectors. In partic-
ular, a total correlation penalty is applied to guarantee the
independence between the two factorized representations,
and the semantic consistency of which is measured by the
derived relation network. Extensive experiments conducted
on four GZSL benchmark datasets have evidenced that
the semantic-consistent features disentangled by the pro-
posed SDGZSL are more generalizable in tasks of canon-
ical and generalized zero-shot learning. Our source code
is available at https://github.com/uqzhichen/
SDGZSL.

1. Introduction
Human beings have a remarkable ability to learn new no-

tions based on prior experience without seeing them in ad-

vance. For example, given the clues that zebras appear like

horses yet with black-and-white stripes, one can quickly

recognize a zebra if he/she has seen horses before. Nev-

ertheless, unlike humans, supervised machine learning al-

gorithms can only classify samples belonging to the classes

that have already appeared during the training phase, and

they are not able to handle samples from previously unseen

Semantic-unrelated visual features, e.g., ear shape
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Figure 1: An illustration of the visual features (red boxes)

that are not associated with the annotated attributes. Learn-

ing from such visual features that are semantically unrelated

may jeopardize the model generalization to unseen classes.

categories. This challenge motivates the study of generaliz-

ing models to the unseen classes by transferring knowledge

from intermediate semantics (e.g., attributes), which typi-

cally refers to zero-shot learning (ZSL). intro

Particularly, the core idea of ZSL [19, 34, 1, 17] lies in

learning to map features between the semantic space and vi-

sual space, thereby closing the gap between the seen and un-

seen classes. While effective, conventional ZSL techniques

are built upon the assumption that the test set only contains

samples from the unseen classes, which can be easily vio-

lated in practice. Hence, it is more reasonable to consider a

new protocol called generalized zero-shot learning (GZSL),

where seen and unseen images are both to be identified.

Existing GZSL techniques can be roughly grouped into

two types: embedding-based [9, 34, 22, 21, 13] and

generative-based [38, 35, 28, 24, 15] approaches. The for-

mer group learns a projection or an embedding function

to associate the visual features of seen classes with the

respective semantic vectors, while the latter one learns a

visual generator for the unseen classes based on the seen

points and semantic representations of both classes. How-

ever, most GZSL approaches directly leverage the visual

features extracted from the pre-trained deep models, such
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as ResNet101 [11] pre-trained on ImageNet, which are not

tailored for ZSL tasks. In [31], it is observed that not all the

dimensions of the extracted visual features are semantically

related to the pre-defined attributes, which triggers the bias

on learning semantic-visual alignment and causes negative

transfer to unseen classes. Given an example from the AWA

dataset shown in Figure 1, despite the features of animals’

ears are visually salient for discriminating image samples, it

is ignored in the manually annotated attributes. When gen-

eralizing to unseen classes such as cats, it is easy for them

to be misclassified as tigers because the visual features cor-

responding to the concepts “Big, Strong, Muscle” are not

highlighted. From this case, we believe that GZSL will ben-

efit from using the visual features that can consistently align

with the respective semantic attributes. We define this type

of visual features as the semantic-consistent features, which

are agnostic to both seen and unseen classes. In contrast,

those visual features that are irrelevant to manually anno-

tated attributes are defined as semantic-unrelated.

To unravel semantic-consistent and semantic-unrelated

features from the original visual spaces, we present a novel

framework, namely Semantics Disentangling for General-

ized Zero-Shot Learning (SDGZSL), as shown in Figure 2.

Specifically, we disentangle the underlying information of

the extracted visual features into two disjoint latent vec-

tors hs and hn. They are learned in an encoder-decoder

architecture with a relation module and a total correlation

penalty. The encoder network projects the original visual

features to hs and hn. To make hs consistent with the se-

mantic embeddings, the relation module calculates a com-

patibility score between hs and semantic information to

guide the learning of hs. We further apply the total cor-

relation penalty to enforce the independence between hs

and hn. Afterward, we reconstruct the original visual fea-

tures x̄ from the two latent representations. This recon-

struction objective ensures the two latent representations to

cover both semantic-consistent and semantic-unrelated in-

formation. The disentangling modules are incorporated into

a conditional variational autoencoder and trained in an end-

to-end manner. The proposed framework is evaluated on

various GZSL benchmarks and achieves better performance

compared to the state-of-the-art methods. The main contri-

butions of this work are summarized as follows:

• We propose a novel feature disentangling framework,

namely Semantic Disentangling for Generalized Zero-

Shot Learning (SDGZSL), to disentangle the underly-

ing information of visual features into two latent repre-

sentations that are semantic-consistent and semantic-

unrelated, respectively. Exploiting the semantic-

consistent representations can substantially increase

the performance in GZSL comparing to directly using

entangled visual features that are extracted from the

pre-trained CNN models.

• To facilitate the feature disentanglement of the

semantic-consistent and semantic-unrelated represen-

tations, by introducing a total correlation penalty in our

framework we arrive at a more accurate characteriza-

tion of the semantically annotated features.

• Extensive experiments conducted on four benchmark

datasets evidence that the proposed method performs

better than the state-of-the-art methods.

2. Related Work
Recent state-of-the-art approaches for GZSL using gen-

erative models have achieved promising performance. Gen-

erative models can synthesize an unlimited number of vi-

sual features from side information of the unseen classes,

e.g., manually annotated attributes. With these synthe-

sized features, ZSL problems become a relatively straight-

forward supervised classification task. The two most com-

monly used generative models are generative adversarial

networks (GANs) [10] and variational autoencoders (VAEs)

[14]. Often, both models are jointly used to form genera-

tive architectures for ZSL tasks. f-CLSWGAN [35] lever-

ages Wasserstein GANs (WGAN) [3] to synthesize vivid

visual features. CADA-VAE [28] leverages two aligned

variational autoencoders to learn the shared latent represen-

tations between different modalities. SE-ZSL [18] adopts

an autoencoder followed by an attribute regressor to train a

model with three alignments: visual-to-attribute, attribute-

to-visual and visual-to-attribute. E-PGN [37] integrates the

meta-learning approach into ZSL by formulating both the

visual prototype generation and the class semantic infer-

ence into an adversarial framework. TF-VAEGAN [24] pro-

poses a feedback module in a VAE-GAN model to mod-

ulate the latent representation of the generator. However,

the CNN visual features contain semantic-unrelated infor-

mation, e.g., background noise and unannotated character-

istics, which may jeopardise the semantic-visual alignment,

we propose to factorize out the semantic-unrelated features

and leverage the remaining semantic-consistent features as

the generation target.

In most literature, disentanglement refers to indepen-

dence among features of one representation [4, 7, 12, 5].

Total correlation [33] is a measurement of independence

for multiple random variables. In information theory, to-

tal correlation is one of many generalizations of mutual

information to random variables. It has been a key com-

ponent in recent methods towards disentanglement. Fac-

torVAE [16] is proposed to disentangle features by mak-

ing the distribution of representations to be factorial and

thus achieves independence across dimensions. Specifi-

cally, dimension-wise independence is achieved by apply-

ing the total correlation penalty on an original representa-

tion and its random permuted representation across dimen-

sions. In contrast, we aim to enforce independence between
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Figure 2: An illustration of our proposed SDGZSL, which is comprised of: (i) a conditional VAE model for visual feature

generation (in the orange box); (ii) disentangling modules to learn two factorized latent representations (in the green box).

Particularly, the inference network Q is learned to infer a latent variable z from the visual feature x and semantic embedding a
of seen samples, where z is then applied to recover unseen visual features. The encoder E is subsequently trained to factorize

the semantic-consistent hs and semantic-unrelated hn representations, and the independence between them is guaranteed

by a total correlation penalty. By concatenating hs with the random semantic vectors a, the derived relation module R
distinguishes the matched pairs from the mismatched ones, thus forcing hs to be semantically correlated.

two representations rather than keeping each dimension in-

dependent to each other. To our best knowledge, DLFZRL

[31] is the only work proposed to consider feature disentan-

gling for ZSL. DLFZRL proposes a hierarchical disentan-

gling approach to learn the discriminative latent features.

This approach is designed in a two-step fashion, starting

with feature selection and then learning to generate the se-

lected features. The original visual features are factorized

into three latent representations, including semantic, non-

semantic, and non-discriminative features. However, we ar-

gue that the non-semantic visual features do not align with

the semantic embeddings. Hence, it is hard to transfer the

non-semantic visual features from seen to unseen classes.

In our approach, we filter out such non-semantic visual fea-

tures. Moreover, we combine the generative model and the

disentangling modules so that our approach can be trained

in an end-to-end manner.

3. Proposed Approach
This section firstly introduces the problem formulation

and notations, then depicts the proposed approach of factor-

izing semantic-consistent representations for GZSL.

3.1. Preliminaries

Let {X s,Ys} be the dataset with S seen classes, which

contains Ns training samples X s = {xs
(i)}N

s

i=1 and the cor-

responding class labels Ys = {ys(i)}N
s

i=1. The class labels

span from 1 to S, ys ∈ Ls = {1, ..., S}. Given another

dataset {X u,Yu}, in which the classes are related to the

seen dataset (e.g., all classes in both datasets correspond to

animals). The dataset has U unseen classes and consists of

Nu data instances X u = {xu
(j)}N

u

j=1 with the corresponding

labels Yu = {yu(j)}N
u

j=1. The class labels thus range from

S+1 to S+U , yu ∈ Lu = {S+1, ..., S+U}. The seen and

unseen classes are mutually exclusive, i.e., Ls ∩ Lu = ∅.

For the semantic information A = {a(k)}S+U
k=1 , each class

from both seen and unseen is associated with a class-level

semantic vector, which can be embeddings or attributes. We

denote As and Au as the semantic vectors of seen and un-

seen classes.

3.2. Semantics Disentanglement

We start with defining three concepts in GZSL concern-

ing the visual features and the semantic information.
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Semantic-consistent Representations. We define semantic-

consistent representations hs to represent the characteristics

of images annotated with attributes. The visual features of

images are extracted by a deep model, e.g., ResNet101, pre-

trained on ImageNet. These visual features are not task-

specific for ZSL datasets, in which the classes are usually

related (e.g., they all correspond to birds). Thus, the ex-

tracted visual features may unexpectedly involve redundant

information that could compromise the semantic-visual re-

lationship learning. The elegant solution to ZSL is attribute-

based learning, which consists in introducing the interme-

diate semantic space A. Such a space enables parameter

sharing between classes. Ideally, if the visual features only

contain information that corresponds to the annotated at-

tributes hs, the visual-semantic relation can be appropri-

ately learned from seen classes and further transferred to

unseen classes which could be beneficial to the GZSL task.

Semantic-unrelated Representations. In analogy to hs, we

define semantic-unrelated visual representations hn to rep-

resent the information contained in visual features which

may help classification but not correspond to the annotated

attributes, e.g., in Figure 1 the ear shape is an intuitively dis-

criminative characteristic that can help distinguish animals

but does not appear in the annotated attributes.

Independence between hs and hn. In GZSL, the core mis-

sion is to transfer the semantic-visual relationship from seen

classes to unseen classes. However, as the visual concepts

of hn are not consistent with the manually annotated se-

mantic information, it is difficult to align the relationship

from semantic space to visual space and further transfer

to unseen classes. As in the definitions of hs and hn, in

the setting of GZSL, the visual features can be disentangled

into semantic-consistent hs and semantic-unrelated hn rep-

resentations. To achieve this, we enforce the independence

between hs and hn. Independence can be measured by the

mutual information, and the total correlation is one of the

generalizations of the mutual information. Thus, we aim

to minimize the entanglement of the visual information in

the two representations by leveraging the total correlation

to measure how hs and hn are independent.

3.2.1 Visual Feature Preservation by Reconstruction

The disentangling modules are developed with an encoder-

decoder architecture, coupled with a total correlation

penalty and a relation module. An encoder Eψ parameter-

ized with ψ is adopted to map a visual feature vector x to

a latent representation h, i.e., Eψ: R
d → R

l+m, where l
and m are the dimensions of the semantic-consistent and

semantic-unrelated representations. Then, we have:

Eψ(x) = h = [hs,hn]. (1)

In order to preserve the visual features in h, a decoder Dω

is learned to transform h to the original visual feature x,

i.e., Dω: Rl+m → R
d. The reconstruction objective can be

formulated as:

Lrec =
∑

x∈X s

‖x −Dω(hs,hn)‖2, (2)

where we calculate the mean squared error between the

original visual features x and the reconstructed visual fea-

tures x̄ = Dω(hs,hn).

3.2.2 Semantic-Visual Relationship Learning

A relation network (RN) [30] is adopted to learn the

semantic-consistent representations hs by maximizing the

compatibility score (CS) between a latent representation hs

and the corresponding semantic embeddings as. The re-

lation module Rκ learns the pair-wise relationship between

the latent representations and semantic vectors. The input of

Rκ is the pairs of a latent representation hs and N c unique

semantic embeddings Abatch = {a(c)}Nc

c=1 from a training

batch with B training instances. The ground-truth CS of the

matched pairs are set to be 1; the mismatched pairs are 0,

which can be formulated as:

CS(h(t),a(c)) =

{
0, y(t) �= y(c)

1, y(t) = y(c)

, (3)

where t and c refer to the t-th semantic-consistent repre-

sentation and c-th unique semantic embedding in a training

batch, y(t) and y(c) denote the class label of h(t) and a(c).

With the CS defined in Equation 3, we now formulate

the loss function for the semantics embeddings Abatch and

semantic-consistent information. The relation module Rκ

with a Sigmoid activation function outputs the learned com-

patibility score between 0 and 1 for each pair. The loss

function for optimizing hs can then be formulated as:

Lhs
=

B∑
t=1

Nc∑
c=1

‖Rκ(hs(t),a(c))− CS(hs(t),a(c))‖2, (4)

where we calculate the mean squared error between the out-

put compatibility score of each pair of hs(t) and a(c) and the

ground-truth in every single training batch. Normally, we

have N c ≤ B as one class that may contain many sampled

visual feature vectors in one batch.

3.2.3 Disentanglement by Total Correlation Penalty

To encourage the disentanglement between semantic-

consistent hs and semantic-unrelated hn representations,

we introduce a total correlation penalty in our proposed

method. Within the encoding procedure, the latent rep-

resentation h ∼ γ(h | x) is expected to contain both

the semantic-consistent and the semantic-unrelated infor-

mation. Therefore, the disentanglement between these two



streams of information is crucial for meaningful represen-

tation learning. Along with the relation network that facili-

tates the learning of semantic-consistent representation hs,

we aim to make hn semantic-unrelated by encouraging the

disentanglement between hn and hs. From a probabilistic

point of view, we can think both of them come from differ-

ent conditional distributions:

hs ∼ γ1(hs | x), hn ∼ γ2(hn | x). (5)

Hence, for the two latent representations, the total correla-

tion can be formulated as:

TC = KL (γ||γ1 · γ2) , (6)

where γ := γ(hs,hn | x) is the joint conditional proba-

bility of hs and hn. In order to efficiently approximate the

total correlation, we apply the density ratio estimation to

distinguish the samples from the two distributions in an ad-

versarial manner. A discriminator Disϕ is constructed to

output an estimate of the probability Disϕ(h) whose input

is independent. Thus,

TC = Eγ

(
log

γ

γ1 · γ2

)
≈ Eγ

(
log

Dis(h)

1−Dis(h)

)
, (7)

where the approximation is derived in Appendix A. Si-

multaneously, we train the discriminator Disϕ to maximize

the probability of assigning the correct label to h and h̃:

Ldis = logDisϕ(h) + log(1−Disϕ(h̃)), (8)

where h̃ is the result by randomly permuting each hs

and hn across the batch. The permutation process is de-

scribed as following: (1) Given a batch of latent represen-

tations {h(t)}Bt=1; (2) they are split into {hs(t)}Bt=1 and

{hn(t)}Bt=1; (3) for both hs and hn, we permute the batch

indices twice on B = {1, ..., B}, yielding B′ and B′′;
(4) with the permuted indices, reorder the latent represen-

tations {hsB′(t)}Bt=1, {hnB′′(t)}Bt=1 and concatenate them

into {h̃(t)}Bt=1.

3.3. Visual Feature Generation

To model the distribution of visual features conditioned

on the semantic information, we leverage the conditional

variational auto-encoder (cVAE) [29] as the generative

model. In GZSL, we aim to transfer the knowledge from

seen classes to some other unseen classes. Hence, we rep-

resent the category information in cVAE as the class embed-

dings a to enable parameter sharing between classes. The

objective function of the cVAE in our framework can then

be written as:

LcVAE = − KL [qφ(z|x,a)||pθ(z|a)]
+ Eqφ(z|x,a)[log pθ(x|z,a)], (9)

Algorithm 1 SDGZSL training

Input: {X s,Ys}, As, learning rate λ
Initialize: ϕ and W = {φ, θ, ψ, ω, κ}

1: while not converged do
2: Randomly select a batch {xs

(t),y
s
(t)}Bt=1, {as

(c)}N
c

c=1

3: for step = 0,...,ndis do
4: Compute h̄ and h with φ, θ, ψ by Eq. 1

5: Vector permutation for h̄ and h
6: Compute λ3Ldis by Eq. 8

7: Update ϕ ← ϕ+ λ∇ϕλ3Ldis

8: Compute Loverall1 = LcVAE + Lrec + λ1Lhs

with Eq. 9, 2, 4

9: Update W ← W + λ∇WLoverall1

10: end for
11: Randomly select a batch {xs

(t),y
s
(t)}Bt=1, {as

(c)}N
c

c=1

12: Compute Loverall2 = LcVAE + Lrec + λ1Lhs
+

λ2TC with Eq. 9, 2, 4, 7

13: Update W ← W + λ∇WLoverall2

14: end while
Output: trained generative network Pθ and encoder Eψ

where the first term is the KL divergence between two dis-

tributions qφ(z|x,a) and pθ(z|a) and the second term is

the reconstruction loss. As illustrated in Figure 2, we use

Qφ and Pθ to denote the inference and generator networks

to model qφ(z|x,a) and pθ(z|a), respectively. Specifi-

cally, given the visual features x and the semantic embed-

dings a, the inference network Qφ produces the latent vari-

ables z. The generator network Pθ leverages the inferred

latent variable z and the class embeddings a to reconstruct

the visual features x̂. The reconstructed and original visual

features x̂, x are fed into the disentangling module.

3.4. Training and Inference

Algorithm 1 shows the pseudocode of the model train-

ing. We iteratively train the Disϕ with the overall frame-

work for ndis steps and then fix the weights in Disϕ to

train other components. In Algorithm 1, the weights for

Lhs , TC, and Ldis are denoted as λ1, λ2 and λ3. Once the

training of SDGZSL is converged, the semantic-consistent

representations h̄u
s of unseen classes can be generated by

the generative network Pθ and disentangling encoder Eψ

from the Gaussian noise z and the unseen semantic embed-

dings au, i.e., Pθ : Rz × R
k → R

d, Eψ : Rd → R
l+m. z

represents the dimensions of the latent variables z. Then,

we disentangle the training seen features {xs
(i)}N

s

i=1 into

{hs
s(i)}N

s

i=1, together with the generated unseen semantic-

consistent representations h̄u
s we can simply train a super-

vised classifier. Further prediction for either seen or unseen

objects can be conducted by supervised classification. In

our paper, a Softmax classifier is adopted for evaluation.



Table 1: Performance comparison in accuracy (%) on four datasets. We report the accuracies of unseen, seen classes and their

harmonic mean for GZSL, which are denoted as U, S and H. For ZSL, performance results are reported with the average top-1

classification accuracy (T1). The top two results of the T1 and H are highlighted in bold. † and ‡ represent embedding-based

and generative methods, respectively. ∗ means a fine-tuned backbone is used.

aPaY AWA CUB FLO
Methods

T1 U S H T1 U S H T1 U S H T1 U S H

†

LFGAA [22] - - - - 68.1 27.0 93.4 41.9 67.6 36.2 80.9 50.0 - - - -

DCN [21] 43.6 14.2 75.0 23.9 65.2 25.5 84.2 39.1 56.2 28.4 60.7 38.7 - - - -

TCN [13] 38.9 24.1 64.0 35.1 71.2 61.2 65.8 63.4 59.5 52.6 52.0 52.3 - - - -

DVBE [23] - 32.6 58.3 41.8 - 63.6 70.8 67.0 - 53.2 60.2 56.5 - - - -

‡

f-CLSWGAN [35] 40.5 32.9 61.7 42.9 65.3 56.1 65.5 60.4 57.3 43.7 57.7 49.7 69.6 59.0 73.8 65.6

CANZSL [6] - - - - 68.9 49.7 70.2 58.2 60.6 47.9 58.1 52.5 69.7 58.2 77.6 66.5

LisGAN [20] 43.1 34.3 68.2 45.7 70.6 52.6 76.3 62.3 58.8 46.5 57.9 51.6 69.6 57.7 83.8 68.3

CADA-VAE [28] - 31.7 55.1 40.3 64.0 55.8 75.0 63.9 60.4 51.6 53.5 52.4 65.2 51.6 75.6 61.3

f-VAEGAN-D2 [36] - - - - 71.1 57.6 70.6 63.5 61.0 48.4 60.1 53.6 67.7 56.8 74.9 64.6

DLFZRL [31] 46.7 - - 38.5 70.3 - - 60.9 61.8 - - 51.9 - - - -

TF-VAEGAN [24] - - - - 72.2 59.8 75.1 66.6 64.9 52.8 64.7 58.1 70.8 62.5 84.1 71.7

TF-VAEGAN∗ [24] - - - - 73.4 55.5 83.6 66.7 74.3 63.8 79.3 70.7 74.7 69.5 92.5 79.4

OCD-CVAE [15] - - - - 71.3 59.5 73.4 65.7 60.3 44.8 59.9 51.3 - - - -

E-PGN [37] - - - - 73.4 52.6 83.5 64.6 72.4 52.0 61.1 56.2 85.7 71.5 82.2 76.5

AGZSL [37] 41.0 35.1 65.5 45.7 73.8 65.1 78.9 71.3 57.2 41.4 49.7 45.2 82.7 63.5 94.0 75.7

AGZSL∗ [37] 43.7 36.2 58.6 44.8 76.4 69.0 86.5 76.8 77.2 69.2 76.4 72.6 85.2 73.7 91.9 81.7

cVAE 39.2 30.2 55.3 39.0 65.4 54.4 72.6 62.2 61.4 47.0 59.9 52.7 68.7 60.1 89.6 71.9

SDGZSL w/o RN&TC 20.3 14.6 37.0 21.0 57.5 41.3 70.0 51.9 42.3 25.1 54.7 34.5 67.5 56.6 87.6 68.7

SDGZSL w/o TC 39.8 33.8 49.1 40.0 54.0 45.7 79.4 58.0 27.4 23.6 46.2 31.2 57.5 44.8 65.7 53.3

SDGZSL w/o RN 30.9 27.3 41.9 33.1 55.8 48.5 64.6 55.5 30.4 20.8 31.4 25.0 53.2 40.6 67.6 50.7

SDGZSL 45.4 38.0 57.4 45.7 72.1 64.6 73.6 68.8 75.5 59.9 66.4 63.0 85.4 83.3 90.2 86.6
SDGZSL∗ 47.0 39.1 60.7 47.5 74.3 69.6 78.2 73.7 78.5 73.0 77.5 75.1 86.9 86.1 89.1 87.8

4. Experiments

4.1. Experimental Setting

Datasets The proposed framework is evaluated on four

widely used benchmark datasets of image classification, in-

cluding two coarse-grained datasets (Attribute Pascal and

Yahoo (aPaY) [8] and Animals with Attributes 2 (AWA)

[19]) and two fine-grained datasets (Caltech-UCSD Birds-

200-2011 (CUB) [32] and Oxford Flowers (FLO) [25]).

aPaY contains 18,627 images from 42 classes and is anno-

tated with 64 attributes. It combines datasets a-Pascal and a-

Yahoo, which has 30 and 12 classes respectively. AWA is a

relatively larger coarse-grained dataset with 30,475 images

from 50 animal species, in which 40 are selected as seen

classes and the rest is unseen. Each species in the dataset

is annotated with 85 attributes. CUB consists of 11,788 im-

ages from fine-grained bird species with 150 seen and 50

unseen classes. FLO contains 102 flower categories with

82 seen and 20 unseen classes. The semantic embeddings

of FLO and CUB are 1,024-dimensional character-based

CNN-RNN features [26] extracted from the fine-grained vi-

sual descriptions (10 sentences per image).

Evaluation Protocol The metric used to evaluate the GZSL

task is harmonic mean, which calculates the joint accu-

racy of the seen and unseen classes. The formula used to

calculate the harmonic mean H can be written as: H =
(2 × U × S )/(U + S ), where U and S denote the av-

Figure 3: GZSL accuracy (in %) comparison between hs,

hn, and h.

erage per-class top-1 accuracy of unseen and seen classes,

respectively. A high harmonic mean indicates the good per-

formance of both seen and unseen classes.

4.2. Comparison with State-of-the-art Methods

Table 1 shows the GZSL performance of compared

methods and ours with and without fine-tuning the back-

bone on the datasets. We choose the recent state-of-the-

art embedding-based and generative methods. They are

marked with † and ‡ respectively. Generally, our pro-



Figure 4: Zero-shot image retrieval result comparison be-

tween cVAE and SDGZSL.

posed method consistently performs better than all the com-

pared methods, except on AWA dataset. These methods di-

rectly use the visual features extracted from a pre-trained or

fine-tuned ResNet101 model, which limits semantic-visual

alignment learning. The intuition of this work is in agree-

ment with DLFZRL [31], we both aim to disentangle more

effective representations from visual features. DLFZRL

proposes to disentangle the discriminative features from vi-

sual features, both semantic and non-semantic. However,

we argue that the non-semantic discriminative features can-

not be transferred from seen classes to unseen classes. The

conditional generative models learn to project the semantic

vectors to the visual space, but intuitively there is no way

to generalize the non-semantic discriminative features from

the semantic perspective. As can be seen from the perfor-

mance comparison, our method surpasses DLFZRL on all

the reported datasets. Our method is also applicable to the

generative methods mentioned above. It is worth mention-

ing that, unlike DFLZRL that is designed in a two-stage

process, we carefully design our framework by incorporat-

ing the disentangling modules into the generative model so

that the overall framework can be trained in an end-to-end

manner.

4.3. Conventional Zero-shot Learning Results

We aim to solve the generalized zero-shot learning prob-

lem in this work, but it is necessary to demonstrate that

our approach can also achieve state-of-the-art performance

on conventional zero-shot learning that only aims to clas-

sify unseen class samples over unseen classes. The results

shown in Table 1 demonstrate the performance comparison

between our proposed SDGZSL method and existing state-

of-the-art models. It can be seen that our method performs

better than all other methods on CUB and FLO datasets.

Even if DLFZRL is slightly higher than our method on

aPaY dataset, we can surpass it on all other datasets. This

is the same case for E-PGN on dataset AWA.

Horse Dolphin Walrus Rat Giraffe

Figure 5: Qualitative results of our approach on AwA,

where six random unseen class labels are shown on top. The

top-3 retrieved images are highlighted in green and the top-

3 retrieved false examples are highlighted in red.

4.4. Zero-shot Retrieval Results

We conduct the image retrieval task to illustrate the qual-

itative results of the proposed framework. Given the seman-

tic embeddings of a specific class, we synthesize a certain

number of semantic-consistent representations for a specific

class and compute the centroid point as a retrieval query,

which is further used to retrieve the nearest samples. To

evaluate the performance on the retrieved samples, the mean

average precision (mAP) score is adopted. In Figure 4, we

compare our proposed SDGZSL method with the base gen-

erative model cVAE when retrieving 100%, 50%, and 25%

of the images from all the unseen classes on aPaY, AWA,

CUB, and FLO. It can be seen that the disentangling module

can significantly boost the retrieval performance among all

settings, which can also demonstrate the effectiveness of the

disentangling modules from the retrieval perspective. Fig-

ure 5 illustrates the retrieved examples on the AWA dataset.

The class name is given on top, following by the top-3 true

positive retrieved images with green boxes and the top-3

false-positive retrieved examples with red boxes. It can be

seen that all the false-positive images look very similar to

the groundtruth examples. For example, the top-3 failed re-

trieved samples for the rat are all bats, as the two species

have many visual patterns in common. Thus, the nearest

neighbor-based retrieval may fail to distinguish the false

positive cases. The results demonstrate that the synthesized

semantic-consistent representations are close to the samples

of the same class in the semantic-consistent feature space.



Figure 6: Hyper-parameter study w.r.t. latent dimensions l, relation weight λ1, TC weight λ2, and discriminator weight λ3.

(b)  (a)  

Figure 7: t-SNE visualization of different representations

of 50 unseen classes on CUB: (a) semantic-consistent rep-

resentations hs; (b) semantic-unrelated representations hn.

4.5. Model Analysis

Ablation Study. In this ablation study, we evaluate vari-

ous stripped-down versions of our full proposed model to

validate the contributions of the key disentangling compo-

nents of the model. In Table 1, we report the GZSL perfor-

mance of each version on the four benchmark datasets. The

best performance is achieved when RN and TC are both

applied. In Figure 3, we show the performance compar-

ison between hs, hn, and h. From the observations on

all datasets, semantic-unrelated features hn performs much

worse than the original latent features h, which proofs the

ineffectiveness of hn in GZSL. In contrast, using semantic-

consistent features hs can further improve the performance,

which validates the significant impact of hs when transfer-

ring the connection between semantic to semantic-unrelated

representations from seen to unseen classes in GZSL. It is

worth noting that when taking both hs and hn (i.e., h) to

classify test samples, the performance is similar to cVAE.

Hyper-Parameter Sensitivity. There are mainly four

hyper-parameters that control the objective function, in-

cluding the number of the disentangled feature dimension

l, the weight of total correlation term λ1, the weight of loss

in the relation module λ2, and the weight of the discrimi-

nator loss λ3. To better understand the effect of the disen-

tangling components, we report the sensitivity of the four

hyper-parameters in Figure 6.

t-SNE Visualization. To further validate the properties

of the disentanglement, we visualize semantic-consistent

representations hs from x in Figure 7 (a) and semantic-

unrelated representations hn from x in (b). We choose all

of 50 unseen classes from CUB dataset that have enough

classes to show the class-wise comparison. Clearly, as

we expected, the semantic-consistent representations hs is

much more discriminative than the semantic-unrelated rep-

resentations hn. However, we can still see discriminative

patterns from hn as there are remaining discriminative fea-

tures even if they are semantic-unrelated, e.g., character-

istics that are not annotated in the attributes. We argue

that these discriminative features may help classify between

these classes, but as the non-semantic discriminative fea-

tures are not annotated in the attributes, it is intuitively im-

possible to transfer the semantic-visual relationship from

seen classes to unseen classes.

5. Conclusion
In this paper, we propose a novel semantics disentan-

gling approach for generalized zero-shot learning. Specif-

ically, the visual features of an image extracted from pre-

trained ResNet101 are further factorized into two inde-

pendent representations that are semantic-consistent and

semantic-unrelated. In our approach, an encoder-decoder

architecture is coupled with a relation module to learn the

visual-semantic interaction. Further, we leverage the total

correlation term to encourage the disentanglement between

the two representations. The disentangling encoder-decoder

model is incorporated into a conditional variational autoen-

coder and trained in an end-to-end manner. The genera-

tion ability trained on seen classes is transferred to the un-

seen classes and synthesizes the missing visual samples. We

evaluate our proposed method on four image classification

datasets. Extensive experiments show that our approach

consistently performs better than other state-of-the-arts.
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